
NORDUGRID

NORDUGRID-TECH-18

16/12/2010

ARC BATCH SYSTEM BACK-END INTERFACE GUIDE WITH SUPPORT FOR
GLUE 2

Description and developer’s guide for ARC1

Adrian Taga∗, Thomas Frågåt†

∗v.a.taga@fys.uio.no
†thomas.fragat@fys.uio.no

Contents

1 Introduction 4

1.1 ARC Classic .4

1.2 ARC1 .4

2 Job control interface 4

2.1 Submit-LRMS-job .4

2.2 Cancel-LRMS-job .5

2.3 Scan-LRMS-job .5

2.4 Configuration parser .5

2.4.1 Functions .5

3 Information System interface 6

3.1 The LRMS Perl module interface .6

3.1.1 get_lrms_options_schema .6

3.1.2 lrms_info .6

4 Batch system specifics 8

4.1 PBS .8

4.1.1 Recommended batch system configuration .8

4.1.2 Relevantarc.conf options . 9

4.1.3 Implementation details .10

4.1.4 Known limitations .10

4.2 Fork .10

4.2.1 Recommended batch system configuration .10

4.2.2 Relevant arc.conf options .10

4.2.3 Implementation details and known limitations .11

4.3 SGE .11

4.3.1 Recommended batch system configuration .11

4.3.2 Relevant arc.conf options .11

4.3.3 Implementation details .11

4.3.4 Known limitations .12

5 The ARC GLUE2 implementation 12

5.1 ComputingService .12

5.2 ComputingEndpoint .13

5.3 ComputingShare .13

5.4 ExecutionEnvironment .14

5.5 ApplicationEnvironment .14

5.6 ComputingActivity .14

5.7 MappingPolicy and AccessPolicy .14

3

1 Introduction

This document describes the next generation Advanced Resource Connector [?] (ARC) batch system back-end
infrastructure. It aims to describe the infrastructure in enough detail that a developer can add a new local resource
management system (LRMS) to the ARC middleware. It also intends to serve as a reference manual describing existing
batch system interfaces. Note that certain details of the interface which are not yet finalized are not described, but will
be included in a future revision of this document.

The batch system back-ends are what tie the ARC grid middleware (through the ARC Resource-coupled EXecution
service, A-REX [1]) to the underlying cluster management system or LRMS. The back-ends consist of set of a shell
and Perl scripts whose role are twofold:

1. to allow the GridManager (GM), which is resided in A-REX, to control jobs in the LRMS including job submit,
cancel operations etc.

2. to collect information about jobs, users, the batch system and the cluster itself for the Information System.

The former will be referred to as the job control back-end interface while the latter is the information system interface
of the batch system back-ends. These two will be treated separately in the following sections.

1.1 ARC Classic

The ARC Classic has its own solution, please refer to [?].

1.2 ARC1

As of ARC version 0.9, which is to be the next generation ARC, the scripts are located in different directories within
the NorduGrid subversion tree [?]. The job control interface scripts can be found under

arc1/trunk/src/services/a-rex/lrms/

while the information collectors are located in

arc1/trunk/src/services/a-rex/infoproviders/ .

The backend scripts install along with the ARC1 code.

The next generation of ARC supports both the classic NorduGrid information schema [3] and currently a minimal set
of the GLUE specification version 2.0 schema [?].

2 Job control interface

The job control part of the LRMS interface is handled by the Grid Manager [2]. It takes care of preparing a native
batch system submission script, managing the actual submission of the batch system job, cancellation of job on request
and scanning for completed batch jobs. Besides the LRMS job control interface it is also the GM which provides e.g.
the data staging and communication with the grid client, provides RTE environments, arranges file staging (to the
node via LRMS capability), dealing with stdout/stderr, etc. The job control batch system interface of the GM requires
three programs. These programs can be implemented any way the designer sees it fits, but all the existing back-end
interfaces use shell scripting for portability and ease of tailoring to a specific site. The GM will call the following
programs: cancel-LRMS-job, submit-LRMS-job, and scan-LRMS-job where LRMS is replaced with the short hand
name for the LRMS; e.g. cancel-pbs-job. The scripts are described one by one in the following subsections. Useful
information can also be found in the Section "8.6 LRMS Support" and Section "8.7 Runtime Environment" of the
Grid-Manager guide [2].

2.1 Submit-LRMS-job

The submit program is the most involved. It is called by the GM once a new job arrives and needs to be submitted to
the LRMS. It is given the GRAMi file as argument on execution. The GRAMi file is a file in the job control directory
containing the job description in a flat list of key-value pairs. This file is created by GM and is based on the JSDL
job description. Submit-LRMS-job then has to set up the session directories, run-time environment and anything else
needed. Then it submits the job to the local LRMS. This is normally done by generating a native job script for the
LRMS and then running the local submit command, but it can also be done through an API if the LRMS supports it.

4

2.2 Cancel-LRMS-job

If a grid user cancels his job, the message will reach the grid-manager. The manager will then call the cancel-LRMS-
job for the suitable back-end. The cancel script is called with the GRAMi file containing information about the job
such as the job id in the LRMS. Cancel-LRMS-job must then use that information to find the job and remove it from
the queue or actually cancel it if it is running in the LRMS.

2.3 Scan-LRMS-job

The scan-LRMS-job is run periodically. Its job is to scan the LRMS for jobs that have finished. Once it has found a
finished job it will write the exit-code of that job to the file job.{gridid}.lrms_done in the ARC job status directory‡.
Then it will call the gm-kick program to notify GM about the finished job. Subsequently, the GM starts finalizing the
job.

Generally, two approaches are taken to find jobs which are finished in LRMS. One is to directly ask the LRMS. Since
all started grid jobs have its own status file§ found in the job status directory, this can be done by checking if the status
is "INLRMS" in this file. If so, a call to the LRMS is made asking for the status of the job (or jobs if several jobs
have status "INLRMS"). If it is finished, it is marked as such in the job status directory, and the gm-kick program
is activated. For most LRMSs the information about finished jobs are only available for a short period of time after
the job finished. Therefore appropriate steps have to be taken if the job has the status "INLRMS" in the job status
directory, but is no longer present in the LRMS. The normal approach is to analyze the job’s status output in the session
directory.

The second approach is to parse the LRMSs log files. This method has some drawbacks like e.g.: the GM has to be
allowed read access to the logs. The back-end will then have to remember where in the log it was last time it ran. This
information will have to be stored in a file somewhere on the front-end.

2.4 Configuration parser

Some of the back-ends will need information from the configuration file. Since this functionality can be shared among
the back-ends, a configuration file parser written in bash has been provided separately for easy maintenance and
extendability.

2.4.1 Functions

config_parse_file <config_file>

Parses a config file. It returns exit status 1 if the file cannot be read, or 0 otherwise. Badly formed lines
are silently ignored. Option values can be surrounded by single quotes or double quotes. Values without
quotes are also accepted. Currently, multi-valued options are not supported. Only the last defined value is
retained.

config_import_section <section_name>

Imports options from section <section_name> of the config file into environment variables of the form
’CONFIG_optionname’. Already existing environment variables are overwritten.

Example:

source $ARC_LOCATION/libexec/config_parser.sh

config_parse_file /etc/arc.conf || exit 1

config_import_section common

config_import_section grid-manager

config_import_section infosys

echo $CONFIG_pbs_bin_path

‡normally /var/spool/nordugrid/jobstatus/, but can be set via the controldir variable of arc.conf
§job.{gridid}.status

5

3 Information System interface

The main purpose of the information system batch interface is to populate the NorduGrid information model and the
GLUE2 model with locally collected information obtained from the batch system. It is important to recall that the
locally collected information is broader than what the batch-system can offer, information taken from the grid-layer
(mostly A-REX), from the front-end machine, and from thearc.conf configuration file are also needed and used to
populate the NorduGrid information model [3] and the GLUE2 schema [?].

The information system interface consists of a set of Perl scripts which generates an XML output toSTDOUTby one
invocation of the Perl script namedCEinfo.pl . The XML output includes two representations of the output data,
namely the classic NorduGrid information schema and an incomplete GLUE2 schema representation.

The information collector scripts are divided between several separate scripts:

• CEinfo.pl - driver for information collection. It calls all other information collectors and prints the results in
XML. The information collection is done by one single invocation of this script.

• InfoCollector.pm - base class for all information collectors (i.e.: all files*Info.pm).

• InfoChecker.pm - used byInfoCollector to validate options and results against a “schema”.

• GMJobsInfo.pm - collects information about jobs from GM status files.

• HostInfo.pm - collects other information that can be collected on the front end (hostname, software version,
disk space for users, installed certificates, Runtime environments, etc.)

• LRMSInfo.pm - collects information that is LRMS specific (queues, jobs, local user limits, etc.) by calling
the appropriate LRMS plugin. It also does validation of input options to the plugin and of the data returned by
the plugin.

• <BATCH_SYSTEM_NAME>.pm- plugins for LRMSInfo. Only Fork, SGE and PBS are updated to the new
framework.

• ARC0ClusterInfo.pm - combines all information about A-REX and produces information structured ac-
cording to the classic NorduGrid schema.

• ARC1ClusterInfo.pm - combines all information about A-REX and produces information structured ac-
cording to the GLUE2 schema.

The following subsection describes the LRMS interface part of the information system. To support a particular LRMS
a dedicated Perl module should be written that implements the interface presented in the next subsections. Further-
more, hooks should be added to the<BATCH_SYSTEM_NAME>.pmmodule, so that it uses the correct Perl module
depending on the LRMS type.

3.1 The LRMS Perl module interface

Each LRMS module should implement two functions:lrms_info andget_lrms_options_schema .

3.1.1 get_lrms_options_schema

This function is called without arguments and should return a “schema” hash declaring the configuration options
specific for this LRMS plugin. This “schema” conforms to the format understood byInfoChecker.pm and is used
to validate input options to the plugin.

3.1.2 lrms_info

Thelrms_info function returns all LRMS specific information. This includes information about the cluster, queues,
jobs and local user limits. The function is called with a hash of hashes containing all options required by the LRMS
plugin. Some options are common to all plugins, and are described in table1.

The lrms_info function should then return a hash of hashes with the structure described in table3.

6

Table 1:The lrms_options hash used as input for thelrms_info function

key value

jobs array with local job IDs

queues hash with queue names as keys and values beingqueue_options hashes (table2)

Table 2:Thequeue_options hash

key value

users array with local UNIX user names

Table 3:The lrms_info hash returned by thelrms_info function

key value

lrms_type the type of LRMS e.g PBS

lrms_version the version of the LRMS

totalcpus total number of CPUs in the cluster

queuedcpus total number of CPUs requested by LRMS queuing jobs (both grid and non-grid)

usedcpus CPUs in the LRMS that are currently in use either by grid or non-grid jobs

cpudistribution number of CPUs in a node and number of each type e.g. “8cpu:5 2cpu:100”

queues a hash with keys being queue names and values beingqueue_info hashes as de-
scribed in table4

jobs a hash with keys being LRMS job IDs and values beingjobs_info hashes as de-
scribed in table6

Table 4:Thequeue_info hash
key value

status available slots in queue, negative number signals error

maxrunning limit on number of running jobs

maxqueuable limit on number of jobs queued on this queue

maxuserrun limit on number of running jobs per user

maxcputime limit on maximum CPU time for a job in this queue in minutes

mincputime limit on minimum CPU time for a job in this queue in minutes

efaultcput default CPU time limit for a job in this queue in minutes

maxwalltime limit on maximum wall timea for a job in this queue in minutes

minwalltime limit on minimum wall time for a job in this queue in minutes

defaultwallt default wall time limit for a job in this queue in minutes

running number of CPUs used by running jobs (both grid and non-grid) in the queue

queued number of CPUs requested by queuing jobs in the queue

totalcpus number of CPUs available to the queue

users a hash with keys being local UNIX user names and values beingusers_info hashes
as described in table5

aAlso known as Wall clock time,http://en.wikipedia.org/wiki/Wall_clock_time

7

Table 5:Theusers_info hash

key value

freecpus number of freely available CPUs with their time limits in minutes (see ComputingSer-
vice.FreeSlotsWithDuration in [?])

queuelength estimated queue length for the specified user

Table 6:The jobs_info hash
key value

status LRMS jobstatus mappinga: Running⇒ ’R’, Queued⇒ ’Q’, Suspended⇒ ’S’, Exit-
ing⇒ ’E’, Other⇒ ’O’

rank the job’s position in the LRMS queue

mem the memory usage of the job in kBs

walltime consumed wall time in minutes

cputime consumed CPU-time in minutes

reqwalltime wall time requested by job in minutes

reqcputime CPU-time requested by job in minutes

nodes list of execution hosts

comment array of string comments about the job in LRMS, can be an empty array

aLRMS job states mapping is described in[3]

4 Batch system specifics

This section presents the batch system specific implementation details including information on supported versions,
constraints on batch system configuration, known limitations,arc.conf parameters, and a list of batch system
features being utilized within the interface are described.

4.1 PBS

The Portable Batch System (PBS) is one of the most popular batch systems. PBS comes in many flavours such as
OpenPBS (unsupported), Terascale Open-Source Resource and QUEue Manager (TORQUE) and PBSPro (currently
owned by Altair Engineering). ARC supports all the flavours and versions of PBS.

4.1.1 Recommended batch system configuration

PBS is a very powerful LRMS with dozens of configurable options. Server, queue and node attributes can be used to
configure the cluster’s behaviour. In order to correctly interface PBS to ARC (mainly the information provider scripts)
there are a couple of configuration REQUIREMENTS asked to be implemented by the local system administrator:

1. The computing nodes MUST be declared as cluster nodes (job-exclusive), at the moment time-shared nodes are
not supported by the ARC setup. If you intend to run more than one job on a single processor then you can use
the virtual processor feature of PBS.

2. For each queue, you MUST set one of the max_user_run or max_running attributes and its value SHOULD
BE IN AGREEMENT with the number of available resources (i.e. don’t set the max_running = 10 if you have
only six (virtual) processors in your system). If you set both max_running and max_user_run then obviously
max_user_run has to be less or equal to max_running.

3. For the time being, do NOT set server limits like max_running, please use queue-based limits instead.

8

4. Avoid using the max_load and the ideal_load directives. The Node Manager (MOM) configuration file (<PBS
home on the node>/mom_priv/config) should not contain any max_load or ideal_load directives. PBS closes
down a node (no jobs are allocated to it) when the load on the node reaches the max_load value. The max_load
value is meant for controlling time-shared nodes. In case of job-exclusive nodes there is no need for setting
these directives, moreover incorrectly set values can close down your node.

5. Routing queues are not supported, those cannot be used within ARC.

Additional useful configuration hints:

• If possible, please use queue-based attributes instead of server level ones (for the time being, do not use server
level attributes at all).

• You may use the "acl_user_enable = True" with "acl_users = user1,user2" attribute to enable user access control
for the queue.

• It is advisory to set the max_queuable attribute in order to avoid a painfully long dead queue.

• You can use node properties from the<PBS home on the server>/server_priv/nodes file to-
gether with theresources_default.neednodes to assign a queue to a certain type of node.

Checking your PBS configuration:

• The node definition can be checked by<PBS installation path>/bin/pbsnodes -a. All the
nodes MUST have ntype=cluster.

• The required queue attributes can be checked as<PBS installation path>/bin/qstat -f -Q queuename .
There MUST be a max_user_run or a max_running attribute listed with a REASONABLE value.

4.1.2 Relevantarc.conf options

Below the PBS specific configuration variables are collected.

• The PBS batch system back-end is enabled via setting thelrms="pbs" in the [common] configuration
block. No need to specify the flavour or the version number of the PBS, simply use the“pbs” keyword as
LRMS configuration value.

• pbs_bin_path configuration variable of the[common] block should be set to the path to the qstat,pbsnodes,qmgr
etc PBS binaries.

• pbs_log_path configuration variable of the[common] block should be set to the path of the PBS server
logfiles which are used by the GM to determine whether a PBS job is completed. If not specified, the GM will
use theqstat command to find completed jobs.

• lrmsconfig from the[cluster] block can be used as an optional free text field to describe further details
about the PBS configuration (e.g.lrmsconfig="single job per processor").

• dedicated_node_string from the[cluster] block specifies the string which is used in the PBS node
config to distinguish the grid nodes from the rest. Suppose only a subset of nodes are available for grid jobs,
and these nodes have a commonnode property string, this case thededicated_node_string should
be set to this value and only the nodes with the corresponding PBSnode property are counted as grid
enabled nodes. Setting thededicated_node_string to the value of the PBSnode property of the
grid-enabled nodes will influence how the totalcpus, user freecpus is calculated. No need to set this attribute if
the cluster is fully available for the grid and the PBS configuration does not use thenode property method
to assign certain nodes to grid queues.

• [queue/queuename] block. For each grid-enabled (or grid visible) PBS queue a corresponding[queue]
block must be defined.queuename should be the PBS queue name.

• scheduling_policy from the[queue/queuename] block describes the scheduling policy of the queue.
PBS by default offers the FIFO scheduler, many sites run the MAUI. At the momentFIFO & MAUI are sup-
ported values. If you have a MAUI scheduler you should specify the "MAUI" value since it modifies the way
the queue resources are calculated. By default the "FIFO" scheduler type is assumed.

9

• maui_bin_path from the[queue/queuename] block sets the path of the MAUI commands likeshowbf
when "MAUI" is specified asscheduling_policy value. This parameter can be set in the[common] block
as well.

• queue_node_string of the[queue/queuename] block can be used similar to thededicated_node_string .
In PBS you can assign nodes to a queue (or a queue to nodes) by using thenode property PBS node configu-
ration method and assigning the marked nodes to the queue (setting theresources_default.neednodes
= queue_node_string for that queue). This parameter should contain thenode property string of the
queue-assigned nodes. Setting thequeue_node_string changes how the queue-totalcpus, user freecpus are
determined for this queue.

4.1.3 Implementation details

The job control batch interface makes use of theqsub command to submit native PBS job scripts to the batch system.
The following options are used:

-l nodes, cput, walltime, pvmem, pmem,

-W stagein, stageout

-e, -j eo

-q

-A

-N

For job cancellation theqdel command is used. To find completed jobs, i.e. to scan for finished jobs theqstat
command or thePBS server log file is used.

The information system interface utilizes theqstat -f -Q queuename and qstat -f queuename com-
mands to obtain detailed job and queue information.qmgr -c "list server" is used to determine PBS flavour
and version. Thepbsnodes command is used to calculate total/used/free cpus within the cluster. In case of a MAUI
scheduler theshowbf command is used to determine user freecpu values. All these external PBS commands are
interfaced via parsing the commands’ output.

4.1.4 Known limitations

Some of the limitations are already mentioned under the PBS deployment requirements. No support for routing
queues, difficulty of treating overlapping queues, the complexity of node string specifications for parallel jobs are the
main shortcomings.

4.2 Fork

The Fork back-end is a simple back-end that interfaces to the local machine, i.e.: there is no batch system underneath.
It simply forks the job, hence the name. The back-end then uses standard posix commands (e.g. ps or kill) to manage
the job.

4.2.1 Recommended batch system configuration

Since fork is a simple back-end and does not use any batch system, there is no specific configuration needed for the
underlying system.

4.2.2 Relevant arc.conf options

• The Fork back-end is enabled by settinglrms="fork" in the[common] configuration block.

• The queue must be named “fork” in the queue section.

• fork_job_limit="cpunumber", this option is used to set the number of running grid jobs on the fork machine,
allowing a multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

10

4.2.3 Implementation details and known limitations

The Fork back-end implements an interface to the “fork” UNIX command which is not a batch system. Therefore the
back-end should rather be seen as an interface to the operating system itself. Most of the “batch system values” are
determined from the operating system (e.g. cpu load) or manually set in the configuration file.

Since Fork is not a batch system, many of the queue specific attributes or detailed job information is not available.
The support for the “Fork batch system” was introduced so that quick deployments and testing of the middleware can
be possible without dealing with deployment of a real batch system since fork is available on every UNIX box. The
"Fork back-end" is not recommended to be used in production. The back-end by its nature, has lots of limitations, for
example it does not support parallel jobs.

4.3 SGE

Sun Grid Engine, formerly known as Codine, is an open source batch system maintained by Sun. It is supported on
Linux, and Solaris in addition to a numerous other systems.

4.3.1 Recommended batch system configuration

Set up one or more SGE queues for access by grid users. Queues can be shared by normal and grid users. In case
you want to set up more than one ARC queue, make sure that the corresponding SGE queues have no shared nodes
among them. Otherwise the counts of free and occupied CPUs might be wrong. Only SGE versions 6 and above are
supported.

4.3.2 Relevant arc.conf options

The SGE back-end requires that the following options are specified:

• The SGE batch system back-end is enabled by settinglrms="sge" in the[common] configuration block.

• sge_root must be set to SGE’s install root.

• sge_bin_path configuration variable of the[common] block must be set to the path of the SGE binaries.

• sge_cell , sge_qmaster_port and sge_execd_port options might be necessary to set in special
cases. See thearc.conf(5) man page for more details.

• sge_jobopts configuration variable of the[queue] block can be used to add custom SGE options to job
scripts submitted to SGE. Consult SGE documentation for possible options.

Example:

lrms="sge"

sge_root="/opt/n1ge6"

sge_bin_path="/opt/n1ge6/bin/lx24-x86"

...

[queue/long]

sge_jobopts="-P atlas -r yes"

4.3.3 Implementation details

The SGE back-end’s commands are similar to the PBS commands. These commands are used in the code:

Submit job:

• qsub -S /bin/sh (specifies the interpreting shell for the job)

Get jobs status:

If the job state is not suspended, running or pending then its state is failed.

11

• qstat -u ’*’ -s rs (show the running and suspended jobs status)

• qstat -u ’*’ -s p (show the pending jobs status)

• qstat -j job_id (long job information)

• qacct -j job_id (finished job report)

Job terminating:

• qdel job_id (delete Sun Grid Engine job from the queue)

Queue commands:

• qconf -spl (show a list of all currently defined parallel environments)

• qconf -sql (show a list of all queues)

• qconf -sep (show a list of all licensed processors/slots)

• qstat -g c (display cluster queue summary)

• qconf -sconf global (show global configuration)

• qconf -sq queue_name (show the given queue configuration)

Other:

• qstat -help (show Sun Grid Engine’s version and type)

4.3.4 Known limitations

Multi-CPU support is not well tested. All users are shown with the same quotas in the information system, even if they
are mapped to different local users. The requirement that one ARC queue maps to one SGE queue is too restrictive,
as the SGE’s notion of a queue differs widely from ARC’s definition. The flexibility available in SGE for defining
policies is difficult to accurately translate into NorduGrid’s information schema. The closest equivalent of nordugrid-
queue-maxqueuable is a per-cluster limit in SGE, and the value of nordugrid-queue-localqueued is not well defined if
pending jobs can have multiple destination queues.

5 The ARC GLUE2 implementation

ARC1 provides support for both the classic NorduGrid information schema [3] as well as GLUE2. The output is
rendered in XML format.

The different entities with their attributes are described in their respective sections below.

5.1 ComputingService

Hardcoded Properties:

Property Value

Capability executionmanagement.jobexecution

Type org.nordugrid.execution.arex

QualityLevel development

Complexity endpoint=1,share=N,resource=1 , where N is the number of queues in the
configuration file

The following properties referring to job counts are calculated based on information in GM’s status files:

Property Meaning

TotalJobs number of grid jobs in states other than FINISHED

RunningJobs number of grid jobs in INLRMS:R state

WaitingJobs number of grid jobs in INLRMS:Q, ACCEPTED, PREPARING and SUBMIT* states

12

5.2 ComputingEndpoint

Property Value

URL https:// hostname : port /arex

Technology webservice

Interface OGSA-BES

WSDL https:// hostname : port /arex/?wsdl

Semantics http://www.nordugrid.org/documents/arex.pdf

SupportedProfile WS-I 1.0 andHPC-BP

Implementor NorduGrid

ImplementationName ARC1

ImplementationVersion 0.9

QualityLevel development

HealthState ok – no detection of problems yet

ServingState draining if the configuration has allownew=no,production otherwise

IssuerCA obtained from thehostcert.pemfile

TrustedCA obtained by scanning thecertificatesdirectory

Staging staginginout

JobDescription ogf:jsdl:1.0

5.3 ComputingShare

A ComputingShare element is generated for each ’queue’ section in the configuration.

Property Comments

BaseType Share

Name ‘name” configuration option

Description “comment” configuration option

MappingQueue “lrms_queue” configuration option

SchedulingPolicy if MAUI is used, it is set tofairshare

ServingState has the same value as ComputingEndpoint.ServingState

The following properties are taken from the corresponding attributes returned by the LRMS plugin. Units are converted
as necessary.

Property LRMS plugin attribute

MaxCPUTime maxcputime

MinCPUTime mincputime

DefaultCPUTime defaultcput

MaxWallTime maxwalltime

MinWallTime minwalltime

DefaultWallTime defaultwallt

The following properties are directly taken from configuration options.

13

Property Configuration option Comments

MaxTotalJobs maxjobs maxjobs is a per cluster limit, grid-manager has
no equivalent limit per share

MaxPreLRMSWaitingJobs maxjobs

MaxStageInStreams maxload maxload is a per cluster limit, grid-manager has
no equivalent limit per share

MaxStageOutStreams maxload

MaxMemory nodememory

MaxDiskSpace maxdiskperjob

The following properties are taken from the corresponding LRMS plugin attributes when available:

Property LRMS plugin attribute

MaxRunningJobs maxrunning

MaxWaitingJobs maxqueuable - maxrunning

MaxUserRunningJobs maxuserrun

MaxSlotsPerJob maxslotsperjob

The following properties referring to job counts are calculated based on information in GM’s status files:

Property Meaning

TotalJobs number of grid jobs in this share in states other than FINISHED

RunningJobs number of grid jobs in this share in INLRMS:R state

SuspendedJobs number of grid jobs in this share in INLRMS:S state

WaitingJobs number of grid jobs in this share in INLRMS:Q and INLRMS:O states

LocalRunningJobs The total number of jobs running in the associated LRMS queue minus the number of
grid-running grid jobs (RunningJobs)

LocalWaitingJobs The total number of jobs queued in the associated LRMS queue minus the number of
grid-queued grid jobs (WaitingJobs)

StagingJobs number of grid jobs in this share in PREPARING and FINISHING states

PreLRMSWaitingJobs number of grid jobs in this share in ACCEPTED, PREPARING and SUBMIT* states

The following properties are derived from the corresponding LRMS plugin attributes:

Property Related LRMS properly

UsedSlots running

RequestedSlots queued

FreeSlots totalcpus - running

FreeSlotsWithDuration freecpus

5.4 ExecutionEnvironment

5.5 ApplicationEnvironment

5.6 ComputingActivity

5.7 MappingPolicy and AccessPolicy

References

[1] A. Konstantinov. The ARC Computational Job Management Module - A-REX, . URL
http://www.nordugrid.org/documents/a-rex.pdf . NORDUGRID-TECH-14.

14

[2] A. Konstantinov. The NorduGrid Grid Manager And GridFTP Server: Description And Administrator’s
Manual. The NorduGrid Collaboration, . URLhttp://www.nordugrid.org/documents/GM.pdf .
NORDUGRID-TECH-2.

[3] B. Kónya. The NorduGrid/ARC Information System. The NorduGrid Collaboration. URL
http://www.nordugrid.org/documents/arc_infosys.pdf . NORDUGRID-TECH-4.

15

