/A
—
A}‘”NORDUGRH)

NORDUGRID-TECH-14
27/10/2016

ARC COMPUTATIONAL JOB MANAGEMENT COMPONENT — A-REX

Description and Administrator’s Manual

A. Konstantinov*

This document is obsoleted by the ARC Computing Element System Administrator Guide (NORDUGRID-
MANUAL-20). Please refer to that document for more up-to-date information.

*aleks@fys.uio.no

Contents

1 Introduction

2 Main concepts

3 Input/output data
4 Job flow

5 URLs

6 Internals

6.1 Internal Files of the A-REX e
6.2 Web Service Interface L L
6.2.1 Basic Execution Service Interfaceo oo oo
6.2.2 Extensions to OGSA BES interface oo .
6.2.3 Delegation Interface L L
6.2.4 Local Information Description Interface
6.2.5 Supported JSDL elements
6.2.6 ARC-specific JSDL Extensions o
7 Cache
7.1 Structure e e e
7.2 How it works L
7.3 Remote Caches e
7.4 Cache Administration e e

8 Files and directories
8.1 Modules
8.2 DIrectories e

9 Configuration
9.1 Configuration of the A-REX
9.2 Transfer shares L e
9.3 Authorization e
9.4 LRMS support e e e e e e
9.5 Runtime environment oL Lo e

10 Job environment

11 Installation
11.1 Requirements L o e e e e e
11.2 Setup of the A-REX with WS Interface
11.3 Setup of the A-REX with GridFTP Interface

11.4 Running as non-root oL e e e e e e e

© © © o O

12
12
13
13

14
14
15
15
16

16
16
17

18
18
24
25
25
25

26

Session directory access through HTTP(S) interface
Configuration schema of A-REX

A-REX WSDL

Delegation WSDL

ARC extensions for JSDL schema

Example of authorization policy for A-REX

Error messages of A-REX (outdated)

30

30

31

36

38

41

42

1 Introduction

The A-REX is an ARC middleware component that implements functions of the so-called Computing Fl-
ement (CE). Here Computing Element is a service accepting requests containing a description of generic
computational jobs and executing it in the underlying local batch system.

It takes care of job pre- and post-processing, i.e. stage-in of files containing input data or program modules
from a wide range of sources and transfer or storing of output results.

In previous versions of ARC, computational tasks (jobs) were submitted to a resource through a GridFTP
service running on the CE, and processed by a Grid Manager (GM). The A-REX replaces both these
components, by implementing a Web Service (WS) interface which provides a way to submit jobs, and a
revised version of the GM to cache staged data, process jobs and interact with the underlying Local Resource
Management System. Currently A-REX implements two types of WS interfaces - extended Basic Execution
Service (OGSA BES) [7] and developed by European Middleware Initiative Execution Service (EMI ES) [1].
The A-REX can also be set up to process jobs submitted through the traditional ARC GridFTP service, as
well as or instead of those using the WS interface. Unless stated otherwise, the remainder of this document
assumes the WS interface.

You should use this document for advanced configuration purposes and understanding of the internals
of the aforementioned tools. For general installation and configuration of the whole system please
refer to other documents available at http://www.nordugrid.org/papers.html and specifically http:
//www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf.

2 Main concepts

On the computing element a job is described as a set of input files (which may include executables), a main
executable, additional executables, pre-installed software (Runtime Environment) and a set of output files.
The process of gathering input files, executing a job, and transferring/storing output files is called a session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD or
in cache location. The job may also produce new data files in the SD. The A-REX does not guarantee the
availability of any other places accessible by the job other than SD (unless such a place is part of a requested
Runtime Environment). The SD is also the only place which is controlled by the A-REX. It is accessible by
the user from outside through the HTTP(S) and/or GridFTP protocols. Any file created outside the SD
is not controlled by the A-REX. Any exchange of data between client and A-REX (including also program
modules) is performed via HTTP(S) and/or GridFTP. A URL for accessing input/output files is obtained
through the WS Local Information Description Interface (LIDI) of A-REX.

Each job gets an identifier (jobid). This is a handle which identifies the job in the A-REX and in the Infor-
mation Interface. Depending on used interface it is either GUID-like opaque string or WS-Addressing [13]
XML document.

Jobs are initiated and controlled through the WS and GridFTP interfaces. Complete job descriptions (JD)
are passed to the A-REX through WS in JSDL [4] (for OGSA BES), ADL (for EMI ES) or extended RSL
(for GridFTP) coded description. Input data files and job executables are transferred separately through
the same interface, as described in Section 3.

3 Input/output data

One of the most important tasks of the A-REX is to take care of processing of the input and output data
(files) of the job. Input files are gathered in the SD or in the associated cache area. There are two ways to
put a file into the SD:

e Download is initiated by the A-REX — This is the case for files defined in the JD (with name and
source). The A-REX alone is responsible to ensure that all required files will be available in the SD.
The supported protocols for sources at the moment are (in case of full installation): GridFTP, FTP,

http://www.nordugrid.org/papers.html
http://www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf
http://www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf

HTTP, HTTPS (HTTP over SSLv3), SRM. Some less standard sources and Indezing Services are also
supported, these are described in Section 5. In the case where a file in an indexing service resolves to
multiple physical replicas, some selection of the “best” replica may be performed based on any available
information on the access latency of those replicas. The A-REX fully relies on the HED framework [5]
for data transferring capabilities and so the actual set of supported protocols depends on the installed
Data Management Components of the HED.

e Upload is initiated by the user directly or through the User Interface (UI). Because the SD becomes
available immediately at the time of submission of the JD, the UI can (and should) use that to upload
data files which are not otherwise accessible by the A-REX. Examples of such files are the main
executable of the job, the job’s input files, etc. These files can (and should) also be specified in the
JD. If EMI ES interface is used it is possible to upload files not defined in the JD if request for free
input data is present in the JD.

There is no other reliable way for a job to obtain input data on the CE based on the A-REX. Access to
AFS, NFS, FTP, HTTP and any other remote data transport during execution of a job is not guaranteed
(at least not by A-REX).

At the start of a download initiated by the A-REX, a dummy file with the same name and size as the source
file is created in the SD to check that enough space is available. As the transfer proceeds this dummy file is
over-written with the real data. If the file is to be cached (see Section 7) then the pre-allocation of space is
not done, as cache space is managed by the A-REX. In the case of caching two extra validation checks are
also performed: firstly, if the source is an Indexing Service then metadata (file size, checksum) reported by
the Indexing Service and the service hosting the physical replica are compared, if available. If they differ
then that replica is not downloaded. Secondly, on completion of the download the file size is compared to
that reported by the source - if they differ then the download is failed.

Jobs should store output files in their SD. Like input files, output files belong into two groups:

e Files which are supposed to be moved to a Storage Element (SE) and optionally registered in some
Indexing Service like the Globus Replica Location Service (RLS) — The A-REX takes care of these
files. They have to be specified in the JD. Normally if the job fails during any stage of processing,
no attempt is made to transfer those files to their final destination, unless the option preserve=yes is
specified in their URLs. The job described in EMI ES ADL allows for more fine grained control over
output files under different job completion scenario. For more information please see description of the
EMI ES.

e Files which are supposed to be fetched by the user — The user has to use a tool like the Ul to obtain
these files. They must also be specified in the JD.

All files not specified in the JD are deleted after job execution finished. If job execution fails for any reason (if
exit code of main executable is not 0) all files from first group are transferred to second one unless specified
otherwise in the JD.

4 Job flow

From the point of view of the A-REX a job passes through various states. Figure 1 presents a diagram of
the possible states of a job.

A user can examine the state of a job by querying the dedicated Local Information Description Interface of
A-REX using the UI or any other suitable tool or through query methods of any of WS interfaces. Different
interfaces provide different names for job states. Those are listed in the table 1.

Configuration can put limits on the amount of simultaneous jobs in some states. If such a limit is reached,
a job ready to enter into the state in question will stay in it’s current state waiting for a free slot. This
situation is presented by additional state mark PENDING to the current state name in the job’s status
description.

Below is the description of all actions taken by the A-REX at every state:

Fai l ure or cancel request

ACCEPTED
T‘ PENDI NG

PREPARI NG Fai lure or cancel reques,
N PENDI NG

SUBM TTI NG Failure or cancel reques

l

INLRMS ~ —> CANCELI NG [—*

——
=— PENDI NG

v
FINISH NG [«

l

—1 FI NI SHED

l

DELETED

Fai | ure processing

Rerun request

Figure 1: Job states

e Accepted — In this state the job has been submitted to a CE but is not processed yet. The A-REX
will analyze the JD and move to the next stage. If the JD can not be processed the job will be canceled
and moved to the state Finishing.

¢ Preparing — The input data is being gathered in the SD and the cache (stage-in). The A-REX is
downloading the files specified in the JD and is waiting for files which are supposed to be uploaded
by the UL If all files are successfully gathered the job moves to the next state. If any file can’t be
downloaded or it takes the Ul too long to upload a file, the job moves to Finishing state. It is possible
to put a limit on the number of simultaneous Preparing jobs. If this limit is exceeded, jobs ready to
enter the Preparing state will stay in the Accepted state, but prefixed with the PENDING: mark.
Exceptions are jobs which have no files to be downloaded. These are processed out of limits. If the
A-REX fails to download a file due to a temporary error with a remote service, the job will be moved
back to the Accepted state, but prefixed with the PENDING: mark, and will wait in that state for
some time before being retried. The waiting time increases exponentially with each attempt.

e Submitting — The job is being passed for execution to the Local Resource Management System
(LRMS). The corresponding backends for many LRMSs are provided with the default installation.
If the local job submission is successful the job moves to the Executing state. Otherwise it moves to
Finishing. It is possible to limit the aggregate number of jobs in Submitting and Executing states.

¢ Executing (InLRMS) — The job is queued or being executed in the LRMS. The A-REX takes no
actions except waiting until the job finishes.

¢ Killing (Canceling) — Necessary action to cancel the job in the LRMS is being taken.

¢ Finishing — The output data is being processed (stage-out). Specified data files are moved to the
specified SEs and are optionally registered at an Indexing Service. The user can download data files
from the SD by using the Ul or other adequate tool. All the files not specified as output files are
removed from the SD at very beginning of this state. It is possible to limit the number of simultaneous
jobs in this state. If the A-REX fails to upload a file due to a temporary error with a remote service,
the job will be moved back to the Executing state, but prefixed with the PENDING: mark, and will
wait in that state for some time before being retried. The waiting time increases exponentially with
each attempt.

e Finished — No more processing is performed by the A-REX. The user can continue to download data
files from the SD. The SD is kept available for some time (default is 1 week). After that the job is
moved to the state Deleted. The ’deletion’ time can be obtained by querying the Information Interface
of the A-REX. If a job was moved to Finished because of failure, it may be restarted on request of

a client. When restarted, a job is moved to the state previous to the one in which it failed and is
assigned mark PENDING. This is needed in order to not break the configuration limits. Exception is
a job failed in Executing state and lacking input files specified in JD. Such a job is treated like failed
in Preparing state.

e Deleted — The job is moved to this state if the user have not requested job to be cleaned before
the SD’s lifetime expires. Only minimal subset of information about such job is kept. The SD is not
available anymore.

In case of failure, special processing is applied to output files. By default all specified output files are treated
as downloadable by the user. No files will be moved to their destination SE.

5 URLs

In a full installation, the A-REX and its components support the following data transfer protocols and
corresponding URLs: ftp, gsiftp, hitp, https, Ifc, rls and srm. For more information please see “The Hosting
Environment of the Advanced Resource Connector middleware” document [5].

6 Internals

6.1 Internal Files of the A-REX

For each local UNIX user listed in the A-REX configuration — including a generic one which covers all
local user identities — a control directory exists. In this directory the A-REX stores information about
jobs belonging to that user. Multiple users can share the same control directory. In the most common
configuration case, the A-REX serves all users defined by the Operating System and stores their control files
in the same directory. To make it easier to recover in case of failure, the A-REX stores most information in
files rather than in memory. All files belonging to the same job have names starting with job.ID., where
ID is the job identifier.

The files and sub-direcrories in the control directory and their formats are described below:

e job.ID.status — current state of the job. This is a plain text file containing a single word representing
the internal name of current state of the job. Possible v////alues and corresponding external job states
are:

ACCEPTED
PREPARING
SUBMIT

— INLRMS

— FINISHING
— FINISHED
CANCELING
DELETED

See Section 4 for a description of the various states. Additionally each value can be prepended the prefix
“PENDING:” (like PENDING:ACCEPTED, see Section 4). This is used to show that a job is ready to be
moved to the next state but it has to stay in it’s current state only because otherwise some limits set in the
configuration would be exceeded.

This file is not stored directly in the control directory but in the following sub-directories:

e accepting - for jobs in ACCEPTED state
e finished - for jobs in FINISHED and DELETED states

processing - for other states

restarting - temporary location for jobs being restarted on user request or after restart of A-REX

job.ID.description — contains the description of the job (JD).

job.ID.local — information about the job used by the A-REX. It consists of lines of format “name =
value”. Not all of them are always available. The following names are defined:

— globalid — job identifier as seen by user tools. Depending on used interface it is either BES
Activityldentifier XML tree, GUID of EMI ES or GridFTP URL.

— headnode — URL of service interface used to submit this job.

— interface — name of interface used for jobs submission - org.nordugrid.zbes, org.ogf.glue.emies. activitycreation
or org.nordugrid. gridftpjob.

— Irms — name of the LRMS backend to be used for local submission

— queue — name of the queue to run the job at

— localid — job id in LRMS (appears only after the job reached state InNLRMS)
— args — main executable name followed by a list of command-line arguments

— argscode — code which main executable returns in case of success

— pre — executable name followed by a list of command-line arguments for executable to run before
main executable. There maybe few of them

— precode — code which pre-executable returns in case of success

— post — executable name followed by a list of command-line arguments for executable to run after
main executable. There maybe few of them

— postcode — code which post-executable returns in case of success
— subject — user certificate’s subject, also known as the distinguished name (DN)

— starttime — GMT time when the job was accepted represented in the Generalized Time format of
LDAP

— lifetime — time period to preserve the SD after the job has finished in seconds

— notify — email addresses and flags to send mail to about the job specified status changes
— processtime — GMT time when to start processing the job in Generalized Time format
— ezectime — GMT time when to start job execution in Generalized Time format

— clientname — name (as provided by the user interface) and IP address:port of the submitting client
machine

— clientsoftware — version of software used to submit the job

— rerun — number of retries left to rerun the job

— priority —

— downloads — number of files to download into the SD before execution

— wuploads — number of files to upload from the SD after execution

— rtes —

— jobname — name of the job as supplied by the user

— projectname — name of the project as supplied by the user. There may be few of them

— jobreport — URL of a user requested accounting service. The A-REX will also send job records to
this service in addition to the default accounting service configured in the configuration. There
may be few of them

— cleanuptime — GMT time when the job should be removed from the cluster and it’s SD deleted
in Generalized Time format

— expiretime — GMT time when the credentials delegated to the job expire in Generalized Time
format

— gmlog — directory name which holds files containing information about the job when accessed
through GridFTP interface

— sessiondir — the job’s SD
— failedstate — state in which job failed (available only if it is possible to restart the job)

— failedcause — contains internal for jobs failed because of processing error and client if client
requested job cancelation.

— credentialserver — URL of MyProxy server to use for renewing credentials.
— freestagein — yes if client is allowed to stage-in any file

— activityid — Job-id of previous job in case the job has been resubmitted or migrated. This value
can appear multiple times if a job has been resubmitted or migrate more than once.

— migrateactivityid —

— forcemigration — This boolean is only used for migration of jobs. It determines whether the job
should persist if the termination of the previous job fails.

— transfershare — name of share used in Preparing and Finishing states.

This file is filled partially during job submission and fully when the job moves from the Accepted to the
Preparing state.

e job.ID.input — list of input files. Each line contains 3 values separated by a space. First value contains
name of the file relative to the SD. Second value is a URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

A URL represents a location from which a file can be downloaded. Each URL can contain additional
options.

A file description refers to a file uploaded from the UT and consists of [size][.checksum] where
size - size of the file in bytes.
checksum - checksum of the file identical to the one produced by cksum (1).

These values are used to verify the transfer of the uploaded file. Both size and checksum can be left
out. A special kind of file description *.* is used to specify files which are not required to exist.

third optional value is path to delegated credentials to be used for communication with remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be downloaded to
the SD or cache and files with ’file description’ will simply be checked to exist. Each time a new valid
file appears in the SD it is removed from the list and job.ID.input is updated.

e job.ID.input_status — contains list of files uploaded by client to the SD.

e job.ID.output — list of output files. Each line contains 1, 2 or 3 values separated by a space. First value
is the name of the file relative to the SD. The second value, if present, is a URL. Supported URLs are
the same as those supported by job.ID.input. Optional 3rd value is path to delegated credentials to
be used while accessing remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be uploaded to
SE and remaining files will be left in the SD. Each time a file is uploaded it is removed from the list
and job.ID.output is updated. Files not mentioned as output files are removed from the SD at the the
beginning of the Finishing state.

e job.ID.output_status — list of output files successfully pushed to remote locations.

e job.ID.failed — the existence of this file marks the failure of the job. It can also contain one or more
lines of text describing the reason of failure. Failure includes the return code different from zero of the
job itself.

e job.ID.errors — this file contains the output produced by external utilities like downloader, uploader,
script for job submission to LRMS; etc on their stderr handle. Those are not necessarily errors, but can
be just useful information about actions taken during the job processing. In case of problem include
content of that file while asking for help.

e job.ID.diag — information about resources used during execution of job and other information suitable
for diagnostics and statistics. It’s format is similar to that of job.ID.local. The following names are at
least defined:

nodename — name of computing node which was used to execute job,

— runtimeenvironments — used runtime environments separated by ’;’,

ezritcode — numerical exit code of job,

— frontend_distribution — name and version of operating system distribution on frontend computer,
— frontend_system — name of operating on frontend computer,

— frontend_subject — subject (DN) of certificate representing frontend computer,

— frontend_ca — subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNU time utility. Note that some implementations of time insert
unrequested information in their output. Hence some lines can have broken format.

e job.ID.prozy — delegated X509 credentials or only chain of public certificates.

e job.ID.prozy.tmp — temporary X509 credentials with different UNIX ownership used by processes run
with effective user id different from job owner’s id.

e delegations — sub-directory containing collection of delegated credentials.

e [ogs — sub-directory with information prepared for reporting plugins.

There are other files with names like job.ID.* which are created and used by different parts of the A-REX.
Their presence in the control directory can not be guaranteed and can change depending on changes in the
A-REX code.

6.2 Web Service Interface

A-REX Web Service Interface provides means to submit a description of a computational job to a computing
resource, to stage-in additional data, to monitor and control processing of jobs, and obtain data produced
during the execution of a job. The WS Interface is built and deployed inside the Hosting Environment
Daemon (HED) infrastructure [5].

6.2.1 Basic Execution Service Interface

The job submission and control interface is based on a document produced by the OGF OGSA Basic
Execution Services (BES) Working Group [7].

The exchange of SOAP messages is performed via HTTP(S). The BES interface is represented by two port-
types — BES-Management and BES-Factory. The former is made to control the A-REX service itself and thus
defines operations to start and stop the functionality of the BES service. The A-REX does not implement
remote control of service functionality. Hence the BES-Management port-type is not functional. The BES-
Factory port-type provides operations to submit new jobs (to create an activity in terms of BES) and to
monitor its state. It also has an ability to provide information about the service. A-REX fully implements
the functionality of this port-type.

For job descriptions A-REX accepts the Job Submission Description Language (JSDL) [4] documents as de-
fined by the OGF Job Submission Description Language Working Group. Supported elements and extensions
are described below.

6.2.2 Extensions to OGSA BES interface

A-REX introduces two new operations in addition to those provided by BES. It does that by defining its
own port-type with new operations ChangeActivityStatus and Migrate Activity(see Appendix C).

The ChangeActivityStatus operation provides a way to request simple transfers between states of jobs and
corresponding actions.

o ChangeActivityStatus

— Input

x ActivityStatus Type OldStatus: Description of the state the job is supposed to be in during
execution of this request. If the current state of the job is different from the one having been
given, the operation is aborted and a fault is returned. This parameter is optional.

x ActivityStatus Type NewStatus: Description of the state the job is to be put into.
— Output

x ActivityStatus Type NewStatus: Description of the current state of the job.
— Fault(s)

* NotAuthorizedFault: Indicates that the client is not allowed to do this operation.

* InvalidActivityldentifierFault: There is no such job/activity.
x CantApplyOperationToCurrentStateFault: The requested transition is not possible.

On result of this command, the job should be put into the requested state. If such a procedure cannot
be performed immediately then the corresponding sequence is initiated and fault OperationWillBeAp-
pliedEventuallyFault will be returned.

Since BES allows implementations to extend their initial activity states with additional sub-states,
A-REX defines a set of sub-states of activity processing in addition to those defined by the BES, as
listed in Table 1. Their meaning is described in Section 4.

The MigrateActivity operation generates a request to migrate a grid job from another A-REX, i.e. the
operation will get input files and possibly job description from the cluster currently holding the job
and create the job as a new activity at the present cluster. Currently only migration of queuing jobs
is supported.

o MigrateActivity

— Input
x wsa:EndpointReference Type Activityldentifier: This element should contain the wsa:EndpointReference
of the job to be migrated.
x ActivityDocument: JSDL document of the job to be migrated. This element is optional.
* Boolean ForceMigration: Boolean that determines whether the job will persist on the new
cluster if the termination of the previous job fails.
— Output
* wsa:EndpointReference Type Activityldentifier: This element should contain the wsa:EndpointReference
of the new activity.
x ActivityDocument: Contains the JSDL document of the new activity.

— Fault(s)

* NotAuthorizedFault: Indicates that the client is not allowed to do this operation.

* NotAcceptingNewActivitiesFault: A fault that indicates that A-REX currently is not accepting
new activities.

x UnsupportedFeatureFault: This fault indicates that an sub-element in the JDSL document is
not supported or the ActivityDocument has not been recognised as JSDL.

* InvalidRequestMessageFault: This fault indicates that an element in the request is either
missing or has an invalid format. Typically this would mean that the job-id cannot be
located in the Activityldentifier of the old job.

The Activiterldentifier specifies the URL of the job which will be migrated. In case the ActivityDocument
is filled this document will be used to create a new activity otherwise an attempt will be made to retrieve
the job description through the BES operation GetActivityDocument.

Once the input files have been downloaded from the other cluster, a request will be send to terminate the old
job. If this request fails the new activity at the present cluster will be terminate unless the ForceMigration
is true. This is to prevent the job from being executed at two different places at the same time.

10

Table 1: Job states definitions and mappings

Applicable ARC BES . o
BES state sub-state EMI ES state LIDI state A-REX internal state | Description
Job is in the process
. . submitted. This stat
Pending Accepting ACCEPTED ACCEPTED recognised by the A-I
Accepted is first reports
Accepted ACCEPTED ACCEPTED Job was submitted
Preparing Z%Eg&% PREPARING Stage-in process is goin
Prepared PREPRO- PREPARING -+ Stage-in process has fi
P CESSING PENDING s b !
e PROCESSING- Communication with lo
Submitting ACCEPTING SUBMIT system is in process
Job entered local batc
but is not runnning ne
Running Queued PPI;%CN]?\ISISNIgG_ INLRMS state is not recognised |
REX yet. FEzxecuting is
instead
. PROCESSING- Job is being executed
Executing RUNNING INLRMS batch system
Job execution in local &
tem has finished. The
Executed PROCESSING- INLRMS, INLRMS | dos not detect job staf
RUNNING + PENDING local batch system yet
sult this state is report
job is Pending.
Communication with lo
Killing PROCESSING CANCELING system to terminate ex
in process
Finishing PCOE?STgI)IET{g_ FINISHING Stage-out process is go
Job was stopped by exj
Cancelled Killed TERMINAL FINISHED request. The A-REX
does not remember thi
Failed is reported inste
. . There was a failure du
Failed Failed TERMINAL FINISHED cution
Finished Finished TERMINAL FINISHED Job finished successfull
Finished Deleted TERMINAL DELETED JRCEDXﬁ?;ZhEi;nd was |
Job is prevented from
. the next state due to so
All Pending PENDING nal limits; this sub-stat
in parallel with other s
Job processing is susp
client request; this sub-
pears in parallel with o
All Held states. This state is res
future and is not imp
yet.

11

6.2.3 Delegation Interface

The A-REX also supports the Delegation Interface (see Appendix D). This is a common purpose interface to
be used by ARC services which accepts delegated credentials from clients. The Delegation Interface imple-
ments two operations: initialization of credentials delegation (DelegateCredentialsInit) and update/renewal
of credentials (UpdateCredentials).

o DelegateCredentialsInit operation — this operation performs the first half of the credentials delegation
sequence.

— Input
* None. On this request the service generates a pair of public and private keys. The public key
is then sent to the client in response.
— Output(s)

x TokenRequest Type TokenRequest: Contains the public key generated by the service as a Value
element. It also provides an identifier in the Id element which should be used to refer to the
corresponding private key.

— Fault(s)
* UnsupportedFault: Indicates that the service does not support this operation despite sup-
porting the port-type.
* ProcessingFault: Internal problems during generation of the token.

e UpdateCredentials operation — this operation makes it possible to update the content of delegated
credentials (like in the case of credentials being renewed) unrelated to other operations of the service.

— Input
x DelegatedToken Type Delegated Token: Contains an X509 proxy certificate based on the public
key from the DelegateCredentialsInit signed by the user’s proxy certificate. Also includes the
Id element which identifies the private key stored at the service side associated with these
credentials. The reference element refers to the object to which these credentials should be
applied in a way specific to the service. The same element must also be used for delegating
credentials as part of other operations on service.

— Output(s)
* None.
— Fault(s)
* UnsupportedFault: Indicates that service does not support this operation despite supporting
the port-type.
* ProcessingFault: Internal problems during generation of the token.

Additionally, A-REX Web Service Interface allows delegation to be performed as part of the CreateActivity
operation of the BES-Factory port-type. For this it accepts the element DelegatedCredentials inside the
CreateActivity element. The Id element of DelegatedCredentials must contain an identifier obtained in
response to the previous DelegateCredentialsInit operation. For more information about delegations and
delegation interface refer to [10].

6.2.4 Local Information Description Interface

The A-REX implements the Local Information Description Interface (LIDI) interface common for all ARC
services. This interface is based on OASIS Web Services Resource Properties specification [I0]. Information
about resources and maintained activities/jobs are represented in a WS-Resource Properties informational
XML document. The document type is defined in the A-REX WSDL as a ResourcelnformationDocument-
Type. It contains the following elements/resources:

nordugrid — description of computing resource that uses NorudGrid LDAP schema [9] converted to
XML document.

12

Domains — description of a computation resource that uses Glue2 schema.

All information can be accessed either through requests on particular resources or through XPath queries
using WS-Resource Properties operations.

6.2.5 Supported JSDL elements

A-REX supports the following elements from the JSDL version 1.0 specification [4] including POSIX Appli-
cations extension and JSDL HPC Profile Application Extension [8]:

JobName — name of the job as assigned by the user.

Ezecutable (POSIX,HPC) — name of the executable file.

Argument (POSIX;HPC) — arguments the executable will be launched with.
DataStaging

Filename — name of the data file on the executing node.
Source — source where the file will be taken from before execution.

Target — destination the file will be delivered to after execution.
Input (POSIX,HPC) - file to be used as standard input for the executable.
Output (POSIX,HPC) - file to be used as standard output for the executable.
Error (POSIX,HPC) - file to be used as standard error for the executable.
MemoryLimit (POSIX) — amount of physical memory needed for execution.
TotalPhysicalMemory — same as MemoryLimit.
Individual PhysicalMemory — same as MemoryLimit.
CPUTimeLimit (POSIX) — maximal amount of CPU time needed for execution.
TotalCPUTime — same as CPUTimeLimit.
Individual CPUTime — same as CPUTimeLimit.
WallTimeLimit (POSIX) — amount of clock time needed for execution.
Total CPUCount — number of CPUs needed for execution.

Individual CPUCount — same as Total CPUCount.

6.2.6 ARC-specific JSDL Extensions

A-REX accepts JSDL documents having the following additional elements (see Appendix E):

IsFExecutable — marks file to become executable after being delivered to the computing resource.
RunTimeEnvironment — specifies the name of the Runtime Environment needed for job execution.
Middleware — request for specific middleware on the computing resource frontend.

RemoteLogging — destination for the usage record report of the executed job.

LocalLogging — name for the virtual directory available through job interface and containing various
debug information about job execution.

AccessControl — ACL expression which describes the identities of those clients who are allowed to
perform operations on this job.

13

Notify — Email destination for notification of job state changes.

SessionLifeTime — duration for the directory containing job-related files to exist after the job finished
executing.

JoinOutputs — specifies if standard output and standard error channels must be merged.
Reruns — defines how many times a job is allowed to rerun in case of failure.

CredentialServer — URL of MyProxy service which may be used for renewing the expired delegated
job credentials.

CandidateTarget — specifies host name and queue of a computing resource.

OldJobID — specifies the previous job-ids in case the job has been resubmitted or migrated.

7 Cache

The A-REX can cache input files, so that subsequent jobs requiring the same files do not have to download
them again. Caching is enabled if one or more cache directories are specified in the configuration file. All
input files except files uploaded by the user during job submission are cached by default. This includes
executable files downloaded by the A-REX. Caching can be explicitly turned off by the user in the job
description (see [12]). The disk space occupied by the cache is controlled by removing files in the order of
least recent access. For more information on configuration see Section 9.1.

7.1 Structure

Cached files are stored in sub-directories under the data directory in each main cache directory. Filenames
are constructed from an SHA-1 hash of the URL of the file and split into subdirectories based on the two
initial characters of the hash. In the extremely unlikely event of a collision between two URLs having the
same SHA-1 hash, caching will not be used for the second file.

When multiple caches are used, a new cache file goes to a randomly selected cache, where each cache is
weighted according to the size of the file system on which it is located. For example: if there are two caches
of 1TB and 9TB then on average 10% of input files will go to the first cache and 90% will go to the second
cache.

Some associated metadata including the corresponding URL and an expiry time, if available, are stored in
a file with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

Ifc://atlaslfc.nordugrid.org//grid/atlas/file1

is mapped to
/cache/data/18/f607405ab1df6b64 TfacT7aa97dfb6089c19fb3

and the file /cache/data/78/f607405ab1df6b64 7fac7aa97dfb6089c19fb3.meta contains the original URL and
an expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another
download process cannot write the same file simultaneously. This is done by creating a file with the same
name as the cache filename but with a .lock suffix. This file contains the process ID of the process and the
hostname of the host holding the lock. If this file is present, another process cannot do anything with the
cache file and must wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock has a
timeout of one day, so that stale locks left behind by a download process exiting abnormally will eventually
be cleaned up. Also, if the process corresponding to the process ID stored inside the lock is no