
NORDUGRID

NORDUGRID-MANUAL-11

18/4/2011

Dynamic Runtime Environments with Janitor

This Janitor and this document with it is under continuous development. Your comments and suggestions

are appreciated.

Michael Glodek, Daniel Bayer, Steffen Möller∗

∗moeller@inb.uni-luebeck.de

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Overview . 5

2 Installation 7
2.1 Configuration . 7
2.2 Limitations . 10

3 Usage 11
3.1 Janitor with A-REX . 11
3.2 Janitor without A-REX . 12
3.3 Janitor with A-REX . 13

4 Maintenance 15
4.1 Catalog . 15

4.1.1 Debian packages - dysfunctional in current implementation 16
4.2 HTML interface of the catalog . 18
4.3 Introducing new packages . 18

4.3.1 Debian Etch (tar based) . 18
4.3.2 Automated transformation of install directory to dRTE 19
4.3.3 Protoypes . 19
4.3.4 Example: ATLAS for High Energy Physics . 20

5 Technical Motivation and Concepts 21
5.1 Implementation . 21

5.1.1 Choice of Perl . 21
5.1.2 Modular structure . 21

5.2 Concepts . 23
5.2.1 States of Runtime Environments . 23
5.2.2 Subset of that functionality as implemented today . 24
5.2.3 Dependencies on Job IDs . 24

5.3 Job states . 25
5.4 Integration with AREX . 25
5.5 WebService Interface . 25

5.5.1 What happens during installation . 27
5.5.2 Security Consideration . 27

6 Outlook 29
6.1 Representation of dynamic RTEs in the information model 29
6.2 Integration with Workflow Management . 29
6.3 Implementation of a Catalog service . 29
6.4 Integration with the Virtualization work . 29
6.5 Use of RDF . 29
6.6 Manual Verification . 30

7 Appendix 31
7.1 Useful tutorials and documentations . 31

3

Contents

4

1 Introduction

The Janitor is a service for the automated installation of runtime environments for grid computing elements.
Its command line interface allows for a direct interaction with site administrators. However, the main
stimulus for its development was the idea integrate such a service with the regular handling of compute jobs.
For ARC this is performed by the A-REX module.

From the programmer’s view, the Janitor is mostly a Perl script and the routines within A-REX to invoke
it. The site administrator will also associate with it also the Catalog files, that describe the availability of
runtime environments, and the repository of installable runtime envionments themselves, which are regular
tar archives obeying to particular structure and reside in a separate folder. In order to minimise the latency
for the invocation of the Perl script and the associated parsing of files, a Janitor web service was developed,
which still is a Perl script.

1.1 Motivation

A major motivation for grid projects is to stimulate new communities to adopt the technology to start
sharing their resources. From the current grid user’s viewpoint, the admission of users with a very different
education will suddenly impose difficulties in the communication between site maintainers. One will not even
understand the respective other side’s research aims. Hence, the proper installation of non-standard software
(Runtime Environments, RTEs) is not guaranteed. And extra time for manual labour plus self-education is
scarse.

A core problem remains to distribute a locally working solution, the Know-How, quickly across all con-
tributing sites, i. e. without manual interference. Every scientific discipline has its respective own set of
technologies for the distribution of work load. For instance, research in bioinformatics requires access to so
many different tools and databases, that few sites, if any, install them all. Instead, the use of web services
became a commodity, with all their intrinsic problems as there are bottlenecks and restrictions of repeated
access. The EU project KnowARC∗, amongst other challenges, with the here presented work extends the
NorduGrid’s Advanced Research Connector (ARC) grid middleware [2] towards an infrastructure for the
automated installation of software packages.

An automation of the software installation, referred to as dynamic Runtime Environments (dRTEs), seems
the only approach to use the computational grid to its full potential. Components of workflows shall be
spawned as jobs in a computational grid using dRTEs rather than accessing a public web service at one
particular machine that is shared amongst all users. The grid introduces an extra level of parallelism that
web services cannot provide. The demands for short response times and the heterogeneous education of
site-administrators on a grid demand an automatism for the installation of software and databases without
manual interference [1].

1.2 Overview

This document starts with a chapter on how to set-up the Janitor locally. It is followed by a chapter that
gives further instructions on how to use the Janitor with A-REX and/or without A-REX. Afterwards, in
the third chapter, the maintenance of the program will be presented, which is basically covering the method
how to prepare new dRTEs. Deeper insights on the design of the Janitor will be given by the forth chapter.
The document ends with an outlook to anticipated future developments and opportunities.

∗http://www.knowarc.eu

5

http://www.knowarc.eu

1 Introduction

Abbreviations

RTE –Runtime Environment

dRTE–dynamic Runtime Environment

RDF –Resource Description Framework (supporting the RTE Catalog)

6

2 Installation

The Janitor requires the two perl packages listed in table 2.1. To have the WebService interface for the
Janitor, the packages listed in table 2.2 need to be installed before the build process is. The Perl modules
are available on CPAN and ship with all major Linux distributions.

Table 2.1: Required perl packages for the Janitor. Log4perl is used for the internal logging of the Janitor,
while the Redland RDF library is used for accessing the knowledge base (catalog) of Runtime Environments.

liblog-log4perl-perl Log4perl is a port of the log4j logging package

librdf-perl Perl language bindings for the Redland RDF
library

Table 2.2: Optional libraries for the Janitor. The library libperl-dev provides the required header files to link
the WebService to the Perl interpreter.

libperl-dev Perl library: development files

If you are using regular Debian or Ubuntu packages, then the Janitor can be installed as root by ”apt-
get install nordugrid-arc1-janitor”. Installing it will not drag other components of ARC with it, since the
Janitor can be used in its own right – or in conjunction with another grid system, possibly. Packages for
Redhat/Fedora and SuSE/OpenSuSE are also provided, the redland library however may not yet be available
for those systems.

The Janitor source code is shipped as a part of the regular ARC-NOX source tree. If you are compiling the
sources yourself, the default is to have the A-REX grid manager technically prepared to interact with the
Janitor. The interaction can be prohibited with the configure flags –disable-janitor-service for the complete
janitor or –disable-janitor-webservice for only the Web Service support.

Furthermore many users will want to consider installing the ontology editor Protègè∗ to easily maintain
the knowledge database of installable packages. At the time of writing, no Linux distribution is offering
packages for this fine tool. However, the basic editing can also be performed fairly easily without that tool,
and everyone is working on simplifying that process.

2.1 Configuration

The current version of the Janitor can be configured using the common file arc.conf. It is expected in
the configuration directory etc. The Janitor is using the environment variable NORDUGRID CONFIG to
determine the location of the corresponding file. If that variable is not set, the default location /etc/arc.conf
will be used. The parameter use janitor in the [grid-manager]section has to be set in order to tell A-REX
whether to use Janitor or not. By default, Janitor is not used. Use the value "1" to enable Janitor.

Janitor is configured through parameters in the section [janitor]. Table 2.3 describes the available tags for
the Janitor’s configuration.

∗http://protege.stanford.edu

7

http://protege.stanford.edu

2 Installation

T
a
b
le

2
.3

:
T

a
g
s

u
sa

b
le

in
a
rc

.c
o
n
f

w
it

h
in

th
e

se
c
ti

o
n

ja
n
it

o
r.

T
a
g
s

u
sa

b
le

in
a
rc

.c
o
n
f

w
it

h
in

th
e

se
ct

io
n

ja
n
it

o
r.

ta
g

ex
am

p
le

d
es

cr
ip

ti
on

ui
d

”r
oo

t”
T

he
eff

ec
ti

ve
ui

d.

gi
d

”0
”

T
he

eff
ec

ti
ve

gi
d.

re
gi

st
ra

ti
on

di
r

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r”
D

ir
ec

to
ry

w
he

re
w

e
th

e
cu

rr
en

t
st

at
es

of
jo

bs
ar

e
ke

pt
.

ca
ta

lo
g

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
ca

ta
lo

g/
kn

ow
ar

c.
rd

f”
U

R
L

of
th

e
ca

ta
lo

g
co

nt
ai

ni
ng

th
e

pa
ck

ag
e

in
fo

rm
at

io
n.

do
w

nl
oa

dd
ir

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
do

w
nl

oa
d”

D
ir

ec
to

ry
fo

r
do

w
nl

oa
ds

in
st

al
la

ti
on

di
r

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
ru

nt
im

e”
D

ir
ec

to
ry

fo
r

in
st

al
la

ti
on

of
pa

ck
ag

es

jo
be

xp
ir

yt
im

e
”7

20
0”

If
a

jo
b

is
ol

de
r

th
an

th
is

,
it

is
co

ns
id

er
ed

de
ad

an
d

as
si

gn
ed

to
be

re
m

ov
al

pe
nd

in
g.

rt
ee

xp
ir

yt
im

e
”3

6”
If

a
ru

nt
im

e
en

vi
ro

nm
en

t
w

as
no

t
us

ed
fo

r
th

is
ti

m
e,

it
w

ill
be

as
si

gn
ed

to
be

re
m

ov
al

pe
nd

in
g.

al
lo

w
ba

se
”*

”
A

llo
w

ru
le

fo
r

ba
se

pa
ck

ag
es

.

de
ny

ba
se

”d
eb

ia
n:

:e
tc

h”
D

en
y

ru
le

fo
r

ba
se

pa
ck

ag
es

.

al
lo

w
rt

e
”*

”
A

llo
w

ru
le

fo
r

ba
se

pa
ck

ag
es

.

de
ny

rt
e

”A
P

P
S/

M
A

T
H

/E
L

M
E

R
-5

.0
.2

”
D

en
y

ru
le

fo
r

ba
se

pa
ck

ag
es

.

lo
gc

on
f

”/
op

t/
no

rd
ug

ri
d/

et
c/

lo
g.

co
nf

”
L

oc
at

io
n

of
th

e
lo

gg
in

g
co

nfi
gu

ra
ti

on
fil

e
fo

r
ja

ni
to

r.

8

2.1 Configuration

The uid and the gid are defining which effective user id (uid) and group id (gid) shall be used for the
Janitor.

The registrationdir describes the directory in which the subdirectories jobs and rtes will be created.
In these directories the states of the jobs and the runtime environments are stored. Please recall that the
Janitor does not use a database as a backend, but all communication between invocations are performed via
files in those folders.

The knowledge base of installable packages is specified by the parameter catalog. Its value can be any kind
of URL pointing to a file written in the Resource Description Framework (RDF) format. One should not
light-heartedly use a remote address for this purpose. Such a remote source needs to be trusted, since any
runtime environment specified in a catalog (if the package description matches constraints by the local site
administrator) may possibly be installed by regular grid users.

The specification of the RDF file will be explained in detail in section 4.1. The parameter downloaddir
assigns the directory to which the installation files will be saved after they have been downloaded or copied
from the repository which was specified by the catalog. Please remember: the URL in arc.conf indicates the
location of the catalog. And the URLs somehow specified in the catalog specify the location from where to
download the runtime environment.

The installationdir finally specifies the directory into which all packages will be installed. This directory
needs to be available for all computing nodes for the execution of arbitrary programs, most commonly by
using it as a shared NFS volume.

If the configuration file furthermore contains the runtimedir tag within the section grid-manager, the Jan-
itor will also create a symbolic link in the runtimedir pointing to the configuration script of the installation
performed by the Janitor. The tags jobexpirytime and rteexpirytime are used for an automated cleanup
and is defined in seconds. The default value for the jobexpirytime is seven days and for the rteexpirytime
three days. The additional tags allow base deny base allow rte and deny rte are used to include or ex-
clude certain base packages or runtime environments of the catalog. This feature is useful, if the catalog is
maintained by a higher organization. But again: you need to trust it.

The path to the log4perl configuration file is defined by the tag logconf. Examples on how to configure
ARC and log4perl are provided in the Listings 2.1 and 2.2.

Listing 2.1: Example arc.conf settings for janitor.

1 [janitor]
2 enabled ="1"
3 logconf ="/opt/nordugrid/etc/log.conf"
4 registrationdir ="/var/spool/nordugrid/janitor"
5 installationdir ="/var/spool/nordugrid/janitor/runtime"
6 downloaddir ="/var/spool/nordugrid/janitor/download"
7 jobexpirytime ="7200"
8 rteexpirytime ="36"
9 uid="root"

10 gid ="0"
11 allow_base ="*"
12 allow_rte ="*"
13
14 [janitor/nordugrid]
15 catalog ="/var/spool/nordugrid/janitor/catalog/knowarc.rdf"

It should be noted that the downloaddir or the installationdir specified in arc.conf could be any directory.
Those will not be prepared by the package for the Linux distribution but need be created by the administrator
manually after the Janitor has been installed. This also holds for the catalog.

When working with several catalogs, then the multiple catalog lines can be placed into the same arc.conf
file. But every must go into its own block as separated with

janitor/someName

directives.

Listing 2.2: Example log.conf settings for janitor.

1 # Master Loglevel
2 # [OFF | DEBUG | INFO | WARN | ERROR | FATAL]
3 #log4perl.threshold = OFF

9

2 Installation

4
5 log4perl.rootLogger = WARN , DebugLog , MainLog , ErrorLog
6 log4perl.appender.DebugLog = Log:: Log4perl :: Appender :: Screen
7 log4perl.appender.DebugLog.layout = PatternLayout
8 log4perl.appender.DebugLog.layout.ConversionPattern = [%C] %d %p> %m%n
9

10 log4perl.appender.MainLog = Log:: Log4perl :: Appender ::File
11 log4perl.appender.MainLog.Threshold = DEBUG
12 log4perl.appender.MainLog.filename = /var/log/arc/janitor.log
13 log4perl.appender.MainLog.layout = PatternLayout
14 log4perl.appender.MainLog.layout.ConversionPattern = %d %p> %m%n
15
16 log4perl.appender.ErrorLog = Log:: Log4perl :: Appender ::File
17 log4perl.appender.ErrorLog.Threshold = ERROR
18 log4perl.appender.ErrorLog.filename = /var/log/arc/janitor_error.log
19
20 log4perl.appender.ErrorLog.layout = PatternLayout
21 log4perl.appender.ErrorLog.layout.ConversionPattern = %d %p> %m%n

2.2 Limitations

The Janitor was designed to be used for UNIX-compatible operating systems and tested for various Linux
distributions. It should also be functional on MaxOS X and Windows with Cygwin or coLinux. The porting
of the Janitor to other platforms has not yet been addressed.

The ARC middleware is not ultimately essential for dynamic Runtime Environments. All the Perl code
would be functional with any Grid middleware.

10

3 Usage

The Janitor can be used either with or without the A-REX service. In case A-REX is used, the invocation
of the Janitor will be performed in an automated manner. It is then triggered by incoming jobs that request
a particular RTE for their execution. If it is not already installed, but

1. found as a MetaPackage in a Catalog that the site supports

2. with a package that first the BaseSystem of the site

then it will be installed without further manual intervention by the Janitor - triggered by the A-REX that
received the compute request.

The Janitor’s installation will not be affected by this decision pro or cons and integration with A-REX .
Both can be installed in parallel. If A-REX is not allowed to install runtime environments upon demand,
such automated installations can still be invoked manually via the Janitor’s command line interface.

3.1 Janitor with A-REX

Runtime Environments can be specified using the supported job description languages. The most represen-
tative two common languages shall be explained at this point: xRSL and JSDL. Listing 3.1 shows the xRSL
example in which two runtime environments are requested.

Listing 3.1: Job submission using the xRSL job description language.

1 &
2 (executable = "run.sh")
3 (arguments = "weka.classifiers.trees.J48" "-t" "weather.arff")
4 (" inputfiles" = (" weather.arff" ""))
5 (" stderr" = "stderr")
6 (" stdout" = "stdout")
7 ("gmlog" = "gmlog")
8 (" runtimeenvironment" = "APPS/BIO/WEKA -3.4.10")
9 (" runtimeenvironment" = "APPS/BIO/WISE -2.4.1 -5")

The runtime environment names are composed out a directory name, the package name and the version
number.

A comprehensive reference manual of the Extended Resource Specification Language (XRSL) can be found
at www.nordugrid.org/documents/xrsl.pdf [4]. Within Listing 3.2 an example using JSDL is provided.
The specification of how to assign runtime environments in JSDL is currently only defined within the
nordugrid jsdl-arc schema http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-
manager/jobdesc/jsdl/jsdl arc.xsd.

Listing 3.2: Job submission using JSDL.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <JobDefinition
3 xmlns="http:// schemas.ggf.org/jsdl /2005/11/ jsdl"
4 xmlns:posix="http:// schemas.ggf.org/jsdl /2005/11/ jsdl -posix"
5 xmlns:arc="http: //www.nordugrid.org/ws/schemas/jsdl -arc">
6 <JobDescription >
7 <Application >
8 <posix:POSIXApplication >
9 <posix:Executable >/bin/sleep</posix:Executable >

10 <posix:Argument >120</posix:Argument >
11 </posix:POSIXApplication >
12 </Application >
13 <DataStaging >
14 <FileName >test.sh</FileName >
15 <Source/>
16 <Target/>
17 </DataStaging >

11

http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-manager/jobdesc/jsdl/jsdl_arc.xsd
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-manager/jobdesc/jsdl/jsdl_arc.xsd

3 Usage

18 <DataStaging >
19 <FileName >transferGSI -small</FileName >
20 <Source >
21 <URI>gsiftp: // pgs02.grid.upjs.sk:2811/unixacl/transferGSI -small </URI>
22 </Source >
23 <Target/>
24 </DataStaging >
25 <Resources >
26 <arc:RunTimeEnvironment >
27 <arc:Name >APPS/BIO/WISE -2.4.1 -5</arc:Name >
28 <arc:Version ><Exact>2.4.1</Exact></arc:Version >
29 </arc:RunTimeEnvironment >
30 <arc:RunTimeEnvironment >
31 <arc:Name >APPS/BIO/APPS/BIO/WEKA -3.4.10 </arc:Name >
32 <arc:Version ><Exact>3.4</Exact ></arc:Version >
33 </arc:RunTimeEnvironment >
34 </Resources >
35 </JobDescription >
36 </JobDefinition >

3.2 Janitor without A-REX

On Linux systems, the Janitor’s standalone commandline tool is available as /usr/lib/arc/janitor. Some
Linux distributions may prefer /usr/libexec or similar paths. The script is only functional as root∗. To find
that binary directly, you may decide to add that location to your $PATH environment variable.

The available commands to the Janitor, implemented as options to the janitor script, are listed in the
Table 3.1.

The most important commands for the Janitor are register, deploy and remove. To register a job along
with a set of runtime environments in the Janitor, the first command register followed by a job identifier
and a list of runtime environments has to be used. A job is identified by a sequence of numbers. Runtime
environments are specified by a string containing the name as it is defined within the Catalog (resp. the
runtime directory of the grid-manager). The command deploy extracts the necessary dependencies of the
desired dRTEs and then downloads and installs the required packages.

In order to remove jobs registered in the Janitor, the command remove has to be used. The command only
removes the job entry and the lock on the runtime environment. If there are no more locks on the runtime
environment it is ok to be deleted also physically from the disk. The demand to pass a job number for the
removal of a RTE is irritating at first. This shall prevent the removal of runtime envrironments that are still
being used by jobs in the system. Instead, the janitor is informed about a job’s termination and is requested
to remove the assignment of that job to the runtime environment. Only those RTEs with no job-assignment
are eligible for being sweeped. RTEs come with an expiry time or the command may be performed via the
command line.

Easy command line examples are provided in Listing 3.3. You may also want to inspect the janitor(8) man
page.

Every command has a certain behaviour for its exit status. Table 3.2 lists the possible outcomes. A value
of 0 always indicates that no error occurred.

Listing 3.3: Example log.conf settings for janitor.

janitor register 1999 APP/BIO/JASPAR -CORE -1.0 APPS/BIO/APPS/BIO/WEKA -3.4.10
janitor deploy 1999
janitor remove 1999

janitor sweep --force
janitor setstate REMOVAL_PENDING APP/BIO/JASPAR -CORE -1.0 APPS/BIO/APPS/BIO/WEKA -3.4.10

janitor search JASPAR WEKA
janitor list
janitor info 1999

∗Should you find that constraint unbearable for your purpose, please investigate the file rjanitor.cc in the ARC source tree. It
wraps the janitor application and as a C binary can be configured to attract root privileges.

12

3.3 Janitor with A-REX

Table 3.1: Overview about the available commands to the Janitor.

janitor [COMMAND] [JOB-ID] [RTE] . . .

Command:

register Registers a job and a set of runtime environments in the Janitor
database. Requires the parameters [JOB-ID] and a list of [RTE]s.

deploy Downloads and installs the desired runtime environments. Requires the
name of an already registered [JOB-ID].

remove Removes the placeholder of the job on the runtime environments. If
no more jobs are using the runtime environment and the lifespan of
the runtime environment has be expired, the runtime environment can
be removed using the sweep command. Requires the [JOB-ID] to be
removed.

sweep Removes unused runtime environments. No further arguements are re-
quired. Using the option --force enforces the removal of all unused
runtime environments. Runtime environments having the state FAILED
will not be removed.

setstate Changes the state of a dynamically installed runtime environment. This
might be useful in case a runtime environment with a state FAILED shall
be removed (new state might be REMOVAL PENDING). Requires the
argument [STATE] followd by a list of [RTE]s.

search Performs a simple search in the catalog and the manually installed run-
time environments (runtimedir). Requires no [JOB-ID] nor [RTE]s, but
only a list of string to be searched for.

list Lists all information about jobs, automatically installed runtime envi-
ronments and manually installed runtime environments. No additional
parameters have to be passed.

info Renders information about a job. Requires the parameter [JOB-ID].

Job id:

A unique sequence of numbers. Once Janitor registered a job id, it
cannot register a second job having the same job id.

Runtime environments:

Runtime environments are defined by a continuous string. The name
of valid runtime environment names can be investigated using the list
or the search commands. They are defined in the catalog or by the
directories and scripts of the runtimedir of the grid-manager.

Once a dynamic runtime environment is installed, it looks completely indistinguishable from traditionally
installed runtime environments. This also means that the general concept to have one installation performed
for all compute nodes in the network is kept.

3.3 Janitor with A-REX

The motivation to have a runtime environment available comes from the submitters of the grid jobs that
depends on that runtime environment for their execution. The site administrator’s sole responsibility is to
have the dynamic runtime environment at the site’s disposal. No more. With A-REX allowed to initiated
the commands to the Janitor, no further interaction from the site administrator is required. An exception
may be to confirm the consistency of the system when the machine has crahsed and the Janitor may still
find jobs assinged to runtime environments that are no longer running.

13

3 Usage

Table 3.2: Possible exit states of the janitor application

Exit status:

The exit status of Janitor depends on the used command.

register 0 Registration was successful. No noteworthy occurrences.

1 Registration was successful but some runtime environments aren’t in-
stalled yet. Deploy is mandatory.

2 An error occured.

deploy 0 Sucessfully initialized job.

1 Can’t provide requested runtime environments.

remove 0 Sucessfully removed job or no such job.

1 Can’t provide requested runtime environments.

sweep 0 Always returns this exit code.

setstate 0 Changing the state was successful.

1 Can not change the state.

search 0 Search sucessfully finished.

list 0 Successfully retrieved information.

info 0 Successfully retrieved job information.

1 No such job.

2 Error while retrieving job information.

Another exception for an active involvement of the site administrator is the initial configuration of the
Janitor and the updating of runtime environments that are eligible to be installed.

14

4 Maintenance

This chapter explains how to maintain the Catalog and the Janitor themselves. It gives detailed instructions
how to create new packages for the Janitor. To administrate the catalog, one can either use an ontology
editor like Protègè, as explained in the next section, edit the documents manually. In the last section, a
typical use case in maintaining the Janitor will be presented.

4.1 Catalog

The Catalog describes runtime environments and is either served through a web server or is dis-
tributed together with the Janitor as a regular file. It is specifed by a (Resource Descrip-
tion Framework) RDF file assigned to the Janitor using the tag catalog within the configura-
tion file (see ??). The format of the RDF file is defined by an RDF schema file knowarc.rdfs
which can be found along with an RDF example file knowarc.rdf in the Janitor source directory
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/janitor/resources/catalog/.

To edit the catalog, the ontology editor Protègè may be used. With some experience gained, one is likely to
prefer a manual editing. Figure 4.1 shows the editor while the MetaPackage APPS/BIO/JASPAR-CORE-1.0 of
the example file has been selected.

On the left side of the editor the class browser is placed. Three main classes are prepared: MetaPackage,
Note and Package. The RDF file is kept in the RDF:XML format, and when inspecting the entry, one will
fine a direct correspondence to the data stored in RDF:

<rdfs:Class rdf:about="&kb;MetaPackage"
rdfs:label="MetaPackage">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
<rdfs:comment>
Reference to a piece of software that shall be made available -
somehow, and to the expectation to the grid user. The traditional
way to achieve the installation is via tarballs. Debian packages may
be an alternative.
</rdfs:comment>

</rdfs:Class>
<rdfs:Class rdf:about="&kb;Note"

rdfs:label="Note">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>
<rdfs:Class rdf:about="&kb;Package"

rdfs:label="Package">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
<rdfs:comment>
Superclass of "TarPackage" and "DebianPackage".
</rdfs:comment>

</rdfs:Class>

The Metapackage is a general platform-independent description of a Package. It can be understood as a
reference to a functionality that should be implemented at the remote site. But the exact instruction on
how to install it is not given. The ”instruction-level” comes with instances of its subclass Package.

Links between resources are referred to as Properties. The following specifies the dependencies that any
package may have on other resources, i.e. on other packages. The dependency on a base system is expressed
by the property basesystem, which not to be confused with the resource BaseSystem.

15

http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/janitor/resources/catalog/

4 Maintenance

Figure 4.1: Example of a RDF catalog file as displayed in the program Protègè.

<rdf:Property rdf:about="&kb;depends"
rdfs:comment="lists dependencies of this package"
rdfs:label="depends">
<rdfs:domain rdf:resource="&kb;Package"/>
<rdfs:range rdf:resource="&rdfs;Resource"/>

MetaPackages contain one or more instances of the class Package, which are then tangible software packages
providing the functionality that the MetaPackage references. The packages may be aiming for different
versions of the operating system or be different in the way these are installed, but any package being
assigned to the same MetaPackage needs to perform the same functionality. MetaPackages are described by
the subclasses of Note, which in turn has two subclasses: BaseSystem and Tag.

The MetaPackage is described by the subclasses of Note. The class Note has two subclasses: BaseSystem
and Tag to describe the MetaPackage.

The BaseSystem describes the Debian release a Package refers to (i.e. here etch or sid), i.e. the name of
a common installation or a virtual image. The class Tag provides small keywords which can be assigned to
MetaPackages such that they can be found more easily. TarPackage and DebianPackage or currently the
only subclasses of Package.

They are representing the necessary information (i.e. URL or Packagename) for the installation. To provide
an overview on how the classes are interacting with each other the Tables 4.1, 4.2, 4.3, 4.4 and 4.5 are
pictured.

4.1.1 Debian packages - dysfunctional in current implementation

The problem with Debian packages is that these are available only for the local machine and not immediately
also for the whole network. This feature was meant for setups that use virtual machines for the execution
of jobs.

16

4.1 Catalog

Table 4.1: Specification of class Metapackage.

Name Cardinality Type

description single String

homepage single String

instance multiple Instance of Package

lastupdated single String

name required single String

tag multiple Instance of Tag

Table 4.2: Specification of class BaseSystem.

Name Cardinality Type

description single String

distribution required single String

name required single String

short description required single String

url required single String

Table 4.3: Specification of class Tag.

Name Cardinality Type

description single String

name required single String

Table 4.4: Specification of class DebianPackage.

Name Cardinality Type

basesystem required single Instance of BaseSystem

debconf multiple String

depends multiple Instance of MetaPackage or Package

package required multiple String

Table 4.5: Specification of the class TarPackage.

Name Cardinality Type

basesystem required single Instance of BaseSystem

depends multiple Instance of MetaPackage or Package

environ multiple String

url required multiple String

Those entries can also be used to help the specification of further dependencies of runtime environments. It
would then be left to the responsibility of the system administrator to manually (or assisted with scripts)
distribute a series of extra Debian packages throughout the compute nodes and use the catalog entry merely
to indicate their presence.

One can as such interpret the catalog to represent an interface between software distributed via Linux distri-

17

4 Maintenance

foo.tar.gz

control/

install

remove

runtime

data/

Figure 4.2: Directory structure in the tar files for automated installation.

butions and independently from these via grid communities. It should be noted that the Linux distributions
have now all started to accept communities to maintain packages, which may bringt many scientific packages
away from being traditional ARC runtime environments towards becoming regular packages of some Linux
distribution. For Debian, the Debian-Science and Debian-Med∗ communities are known to be very open to
grid and cloud computing.

4.2 HTML interface of the catalog

The dynamic Runtime Environments stored in the Catalog are presented on the aforementioned dedicated
web page†. This site also links to both the formal Catalog in RDF syntax and its automated transformation to
HTML. The latter mimics the traditional site describing Runtime Environments in the Runtime Environment
Registry‡ in order to minimise issues with an eventual transition to the new system.

That page, in a look resembling the classical description of RTE, collects descriptions for Runtime Envi-
ronments to encourage human site administrators to install these. This HTML page listing the manually
or automatically installable RTEs is prepared by the script web/list.pl. This script is meant to be run by
a mod-perl enabled Apache. The script itself does not contribute to the core functionality of the Janitor.
It only performs the human-readable presentation of a catalog’s RDF file to users. In the first lines of the
script some variables specific to the site are set. To configure the script these have to be changed [1, p. 9].

4.3 Introducing new packages

This section describes how to add new packages to the Catalog. In the current implementation, only tar
based packages are processed by the Janitor. Within the here presented example they are assigned to be
used together with Debian Etch. This limitation is only literal. There is no restriction for newer Debian
distributions.

4.3.1 Debian Etch (tar based)

At the time of writing, only the tape archive (tar) file format is accepted for dynamic Runtime Environment
installation, a well accepted file format throughout the UNIX community. The concept reflects the traditional
manual approach towards RTE in ARC, for which one directory is made available to all compute nodes. This
section explains the inner structure of the tar files for the representation of dynamic runtime environments.
Subdirectories are visualised in Figure 4.2.

The tar file contains two directories, named control and data:
∗http://debian-med.alioth.debian.org
†http://dre.knowarc.eu:8080/list.pl
‡http://gridrer.csc.fi/

18

http://debian-med.alioth.debian.org

4.3 Introducing new packages

data/ contains all software that the grid-job may need

control/ contains files formally specifying how to deal with the information in the data/ directory.

Upon installation of such tar-based runtime environments, the content of the data directory is extracted to
some directory $BAR. After this unpacking of the tar file, the Janitor executes the install script provided
in the control directory. It is executed within the working directory $BAR. The job of this skript is to
perform any necessary post-processing. The Janitor stores the file control/remove. It will be executed in
the same way as control/install, just before the tar-package is removed. In most cases control/remove
will be empty, implying that the working directory $BAR shall be removed and no other action is required.
Finally, the file control/runtime is sourced multiple times by the Grid Manager’s job-submit script. After
installing the package, the Janitor changes all occurences of %BASEDIR% in the runtime script to $BAR.
Once the tar file was prepared, it must its entry to a RTE Catalogue [1, p. 10]. But the working directory
shall not be moved. All post-processing needs to be performed in situ.

From such Catalogs, the Janitor finds all information to install packages that possibly have never been
installed on the site before. The offers of RTEs in a Catalog are cross-checked against the local infrastructure
and a subset of the available packages will be accepted as ”installable”. This list of installable RTEs is
forwarded to the grid information system.

The remainder actions are regular actions performed upon execution of every grid-job. Upon submission,
the file control/runtime is sourced multiple times by the Grid Manager’s job-submit script. Every ARC
runtime environment must specify such a runtime script, new is only its specific location as control/runtime.
Since the directory $BAR is not known for the individual preparing the runtime environment, that file will
instead use the placeholder %BASEDIR%. After installing the package, the Janitor changes all occurences
of %BASEDIR% in the runtime script to $BAR. To be offered to computing elements for an installation, the
such prepared runtime environment must be announced to a Catalog to which the Janitor on the computing
element subscribes [1, p. 10].

4.3.2 Automated transformation of install directory to dRTE

The script ’prepareDRE.pl’ was created to help with the transformation of a readily installed software into
a dynamic runtime environment. I also prepares a complete catalog file that can be offered individually or
next to other catalogs. See the associated man page prepareDRE(8) for details.

4.3.3 Protoypes

In order to have an impression how the tar files are created, several prototypes are provided at http:
//dre.knowarc.eu.

Example: WEKA machine learning Java library

The WEKA package for machine learning [3] and the Java Runtime Environment are available as dynamic
Runtime Environments. Further packages for bioinformatics comprise dynamic variants of tools for the
analysis of transcription factor binding sites. These are already offered for manual installation via the prior
mentioned traditional page representing Runtime Environments for ARC. The data directory simply contains
a ZIP file which needs to be unzipped in the installation directory. For that reason, the control/install
script is written as follows:

#!/bin/sh
set -e # Makes the script to terminate at the first line it fails.

WEKA_ZIP="weka-3-4-8a.zip"
unzip $WEKA_ZIP
rm -f $WEKA_ZIP

The runtime script sets the environment variable of the Java Classpath:

19

http://dre.knowarc.eu
http://dre.knowarc.eu

4 Maintenance

#!/bin/sh

WEKA_JAR="weka-3-4-8a/weka.jar"
case "\$1" in
0) # Just before job submission
none
;;
1) # Just before job execution
Initialize the java environment
CLASSPATH="%BASEDIR%/$WEKA_JAR:$CLASSPATH"
export CLASSPATH
;;
2) # After job termination
none
;;
*)
return 1
;;
esac

The remove script, which will be executed right before WEKA is deinstalled, is empty. The Janitor will
delete the whole directory, so there remains nothing to be removed in addition. The remove script may e. g.
be used to remove indices or other files in /tmp.

4.3.4 Example: ATLAS for High Energy Physics

To address the concerns of the physicists using ARC, a dynamic runtime environment for the ATLAS
software suite was prepared. It extends prior work on an automated installation that is available at
http://guts.uio.no/atlas/12.0.6/.

The preparation comprised the following steps:

� The file system path specifications in the automated installation scripts were modified using the Janitor
path variables.

� A tarball was prepared containing a directory structure as illustrated in Figure 4.2. The data directory
was empty, since the automatic installation script downloads the software from a remote server.

� An entry was added to the Catalog file.

What sets High Energy Physics software apart is it’s sheer size. The package in question takes up more
than 5 GB. This was a test illustrating the feasibility of using dynamic RTEs in High Energy Physics. The
application of the dRTEs for ATLAS needs to wait for the planned web service extension of the Catalog.
With such a service, e.g. a software manager of a big experiment will be able to deploy software packages
on production sites simply by creating a tarball and adding an entry to the Catalog.

20

http://guts.uio.no/atlas/12.0.6/

5 Technical Motivation and Concepts

The current implementation, using the rather advanced concepts of the semantic web, may seem unexpected.
They were chosen since they are expected to scale with all the extra demands forseen for the Janitor.

5.1 Implementation

5.1.1 Choice of Perl

The main language for the implementation of the functionality of the dRTEs’ functionality is Perl. And it is
solely required (exceptions are the integration with the Grid Manager and the Web service) for the Janitor.
The language was perceived a side-issue, the complexity of the data expected was of major concern. This
led to the choice of RDF with its intrinsic query engine and Perl offering access to the Redland library.

5.1.2 Modular structure

In the pre-web-service implementation the Catalog remains a static web page. The Perl code is split into
multiple modules as depicted in Figure 5.1.2. The modules can be separated into two functional groups.
One addresses the retrieval of information from the Catalog’s RDF file in the left major branch of the figure.
The other addresses the process of fetching and installing the packages.

21

5 Technical Motivation and Concepts

F
ig

u
re

5
.1

:
M

o
d
u
le

s
o
f

th
e

J
a
n
it

o
r

a
n
d

th
e
ir

d
e
p

e
n
d
e
n
c
ie

s

22

5.2 Concepts

In order to get a more detailed view on the full functionality of the envisioned system it is suggested to
consult the Design Document∗.

5.2 Concepts

In the following, some paragraphs fail render it difficult to clearly distinguish between conceptional truths
and the state of the current implementation. Please read carefully.

5.2.1 States of Runtime Environments

A major motivation for the managed, manual initiation of dynamic RE installation is the subsequent manual
verification of the installed packages – prior to their use in production. It would be nice to see the Janitor
and/or the Catalog prepare for reviews by selected users. This has not yet been implemented.

With an automation of the installation, the verification of that process shall be performed externally to that
process. At this time, only the automation of the installation has been implemented. To reflect the progress
the external verification has made, REs are said to be in states. The current implementation lists installable
REs aside the installed REs in the grid information system, in order to stimulate grid clients to submit
packages. The here described states will be represented to the clients in upcoming developments.

These states are specific for every compute element (CE) and communicated between the Janitor and the
Execution Service. Table 5.1 shows all possible states, while Figure 5.2 displays the transitions between the
states that a Runtime Environment may be in during its life time at a particular CE.

State Description

UNAVAILABLE The RE is not available for the BaseSystem (see ??) the site uses.

INSTALLABLE The RE is available for the BaseSystem the site uses and it will be automatically
installed once a job requests it.

INSTALLING/a A job requested the RE and it is currently being installed

INSTALLING/m The RE-adminstrator requested the installation of the RE. Its currently being
installed.

FAILED The installation process failed.

INSTALLED/a The RE is installed dynamically.

INSTALLED/m The RE ist installed manually by the RE-administrator

BROKEN/m The RE is installed but failed tests of the RE-administrator

VALIDATED/m The RE is installed and successfully passed the tests of the RE-administrator

REMOVAL PENDING The RE is still installed but will be removed as soon as possible. It is not
available to new jobs.

REMOVING The RE is currently being removed.

INSTALLED/s The RE was installed in the traditional way by the site administrator.

BROKEN/s The RE was installed in the traditional way and failed validation by the RE-
administrator,

VALIDATED/s The RE was installed in the traditional way and was successfully verified.

Table 5.1: States a Runtime Environment can possibly be in.

The concept of ARC prevails to have a single directory into which to install software to be execute on all
compute elements of the site. Otherwise, the installation of a runtime environment would be required to be
performed just when the jobs initiates its computation.

∗http://www.knowarc.eu/documents/Knowarc D1.1-1 07.pdf

23

http://www.knowarc.eu/documents/Knowarc_D1.1-1_07.pdf

5 Technical Motivation and Concepts

In principle this would be doable, particularly for those runtime environments that are part of a trusted
Linux distribution already. But this would also mean that the compute nodes become inhomogeneous, and
at the time of writing this was considered undesireable.

Figure 5.2: Relationships between the possible states of Runtime Environments. Red arcs represent
human interaction. The distinction between /a, /m and /s states does not need to be visible for all clients.

The manually induced transitions are marked in red, he automated transitions in black. A transition between
states can be induced automatically (i. e. by the advent of a job requesting a particular dynamic RE) or
manually by the site’s administrator or an individual with respective rights to use the Janitor’s command
line.

5.2.2 Subset of that functionality as implemented today

Upon presentation of a the package name to a Catalog, from which details about the package are retrieved,
a CE may classify a package to be INSTALLABLE if all the dependencies are installable or already INSTALLED.
The installation can be performed manually (INSTALLING/m) or in an automated fashion (. . . /a). Should
the installation process return an error, then the installation has FAILED. Once the installation succeeded,
the installed package is validated for its correctness. Should that process fail, then the package’s state it is
said to be BROKEN.

Automatically installed packages can be removed by the automatism. A manually installed package or one
that has failed to be installed, can only be removed upon manual induction. The . . . /s states represent those
Runtime Environments that are installed in the original manual way of RE installation in ARC 0.6.

5.2.3 Dependencies on Job IDs

The Janitor was designed with the job execution in mind. As such, all actions it performs are driven by the
need of a job. And those jobs should then be specified, to learn when the demand for a particular runtime
environment has ended.

This concept partially conflicts with the idea to use the Janitor as an aid for the manual invocation of an
installation – there is no job ID that could be assigned for that process. Today, the administrator is suggested
to use a special number, e. g. 0, to indicate such manual installs. This will change in near future.

24

5.3 Job states

5.3 Job states

The Janitor manages the states that the runtime environments at a particular compute element are in.
However, it is also most important for the Janitor to be aware of the jobs that depend on the installtion of
a RE. REs still in use should not be removed until the respective job has completed its computations. The
installation or removal of REs by the Janitor is perceived as a mere consequene of jobs demanding a RE or
not, thus, the communcation between the job-manager AREX and the Janitor will be performed on that
’job level’.

The Janitor has two states for jobs: PREPARED and INITIALIZED. After a job has been succesfully registered
with the Janitor, its state will be set to PREPARED. Invalid jobs are not cached. After the Janitor is requested
to deploy the runtime environment, the state of the job will change to INITIALIZED. If an unforeseen
exception occures during that process, The Janitor will drop the job from its database and set the affected
runtime environments to the state FAILED.

5.4 Integration with AREX

Undefined

Accept

Preparing

Submitting

INLRMS

Finishing

Finished

Check if RE available

Invoke installation of RE

Wait until RE installed

Remove installed RE

Figure 5.3:

Grid-Manager
Janitor

Info-System

Uploader

Downloader

register 1999 APPS/BIO/SEQ

deploy 1999

remove 1999

queries catalog via:
HostInfoJanitor.pm

info 1999

2

13
4

6

(1) The RuntimeEnvironment.pl queries the catalog very fast, such that I assume a
 fork or a cache is currently not needed.
(2) In order to enable the Grid-Manager to invoke Janitor, a wrapper rJanitor.c has
 already been written by Daniel. This wrapper gives Janitor the necessary rights.
(3) ...
(4) The function "check" was ment to return the information about a runtime
 environment. It may be possible to merge it with the deploy function,
 if desired. (The Janitor source code will remain the same, only the interface will
 be changed.)
(5) The information about the runtime environments is passed to the backend
 script. (It is not specifed yet how this has to be done)
 o Installation directories
 o Script to set environment variables
(6) Once the grid job has been finished, the token on the runtime environment will
 be removed. (If no tokens left, the environment may be deinstalled)

o ARC source code can not be compile on debian for six days now
 => Unable to examine possible ways of Janitor integration -
 I will start to track the error on my own now.
o The folder /grid/runtime/config/ contains subfolders in which scripts are provided.
 These scripts are able to check, if a runtime environment is available or not.
 When talking about symbolic links, I assumed that this folder is the one, in which
 they shall be created into. Thus for me this makes no sense anymore, I am not able
 to guess which folder you intended.
o GLUE2 specification: Balazs like to have an interface for Janitor. This task is
 put on the agenda. It is still unclear how the interaction with that interface shall be
 realised. Janitor can only access data concerning the class ApplicationEnvironment.
 Shall a XML snippet be returned?

Can you once more explain me the information flow between the Downloader and
the Backend Script, such that I am able to do further preparations?
o How shall "check" provide the desired information?
o Where shall I create the desired symbolic links?

As it seems, my time in Lübeck is very limited. I will try to proceed with Janitor as fast
as possible.

Figure 5.4:

5.5 WebService Interface

Default port number: 55555
Client command equal, except assignment of HED.xml
(from /arc1/trunk:12561)

Proposal for SOAP messages:
namespace: dynamicruntime or janitor

25

5 Technical Motivation and Concepts

Child
mit Perl Interpreter

Web Service

TaskQueue

TaskSet

PerlProcessor

Thread 1

Thread 2

Thread 3

...

C++ Child
mit Perl Interpreter

C++ Child
mit Perl Interpreter

C++ Child
mit Perl Interpreter

Janitor

Janitor

Janitor

Kommunikation über Pipes

Kommunikation über Eval-Aufruf
Parameteranzahl beliebig
Ein Rückgabewert

Task Task Objekt
hält die incoming
und outgoing
Messages als Pointer
zur direkten Manipulation
im PerlProcessor

Figure 5.5: To be translated and beautificated. SVG file is missing!

Create WSDL files for that Permission concepts: Depending on certificates. Certain certificates may sweep.
Defined in service HED.xml. Evaluated in:??

Listing 5.1: Example arc.conf settings for janitor.

1 <Request action="SEARCH|SWEEP|LIST|DEPLOY|REMOVE|CHECK|REGISTER">
2 <Initiator jobid="1234"/> <!-- Needed for: CHECK|REGISTER|DEPLOY|REMOVE -->
3 <!-- May contain no jobID in this case a new one will
4 be created and returned via the response message -->
5
6 <Runtimeenvironment type="dynamic"> <!-- Needed for: SEARCH|REGISTER -->
7 <Package name="APPS/BIO/WEKA -3.4.10"/>
8 <Package name="APPS/BIO/WEKA -3.4.11"/>
9 </Runtimeenvironment >

10 <!-- SWEEP and LIST only works , if the TLS - adminstrator
identity

11 (which is assigned in the arched configuration file)
is

12 to be found by the SecHandler . Both need neither
initiator

13 nor runtimeenvironment elements -->
14 </Request >

Listing 5.2: Example arc.conf settings for janitor.

1 <response action="SEARCH|SWEEP|LIST|DEPLOY|REMOVE|CHECK|REGISTER">
2 <initiator jobid="1234"/> <!-- Needed for REMOVE|REGISTER|DEPLOY|CHECK -->
3 <result code="0" message="Sucessfully initailized job."> <!-- -->
4 <jobs> <!--LIST|CHECK -->
5 <job jobid="1234">
6 <created >1234567890 </created > <!-- in unix time -->
7 <age>0</age> <!-- in seconds -->
8 <runtimeenvironment >
9 <package >APPS/BIO/WEKA -3.4.10 </package >

10 </runtimeenvironment >
11 <state>INITIALIZED </state>
12 </job>
13 <job jobid="4321">
14 <created >1234567891 </created >
15 <age>0</age>
16 <package >APPS/BIO/WEKA -3.4.10 </package >
17 <state>INITIALIZED </state>
18 <runtimeenvironmentkey >APPS_BIO_WEKA_3_4_10 -835614 b62c98c4eb6cb03d74d3161b5d </

runtimeenvironmentkey > <!-- at least CHECK -->
19 <uses>/nfshome/knowarc/dredesign/src/services/dRE3/perl/spool/runtime/

jre__57T1ke1UVz/runtime </uses> <!-- at least CHECK -->
20 <uses>/nfshome/knowarc/dredesign/src/services/dRE3/perl/spool/runtime/

weka_wHfyytarlE/runtime </uses> <!-- at least CHECK -->
21 </job>
22 </jobs>
23
24 <runtimeenvironment type="local"> <!-- Needed for: LIST|SEARCH -->
25 <package name="APPS/BIO/MUSTANG -3.0-1"/>
26 <package name="APPS/BIO/EXONERATE -2.1.0 -1"/>
27 </runtimeenvironment >
28
29 <runtimeenvironment type="dynamic"> <!-- Needed for: LIST -->
30 <package name="APPS/BIO/WEKA -3.4.11">
31 <state>INSTALLED_A </state>

26

5.5 WebService Interface

32 <lastused >1234567890 </lastused >
33 <jobid>1234</jobid>
34 </package >
35 <package name="APPS/BIO/WEKA -3.4.10">
36 <state>INSTALLED_A </state>
37 <lastused >1234567890 </lastused >
38 <jobid>1234</jobid>
39 <jobid>4321</jobid>
40 </package >
41 </runtimeenvironment >
42
43 <runtimeenvironment type="installable"> <!-- Needed for: LIST -->
44 <package name="APPS/GRAPH/POVRAY -3.6">
45 <description >The Persistence of Vision Raytracer </description >
46 <lastupdate >1234567890 </lastupdate >
47 </package >
48 <package name="APPS/BIO/WEKA -3.4.8A">
49 <description >WEKA Machine Learning Software </description >
50 <lastupdate >1234567890 </lastupdate >
51 </package >
52 </runtimeenvironment >
53
54 </response >

5.5.1 What happens during installation

Register

1. Look up Catalog and find corresponding runtime environments.

2. Check if dependcies are available (installed or installable)

3. Store job in registrationdir

Deploy

1. Load job out of registrationdir

2. Look up Catalog and find corresponding runtime environments.

3. Check if dependcies are available (installed or installable)

4. Download RTEs into the downloaddir

5. [to be continued or skipped]

5.5.2 Security Consideration

Security is a major concern for grid systems. Any additional feature and especially an automated software
installation inheritently introduces security threats. This section addresses those and describes the available
solutions to limit security risks.

In the current installation, every user authorised to execute a job is also authorised to install a REs. Re-
strictions are only imposed on the set of dynamic RTEs that are available for installation. Restrictions
are imposed by the site admininistrators on the descriptions that are given by the Catalog that is offering
the package. These descriptions may explicitly mention dynamic REs’ names, e.g. a regular expression on
these, or refer to tags of packages that categorise these. However, the core of these controls lies with the
maintainers of the Catalog, who needs to be trusted.

All dynamic REs are installed in separate directories. The provisioning of disk space is the duty of the site
administrator. In the current implementation, the installation is completely transparent to the user:

� Dynamic RTEs are not distinguished between installed and installable in the information system.

� No status information is given at the time a dynamic RE is installed.

Malevolent regular users with respective training in using system exploits to gain root access are likely to
find security holes by regularly submitted scripts. The authentication and authentification of users, together
with respective logging, is the major defense against such attacks. What is consequently left to be protected
against are unwanted side-effects by the installation of software.

27

5 Technical Motivation and Concepts

The worst case scenario would be the installation of a RE that overwrites system files. With the current
implementation, which is based solely on tar files, this is barely possible, unless such is performed by the
install scripts that accompany the tar files. Clarify root vs non-root execution of Janitor.

The installation of packages from the Debian distribution (or other packages of mainstream Linux distribu-
tions) is seeked to reduce the complexity and burden in the maintenance for dynamic REs. In the current
implementation, Debian packages may be installed only by their transformation into tar files. With the
advent of the interface for the virtualisation of the grid infrastructure, it is anticipated to work with native
packages of the Debian Linux distribution. The reuse of packages that passed many eyeballs - as it is the
case with packages from major Linux distribution - security is further increased or becomes as high as with
the operating system underneath virtual clients.

Summarising, there is general concern about the security of grid computing. Dynamic REs introduce new
dangers since a manual control at the grid site is substituted by a remote process that is out the direct
supervision of a local site administrator. The signing of packages by known and directly or indirectly trusted
developers is a good indicator that no malevolent individuals have tampered with the binary. The site
administrators can limit the sources of packages and specify packages that are eligible or excluded from
installations.

28

6 Outlook

6.1 Representation of dynamic RTEs in the information model

Dynamic RTEs require an extended representation in the information model. The Application Software
description should be able to distinguish installed RTEs from installable RTEs, potentially offer insights on
the state that an dRTE is in. This work is planned to be carried out as part of the Glue-2.0 effort of OGF∗.

6.2 Integration with Workflow Management

Future development of ARC aims at integrating grid computing with workflow tools for the web services
that have a growing user base in bioinformatics. The challenge is to prepare RTEs for programs or databases
and to offer such concisely to users of the workflow environments. In the bioinformatics community, such
are today offered as web services. This anticipated development instead fosters the dynamic installation
on the grid whenever appropriate to allow for special computational demands in high-throughput analyses.
Conversely, because of the increased complexity of workflows with respect to the already today not manually
manageable number of RTEs, without an automatism for the automated installation of software packages
on the grid, the use of workflows in grid computing seems mute.

6.3 Implementation of a Catalog service

A Catalog service is planed to be implemented on top of the ARC HED component. This service will
render the currently used locally accessible RDF file externally accessible. Selected users are then allowed
to remotely add/edit/remove REs to/from to it. The Janitor will access the content of the Catalog through
a well-defined Web Service interface.

6.4 Integration with the Virtualization work

The RDF schema nicely prepares for the upcoming virtualisation of worker nodes. Hereto, the BaseSystem
indicates a virtual image to which further packages, the dynamic REs, would then be added. How exactly
the dynamics are integrated will depend on how dynamic the virtualisation of the nodes is. In the simplest
scenario, a worker node’s CPU will only be occupied by a single virtual machine and that will not be changed.
In this case, there is no difference to the setup of the Janitor with today’s static setups.

However, if the BaseSystems can be substituted dynamically, then a RE can possibly be offered via multiple
BaseSystems. The RDF Schema describes BaseSystems as separate instances and as such differs from the
current RE registry. Heuristics that prefer one BaseSystem for another can make direct use of the data that
is presented in the schema. The integration of packages from Linux distributions in the description of REs is
essential to have a means to decide for the equivalence of manual additions and the functionality that comes
with BaseSystem.

6.5 Use of RDF

The RDF is ”correctly” used within the Janitor via the Redland libraries. What is still missing is a se-
mantical reasoning on what packages to allow or disallow. For instance: allow all packages associated with

∗OGF GLUE: https://forge.gridforum.org/sf/projects/glue-wg

29

6 Outlook

bioinformatics. This shall wait a bit longer until more experiences on the community’s demand for this
service have been made.

6.6 Manual Verification

There is yet no explicit notion of a concept on how users can report on the reliability of individual compute
nodes and use such information for the decision making on where to sent their jobs. And with an increasing
complexity of software installed, being used across versions, one will rather trust one’s very own experiences
for individual sites than some external repository or other pieces of information that may be weeks or months
old.

Consequently, no means for a manual verification and the communication of results of such have yet been
implemented.

30

7 Appendix

7.1 Useful tutorials and documentations

� Another document describing Janitor.
D2.5-1 RDF Based Semantic Runtime Environment (RE) Description And Dynamic RE Management
Framework Including Creating Proof Of Concept Bioinformatics REs, Daniel Bayer and Steffen Möller
and Frederik Orellana[1]

31

7 Appendix

32

Bibliography

[1] Daniel Bayer, Steffen Möller, and Frederik Orellana. D2.5-1 rdf based semantic runtime environment (re)
description and dynamic re management framework including creating proof of concept bioinformatics
res. Public deliverables, 2007. http://www.knowarc.eu/documents/Knowarc D2.5-1 07.pdf.

[2] M. Ellert, M. Gronager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson, J. L. Nielsen, M. Ni-
inimäki, O. Smirnova, and A. Wäänänen. Advanced resource connector middleware for lightweight
computational grids. Future Gener. Comput. Syst., 23(2):219–240, 2007.

[3] E. Frank, M. Hall, L. Trigg, G. Holmes, and IH. Witten. Data mining in bioinformatics using weka.
Bioinformatics, 20(15):2479–2481, 2004. URL http://www.cs.waikato.ac.nz/ml/weka.

[4] Extended Resource Specification Language — Reference Manual. Nordugrid, 12 2008. Nordugrid-Manual-
4, www.nordugrid.org/documents/xrsl.pdf.

33

http://www.cs.waikato.ac.nz/ml/weka

