
ARC Counter Library
Requirements and Design ∗

Markus Nordén

June 26, 2007

Abstract
This is a draft summary of requirements and a proposition of an

API for the counter library of the ARC HED. Comments are encour-
aged and expected. In particular, feedback is needed on globality (sec-
tion 2.4), persistency (section 2.5) and the suggested API (section 3).

Please, send any feedback to: nordugrid-discuss@nordugrid.
org

1 Introduction
During the �Uppsala HED Implementation F2F Meeting�, it was decided
that a counter library shall be provided for services and other components
to use for e.g. allocation and housekeeping of resources.

This document contains requirements on that counter library based on
e-mail discussions on the nordugrid-discuss e-mail list.

2 Requirements
2.1 Purpose
The purpose of a counter is to provide housekeeping of a resource that can
be allocated and deallocated such as e.g. disk space or network bandwidth.
The counter itself will not be aware of what kind of resource it limits the
use of. Neither will it be aware of what unit is being used to measure that
resource. Counters are thus very similar to semaphores.

The users of the resource must thus �rst call the counter in order to
allocate (make a reservation of) an appropriate amount of the resource, then

∗This document was used as input for discussions during NorduGrid Technical
Meeting in Lübeck May 2�4, 2007. For the �nal design, see the Doxygen documentation of
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/libs/counter/Counter.h

1



use the resource and �nally call the counter again to deallocate what was
previously allocated.

Furthermore, the users of the resource must agree on what unit they use
to measure the resource, e.g. if disk space is measured in GB, MB, kB or
single bytes. The counter itself will thus only contain a number.

2.2 Counter types
Integers provide su�cient resolution for internal representation of available
resources. Floating point numbers could be an alternative, but no such
requirement has been expressed.

If there should arise a need to represent quantities of a resource that are
smaller than one unit, the choice of unit for the corresponding counter can
be reconsidered.

2.3 Atomicity and Synchronization
Counters must be able to handle concurrent operations in a consistent man-
ner. This implies that all operations must be atomic. Furthermore, no
operation may be performed until it is guaranteed that it will succeed, i.e.
a call to the allocation method must block until there is a su�ciently large
amount of the resource free.

No requirements for simultaneous operations on sets of counters have
been requested.

2.4 Globality
Counters for di�erent purposes (limiting di�erent kinds of resources) may
need to have di�erent scopes:

Single thread The counter can only be accessed from within a single thread.
There is no concurrency or need for synchronization and a special
counter class is super�uos.

Single process (several threads) The counter can be accessed from all
threads within a single process, but is not accessible from outside that
process.

Single computer (several processes) The counter can be accessed from all
processes running on CPUs with access to a common shared memory.
This requires inter-process communication.

Single cluster (several computers) The counter can be accessed from any
process running on any computer within a cluster.

2



Entire grid The counter can be accessed from any process running on any
computer connected to a certain grid � probably by means of a counter
service.

It deserves to be mentioned here that the scope of the counter itself is
not necessarily the same as the scope of the resource it limits the use of. For
example, there may be counter available only on the front end machine of
a cluster that keeps track of the number of free CPUs in the entire cluster.
This counter can be used by a process that runs on the front end machine
but starts jobs on other computers in the cluster.

Requests have been made for single process counters, single computer
counters and single cluster counters.

2.5 Persistency
Di�erent kinds of counters have di�erent lifetimes. The lifetime of single
computer counters is an open question.

Process lifetime The counter is initialized at process start up and vanishes
when the process �nishes. Applicable only for single process counters.

System lifetime The counter ts initialized at system start up and is reset
upon system restart. Possibly applicable for single computer counters.

Eternal lifetime The counter is initialized once and is then available until
it is explicitly removed. Applicable for single cluster, entire grid and
possibly also for single computer counters.

2.6 Identi�cation of counters
Counters are identi�ed by unique names. The form of a name will depend
of the globality of a counter.

Single process counters may, for example, be implemented as global ob-
jects accessible from all threads of the process. The �name� of a counter will
in this case be the address of the corresponding counter object. This address
can be referred to by an arbitrary number of pointers and references as well
as one or zero �ordinary variables�, i.e. just as any other object.

A single computer counter or a single cluster counter may be accessed
through an arbitrary number of counter objects in di�erent processes. There
may thus be many counter objects that correspond to the same counter and
manipulates it in a synchronized way. Upon construction of such a counter
object, the name of the counter shall be provided. Such names can follow the
same rules as e.g. identi�ers in the C programming language. Furthermore,
the name of some global object, e.g. a �le, will probably also be required as
an �environment� for the counters.

3



The name of an entire grid counter will probably consist of the URI of
a counter service (the �environment� part) and a counter name as described
above.

2.7 Priority
In some cases it may be desirable to let important tasks exceed the limit
of a counter to a certain extent. This may be implemented by means of a
credit. That an allocation is prioritized may be expressed by means of an
extra, optional, parameter to the allocation method.

2.8 Time Awareness
The basic use of a counter is that a certain amount of it is acquired by a call
to an allocation method and subsequently returned by a call to a deallocation
method.

There has also been requests for self expiring allocations, i.e. that it is
speci�ed at allocation for how long that acquisition shall last. After that
time has elapsed, deallocation will occur automatically.

It has also been mentioned that reservation of resources in advance would
be a nice feature, but this is considered to be less important.

3 Design and API
There will be an abstract base class that de�nes the interface of a counter,
i.e. what operations can be performed on it. The di�erent kinds of counters
(di�erent globality) will be implemented as subclasses of that base class.

The signature of the constructors of the di�erent classes will be deter-
mined later based on the needs of the implementation.

The following operations will be available for counters:

3.1 void wait(int amount, bool prioritized, int duration)
Blocks until the requested amount is free and allocates it.

Parameters:

amount The amount to be allocated.

prioritized True if this is a prioritized request, false otherwise. Optional,
default value is false.

duration Zero for allocations that subsequently will be explicitly deallo-
cated. If positive, duration of a self expiring allocation. Optional,
default value zero.

4



3.2 bool tryWait(int amount, bool prioritized, int duration)
Tries to allocate the requested amount and returns immediately. Returns
true if the allocation succeded and false if it did not succeed.

Parameters:

amount The amount to be allocated.

prioritized True if this is a prioritized request, false otherwise. Optional,
default value is false.

duration Zero for allocations that subsequently will be explicitly deallo-
cated. If positive, duration of a self expiring allocation. Optional,
default value zero.

3.3 void post(bool amount)
Deallocates a certain amount.

Parameters:

amount The amount to be deallocated.

3.4 int getLimit()
Returns the current limit of the counter.

3.5 int setLimit(int limit)
Sets the limit of the counter. Returns the new limit.

Parameters:

limit The new limit.

3.6 int changeLimit(void amount)
Changes the limit of the counter by a certain amount. Returns the new limit.

Parameters:

amount The amount to add to the the limit. May be positive or negative.

3.7 int getCredit()
Returns the current credit of the counter.

5



3.8 int setCredit(void credit)
Sets the limit of the counter. Returns the new limit.

Parameters:

credit The new credit.

3.9 int changeCredit(void amount)
Changes the credit of the counter by a certain amount. Returns the new
credit.

Parameters:

amount The amount to add to the the credit. May be positive or negative.

3.10 int getValue()
Returns the current value of the counter, i.e. the number of units currently
available for allocation.

4 Implementation
The implementation will be based on �lower level� libraries. Posix and Sys-
tem V semaphores have been considered so far but have been rejected due
to limited functionality and portability issues. The current candidate is
glibmm, possibly combined with �le storage for counters that cannot reside
in memory.

6


