
1

NorduGrid Storage – Overview and Design of a
Service-Oriented Storage System

Jon K. Nilsen†,‡ Salman Toor∗ Zsombor Nagy¶

Bjarte Mohn§

†University of Oslo, Center for Information Technology,

P. O. Box 1059, Blindern, N-0316 Oslo, Norway
‡University of Oslo, Dept. of Physics, P. O. Box 1048, Blindern, N-0316 Oslo, Norway
∗Dept. of Information Technology, Div. of Scientific Computing, Uppsala University,

Box 337, SE-75105 Uppsala, Sweden
¶Institute of National Information and Infrastructure Development

NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest, Hungary
§Dept. of Physics and Astronomy, Div. of Nuclear and Particle Physics,

Uppsala University, Box 535, SE-75121 Uppsala, Sweden

j.k.nilsen@usit.uio.no salman.toor@it.uu.se zsombor@niif.hu

bjarte.mohn@fysast.uu.se

Abstract—There is an ever increasing need to utilize ge-
ographically distributed hardware resources, both in terms
of CPU and in terms of storage. The service-oriented archi-
tecture provides a natural framework for managing these
resources. The next generation Advanced Resource Con-
nector (ARC) is a service-oriented Grid solution that will
provide the middleware to represent distributed resources
in one simple framework. In this paper, we will present an
overview of ARC’s novel storage system – the NorduGrid
storage – itself a set of services providing a self-healing,
flexible Grid storage solution. We will also present some
first proof-of-concept test results from a deployment of the
storage system distributed across three different countries.

I. Introduction

The challenge of building a reliable, self-healing, fault-
tolerant, consistent data management system at the web-
scale is an interesting task. Making the system work in
a heterogeneous, distributed environment like the Grid is
even more interesting. An increasing number of applica-
tions demand not only increased CPU power, but also vast
amounts of storage space. The required storage space is
not only restricted to the duration in which the applica-
tion runs; the data should often be available for years af-
terwards, in certain cases even for decades. Nowadays, we
can easily find single Grid jobs which produce gigabytes
or even terabytes of data, ramping up the requirements of
storage systems to the petabyte-scale and beyond. Hard
drive capacity is still increasing and storage raids can han-
dle failing hard drives through data replication. However,
even a designated storage site cannot guarantee 24/7 avail-
ability or long-term security against catastrophic losses of
data. The need for a distributed, self-healing storage sys-

tem is evident. To make the storage system useable to
Grid users, the system must provide reliable and secure file
transfer protocols, a cataloging system and secure storage
of the data. Several projects and designs have emerged to
address such challenges [1], [2].

In the advent of the next generation of the Advanced
Resource Connector (ARC) Grid middleware [3] (new re-
lease due during fall 2009), we present the new NorduGrid
storage [5]. This distributed storage system is designed to
provide an easy to use, flexible and scalable system that
can offer native storage and at the same time provide ac-
cess to third-party solutions like dCache [6], [7] by using
the same, uniform interface. Being part of ARC, the stor-
age system is based on a service-oriented architecture, in
which each major component of the system runs as a sepa-
rate service within the ARC Hosting Environment Daemon
(HED) [8]. The HED service container gives the capabil-
ity of flexible replacement of the components as well as the
possibility to introduce modifications in the future.

This paper is organized as follows. After describing re-
lated work in Section II, we give a bird’s eye view of the
next-generation Advanced Resource Connector (ARC) in
Section III. An overview of the NorduGrid storage is given
in Section IV, while the architecture of the storage system
is elaborated in Section V. In Section VI we give some
early, proof-of-concept results, before concluding in Sec-
tion VII.

II. Related Work

dCache: dCache is a storage system which combines
heterogeneous storage elements to collect several hundreds
of terabytes in a single namespace. It additionally sup-



2

ports standard and native protocols like gridftp, srm, dcap
and gsidcap. dCache is a joint effort between Deutsches
Elektronen Synchrotron (DESY) [9], Fermi National Ac-
celerator Laboratory [10], the Nordic Data Grid Facility
(NDGF) [11] and several other collaborators. dCache has
proven to be a very stable and scalable solution. However,
it is relatively difficult to deploy and integrate with new
applications. The NorduGrid storage, being a light-weight
and flexible storage solution, aims more towards new user
groups less familiar with Grid solutions.
BigTable: Bigtable is a distributed storage system man-
aging structured data on the petabyte-scale [12]. It is cur-
rently used within Google in projects such as web indexing,
Google Earth and Google Financing. Bigtable has several
interesting features, one of which is the distributed lock
service, Chubby [13]. Chubby is a high-availability, dis-
tributed locking service sitting on top of the B+-tree ar-
chitecture of Bigtable. Chubby has several features similar
to our A-Hash service (see Section A.4), among which the
use of the Paxos algorithm [14], [15], is the most striking.
A major caveat for the Grid community is that Bigtable is
neither free, open-source nor available to the public.
Storage Resource Broker: Based on the client-server
model, the Storage Resource Broker (SRB) [16], [17] pro-
vides a flexible data grid management system. It allows
uniform access to heterogeneous storage resources over a
wide area network. Its functionality, with a uniform name-
space for several Data Grid Managers and file systems, is
quite similar to the functionality offered by our Gateway
service (see Section B.6). However, being built as a mid-
dleware on top of other major storage solutions, SRB does
not offer its own storage solution.
Scalla: Scalla is a widely used software suite consisting
of an xrootd server for data access, and an olbd server for
building scalable xrootd clusters [18]. Originally developed
for use with the physics analysis tool root [19], xrootd of-
fers data access both through the specialized xroot protocol
and through other third-party protocols. The combination
of the xrootd and olbd components offers a cluster storage
designed for low latency, high bandwidth environments.
In contrast, the NorduGrid storage is optimized for high
latency and is more suitable for the Grid environment.

III. The Advanced Resource Connector

The next generation of Advanced Resource Connector
(ARC) Grid middleware is developed by NorduGrid [4]
and the EU KnowARC project [20]. It consists of a set
of pluggable components. These components are the fun-
damental building blocks of the ARC services and clients.
ARC services run inside a container called the Hosting
Environment Daemon (HED) and there are four kinds of
pluggable components with well defined tasks: Data Man-
agement Components are used to transfer the data using
various protocols, Message Chain Components are respon-
sible for the communication within clients and services as
well as between the clients and the services, ARC Client
Components are plug-ins used by the clients to connect to
different Grid flavors, and Policy Decision Components are

SS
S

USER

B
B

B
A-H

L
L

L

client 
tools

G
G

G

Fig. 1. Schematic of the NorduGrid storage architecture. The figure
shows the main services of the NorduGrid storage and the communi-
cation channels. The B stands for Bartender, the S for Shepherd, the
L for Librarian, the G for Gateway and the A-H stands for A-Hash.
The straight lines denote the communication between services.

responsible for the security model within the system.
To deliver the non-trivial quality of services required by

the Grid, there are a number of services running inside the
HED. For example, Grid job execution and management
is handled by the A-REX service [21], policy decisions are
taken by the Charon service, the ISIS service is responsible
for information indexing, batch job submission is handled
by the Sched service, etc. In the later sections our dis-
cussion will focus on the architecture and the design of
another major set of services, i.e., the NorduGrid storage.

IV. The NorduGrid Storage

The NorduGrid storage consists of a set of SOAP based
services residing within HED. Together, the services pro-
vide a self-healing, reliable, robust, scalable, resilient and
consistent data storage system. Data is managed in a hi-
erarchical global namespace with files and subcollections
grouped into collections1. A dedicated root collection
serves as a reference point for accessing the namespace.
The hierarchy can then be referenced using Logical Names.
The global namespace is accessed in the same manner as
in local filesystems.

Being based on a service-oriented architecture, the Nor-
duGrid storage consists of a set of services as shown in Fig.
1. The services are as follows: The Bartender (B) provides
the high-level interface to the user; the Librarian (L) han-
dles the entire storage namespace, using the A-Hash (A-
H) as a metadatabase; the Gateway (G) provides access
to third-party storage systems; and the Shepherd (S) is
the frontend for the physical storage node. See Section V
for a detailed discussion of the different services. The ser-
vices communicate with each other through the Message
Chain Components in HED. The communication channels
are depicted by straight lines in Fig. 1.

The system supports file transfer through several trans-

1 A concept very similar to files and directories in most common
file systems.



NORDUGRID STORAGE – OVERVIEW AND DESIGN OF A SERVICE-ORIENTED STORAGE SYSTEM 3

fer protocols, with client side tools that hide various tech-
nical details such as protocol specification, port numbers
and so on. To provide fault-tolerance, the system imple-
ments automatic file replication, where the replicas of a
file2 are always stored on separate storage nodes3. To en-
sure a resilient, self-healing system, the Shepherd regularly
sends heartbeats to one of the Librarians. If the Shepherd
fails to send a heartbeat, one of the Librarians will mark
its replicas as offline, thus initiating re-replication of the
replicas between the other Shepherds.

In the default implementation, the services will provide a
full-featured and consistent data storage system using files
as an atomic unit. The scope of the NorduGrid storage in
the forseeable future is restricted to providing support for
file-based data services.

The NorduGrid storage supports third-party storage ser-
vices in two ways. Using the Gateway service, files already
stored in some third-party storage can be accessed using
the provided client tools. To make use of third-party ser-
vices for storing new files, with the replication and fault-
tolerance offered by the NorduGrid storage, third-party
storage elements can also be used as backends for the Shep-
herd service.

External grid middleware components can access the
storage system using ARC data service interfaces directly.
ARC will also provide interface components that commu-
nicate via standard protocols such as SRM, which will pro-
vide a single access point to the whole system.

V. Architecture of the NorduGrid Storage

In a service-oriented architecture the role of each ser-
vice is well defined. Available objects4 in the system are
identified by unique global IDs. These IDs are categorized
according to the object type:

• Each file and collection has a unique ID (GUID).
• Services are uniquely identified by a serviceID.
• The Shepherds in the system identify their files by a

referenceID.
Each object in the NorduGrid storage has a globally

unique ID. A collection contains files and other collections,
and each of these entries has a name unique within the col-
lection very much like entries in a standard directory on
a local filesystem. Besides files and collections, the stor-
age system has a third type of entry called mount-points,
which are references to the third-party storages within the
global namespace.

Replicas in a distributed storage system can have differ-
ent states; they can be broken, deleted, partially uploaded,
etc. In the NorduGrid storage, all replicas have assigned
a state, some of which are ‘alive’ (if the replica passed
the checksum test, and the Shepherd reports that the stor-
age node is healthy), ‘invalid’ (if the replica has a wrong
checksum, or the Shepherd claims it has no such replica),

2 In this paper, a file denotes an entry in the global namespace,
while replica denotes the physical file stored on a storage node.

3 A storage node is a server with a Shepherd, a Shepherd backend
and some storage service.

4 Files, collections, mount points, etc.

‘offline’ (if the Shepherd is down) and ‘creating’ (if the
replica is in the state of uploading).

In the following, the details of the architecture are pre-
sented in three parts: First we will discuss the details of
the core components, second we will discuss some of the
important features provided by the system, and third we
will discuss the security model.

A. Core Components

A.1 Bartender

The Bartender service provides a high-level interface for
the storage system. Clients connect to the Bartender to
create and remove files, collections and mount-points using
their Logical Names. The Bartender communicates with
the Librarian and Shepherd services to execute the clients’
requests. However, the actual file data does not go through
the Bartender, instead file transfers are directly performed
between the storage nodes and the clients. There could be
any number of independent Bartender services running in
the system, providing high-availability and load-balancing.

A.2 Librarian

The Librarian manages the hierarchy and metadata of
files, collections and mount points, as well as the health
information of the Shepherd services. In addition, the
Librarian handles the information about registered Shep-
herd services. The Librarian receives heartbeat messages
from the Shepherds and changes replica states automati-
cally if needed. The Librarian uses the A-Hash for con-
sistently storing all metadata. This makes the Librarian
a stateless service, thus enabling the system to have any
number of independent Librarian services, again providing
high-availability in the system.

A.3 Shepherd

The Shepherd services run as front-ends on storage
nodes. A Shepherd service reports to a Librarian about
the node’s health state in terms of replicas. While the
Bartender initiates file transfers, the actual transfers go
directly between the storage node and the clients.

When a new replica upload is initiated, the Shepherd
generates a referenceID which refers to the replica within
that Shepherd. Each Shepherd has a unique serviceID,
so with these two IDs the replica can be unambiguously
referenced. This is called a Location of the replica.

A.4 A-Hash

A-Hash is a hash table for consistently storing data in
property-value pairs. All metadata about files, collections,
mount point, Shepherd’s health status, and so forth, is
stored in the A-Hash. As the A-Hash is the service storing
the entire state of the storage system, it is absolutely cru-
cial for the sttorage system that the A-Hash is consistent.
The distribution and replication of this service is therefore
both necessary and challenging.



4

S
USER

B

L

1. list(LN)

2. traverse(LN)

3. collection's data 

6. tra
verse(LN)

7. file's d
ata 8.

 ge
t(.

..)

4. entries

11. downloading the file9. TURL

A-H

5. getFile(LN)

10. TURL

Fig. 2. Schematic showing the scenario of file download from the
NorduGrid storage.

B. Features

B.1 Heartbeat monitoring

In the proposed architecture, each Shepherd periodi-
cally sends heartbeats to a Librarian with information
about replicas whose state changed since the last heart-
beat, and the corresponding GUIDs. These heartbeats are
then stored in the A-Hash, making them visible to all the
Librarians in the system. If any of the Librarians notices
that a Shepherd is late with its heartbeat, it will mark all
the replicas in that Shepherd as offline.

B.2 Replication

Shepherds periodically ask the Librarian if the file of the
replica stored on its storage node has enough replicas. If
the file does not have enough replicas, the Shepherd in-
forms the Bartender and the Bartender initiates a put re-
quest that returns a Transfer URL to the Shepherd. The
Shepherd finally uploads the new replica. The Shepherd
which gets the new replica notifies the Librarian that the
replica is alive. The Librarian then adds this to the corre-
sponding file.

B.3 Deletion

In a replicating storage system, there are several possible
solutions for file deletion, since both the replicas and the
metadata need to be removed. In our solution, we use the
process of lazy deletion [22]. When a client requests that
a file should be deleted (and the user has the proper per-
missions) the Bartender instructs the Librarian to remove
the file’s GUID from the A-Hash. When the Shepherd, pe-
riodically checking all its replicas, discovers that a replica
has no file (and hence, no Location), it will automatically
delete the replica.

B.4 Fault tolerance

Due to the unpredictable nature of the Grid environ-
ment, it is essential to have some degree of automatic re-
covery system in case of unexpected failures. Fault tol-
erant behavior is required both at the level of metadata
and on the level of physical storage. While the work on
fault-tolerant metadata is still in progress, the following

two scenarios will explain the currently available recovery
mechanism for physical storage:

• In the case of a file having an invalid checksum, the
Shepherd immediately informs the Librarian and the
Librarian changes the state of the given replica to
‘invalid’. To recover its replica, the Shepherd con-
tacts a Bartender and asks for another replica of the
file. The Bartender chooses a valid replica, initiates a
file transfer from a Shepherd having the replica, and
returns the TURL to the Shepherd with the invalid
replica. When the Shepherd has received the replica
and compared the checksum, it notifies the Librarian
that the replica is alive again.

• In the case of a Shepherd going offline, a Librarian
will, as mentioned earlier, notice the lack of heart-
beats and invalidate all the replicas, initiating new
replication for all the files stored in this storage node.
However, if the Shepherd again comes online, there
will evidently be more replicas than needed. The first
Shepherd to notice this will set its replica’s state to
‘thirdwheel’, i.e. obsolete. At the next occasion,
the Shepherd will remove the replica, if and only if it
has the only ‘thirdwheel’ replica of this file. If there
are more replicas with this state, all replicas will be
set back to ‘alive’ and the process is repeated. This
scenario will be discussed further in Section VI.

B.5 Client tools

Being the only part a user will (and should) see from a
storage system, the client tools are an important part of
the NorduGrid storage. Currently ARC supports two ways
of accessing the storage solution:

• The Command-line Interface (CLI) provides
access to the storage through the methods stat,
makeCollection, unmakeCollection, putFile,
getFile, delFile, list and move. Methods for
modifying access and ownership will be available
in the near future. The CLI assumes a relatively
high level of computer competence from the user.
However, the CLI, being a stand-alone tool, can be
used to access the storage system from any computer
(also including Microsoft Windows PCs) that has
network access and a Python installation.

• The FUSE module provides a high-level access to
the storage system. Filesystem in Userspace (FUSE)
[23] provides a simple library and a kernel-userspace
interface. Using FUSE and the ARC Python interface,
the FUSE module allows users to mount the storage
namespace into the local namespace. This way, the
user can use her/his favorite file manager to access
her/his files and collections. The FUSE module pro-
vides most of the features provided by the CLI, with
the exception of modifying some non-posix metadata.

It is worth mentioning that the client tools queries the stor-
age system through the Bartender only. Currently upload
and download is realized through HTTP(S), but there are
plans to add support for other protocols, such as SRM and
GridFTP.



NORDUGRID STORAGE – OVERVIEW AND DESIGN OF A SERVICE-ORIENTED STORAGE SYSTEM 5

B.6 Gateways

Gateways are used to communicate with the external
storage managers. While designing this service, care was
taken to:

• Retain the transparency of the global namespace while
using the external storage systems.

• Develop a protocol-oriented service, i.e. all the exter-
nal storage managers which support a certain protocol
should be handled using the corresponding gateway
service.

This approach provides flexibility while avoiding multi-
ple Gateway services for different storage managers. Cur-
rently, the available Gateway service is based on the gridftp
protocol.

When the user request is made, the Librarian provides
the metadata related to the request to the Bartender. Re-
quests can be related to files, collections or external mount-
points. In case of creating external mount-points, the Bar-
tender contacts the Librarian to store the mount-point for
later use. In the case where a request is related to the
downloading of files from the external store, the Gateway
service first checks the status of the file and then sends
the Transfer URL (TURL) to the client via the Bartender.
Using this TURL, the client can directly get the file from
the external store.

C. Security Model

As is the case for all openly accessible web services, the
security model is of crucial importance for the NorduGrid
storage. The security architecture of the storage can be
split into three parts; the inter-service authorization; the
transfer-level authorization; and the high-level authoriza-
tion.

• The inter-service authorization maintains the in-
tegrity of the internal communication between ser-
vices. There is a lot of communication between the
services of the storage system. The Bartenders send
requests to the Librarians and the Shepherds, the
Shepherds communicate with the Librarians and the
Librarians talk with the A-Hash. If any of these ser-
vices is compromised or a new rogue service gets in-
serted in the system, the security of the entire system
is compromised. To enable trust between the services,
they need to know each other’s Distinguished Names
(DNs). This way, a rogue service would need to obtain
a certificate with that exact DN from some trusted
Certificate Authority (CA).

• The transfer-level authorization handles the au-
thorization in the cases of uploading and downloading
files. When a transfer is requested, the Shepherd will
provide a one-time Transfer URL (TURL) to which
the client can connect. In the current architecture,
this TURL is world-accessible. This may not seem
very secure at first. However, provided that the TURL
has a very long, unguessable name, that it is transfered
to the user in a secure way and that it can only be ac-
cessed once before it is deleted, the chance of being
compromized is very low.

Fig. 3. The map shows the geographical distribution of the services
in the test setup.

• The high-level authorization considers the access
policies for the files and collections in the system.
These policies are stored in A-Hash, in the metadata
of the corresponding file or collection, providing a fine-
grained security in the system.

The communication with and within the storage system is
realized through HTTPS with standard X.509 authentica-
tion.

VI. Testing and Discussion

Even though the NorduGrid storage is in a pre-prototype
state, it is already possible to deploy and use the system
for testing purposes. To properly run a proof-of-concept
test, the resources need to be geographically distributed.
In our test scenarios we utilized resources in three different
countries.

In our test deployment, we used two nodes from Upp-
sala Multidisciplinary Center for Advanced Computational
Science (UPPMAX), Sweden, three nodes from the Cen-
ter for Information Technology (USIT) at the University
of Oslo, Norway, and one node from National Information
Infrastructure Development Institute (NIIF), Hungary.

The services were distributed as shown in Fig. 3:
• An A-Hash runs at UPPMAX.
• A Bartender runs at USIT.
• A Librarian runs at UPPMAX.
• In total five Shepherds were used for the tests: Three

at USIT, having 100GB storage space each, one at
UPPMAX, with 20GB, and one at NIIF, providing
16GB of storage space.

The following tests were carried out:



6

Fig. 4. The distribution of replicas over the geographically dis-
tributed storage nodes. Green bars show the distribution in the case
where we upload 100 files requesting 3 replicas, whereas orange bars
show the distribution after uploading 100 files without replication.

• Test 1: The distribution of data after uploading 10
large size (1 GB) files with one replica each.

• Test 2: The distribution of files after uploading 100
small size (1 kB) files with one replica each, and with
simultanious uploading.

• Test 3: The distribution of data after repeating Tests
1 and 2 with three replicas.

• Test 4: System behavior while some of the Shepherds
are offline.

In the tests we used two client machines: One ASUS Eee
901 on a wireless network in Uppsala, and one Dell Pow-
erEdge 1425SC with 10Gb ethernet connection at USIT.
All the tests were performed and worked as expected: All
the files were both uploaded and downloaded with correct
checksums and they all got the requested number of repli-
cas within a reasonable time. However, some of the tests
deserve extra attention.

Fig. 4 illustrates two test results, corresponding to Test
2 and Test 3: The orange (light grey) bars show the distri-
bution after uploading 100 small files simultaneously, with-
out replication. This gives an indication of how the system
balances the load of many clients uploading at the same
time. The green (dark grey) bars show the distribution
with the same kind of uploading, but with the clients re-
questing three replicas for each file. The difference here is
that the system simultaneously has to handle both repli-
cation and the clients requesting uploads. When the Bar-
tender chooses a location for which to put a replica, it
generates a list of Shepherds that (a) do not have a replica
of the file, and (b) are not already in the process of up-
loading the replica. Next, it draws a Shepherd from the
list at random, using a uniform random number genera-
tor. When uploading without asking for replicas we would
therefore expect a relatively flat distribution of the files, as
can be seen in Fig. 4.

Table I shows the disk usage after Tests 1, 2 and 3. It
is worth noticing here that the bandwidth to NIIF was
significantly lower than between UPPMAX and USIT. If
the bandwidth is saturated and the storage node is busy,

UPPMAX USIT-1 USIT-2 USIT-3 NIIF

Load(GB) 6.683 7.638 7.650 4.773 2.289

TABLE I

Overall load distribution on the storage nodes after Tests

1, 2 and 3 were finished

e.g., checksumming a large file, the heartbeat from this
Shepherd may be delayed, causing the Bartender not to
choose this Shepherd for the next replica. This may explain
the relatively low storage load on the NIIF storage node.

Before (GB) During (GB) After (GB)

UPPMAX 4.888 8.798 8.798
USIT-1 7.820 9.778 6.843
USIT-2 6.843 - 4.888
USIT-3 7.820 9.774 8.798
NIIF 3.320 2.344 1.367
Sum 30.69 30.69 30.69

TABLE II

Storage load before, during and after a Shepherd outage.

A significant feature of the NorduGrid storage is its auto-
matic self-healing. Test 4 addresses this feature by study-
ing the effect of taking one Shepherd out of the system,
and later reinserting it. Table II shows the storage dis-
tribution in three states: Before interrupting a Shepherd,
after the USIT-2 Shepherd is interrupted and redistribu-
tion of replicas is finished, and alive, when the Shepherd
is restarted and the system again has stabilized. We can
see that all files are properly distributed between the re-
maining Shepherds when one of them is disrupted and that
the storage load evens out again when the Shepherd comes
back online. When the system discovers that there are
more replicas than needed, the first Shepherd noticing will
set mark its replica as obsolete. Since the failing Shepherd
didn’t lose any replicas while being down, redistribution of
replicas is just a matter of deleting obsolete replicas. We
also see that the NIIF node actually got fewer files when
USIT-2 went offline. If two Shepherds simultaneously start
uploading and replicating a missing replica, there will be
too many replicas. Here, a big replica on the NIIF node
has randomly been chosen as obsolete. However, the total
storage usage remains the same in all three cases.

VII. Conclusion and Future Work

The proposed system is still in an early phase of de-
velopment, but our test results demonstrate that the ar-
chitecture is robust enough to handle the challenges for
distributed large-scale storage. Much effort is required
to make the system production ready. However, we be-
lieve that continuing in the same direction will enable us
to provide a persistent and flexible storage system which
can fulfill the needs of even the most demanding scientific
community.

Some key areas need special attention and effort to make



NORDUGRID STORAGE – OVERVIEW AND DESIGN OF A SERVICE-ORIENTED STORAGE SYSTEM 7

the proposed storage system even more stable, reliable and
consistent:

• Security: This is still under development. The design
is almost ready, but it still needs to be implemented
and properly tested.

• The A-Hash: This is currently centralized. To avoid
a single point of failure in the system, and to improve
the system performance, the A-Hash needs to be dis-
tributed.

• Performance optimization: To make a storage sys-
tem ready for production, one needs to discover and
improve on possible bottlenecks within the system. As
soon as the A-Hash is distributed, other possible bot-
tlenecks, such as load-balancing and self-healing mech-
anisms, will be investigated.

• Protocols: To ease the interoperability with third-
party storage solutions and clients, the system needs
to support storage protocols such as SRM and
GridFTP. In addition the system will come with its
own ARC protocol.

While the work in the above mentioned areas is still in
progress, we have already shown that the NorduGrid stor-
age already is in a state where initial real-life tests can
be done. We have described a simple, yet strong architec-
ture which we believe will benefit communities in need of
a lightweight, yet distributed storage solution.

VIII. Acknowledgements

We wish to thank Mattias Ellert for helpful discussions
and guidance on the ARC middleware, to Oxana Smirnova,
Alex Read and David Cameron for vital comments and
proof reading. In addition, we like to thank UPPMAX,
NIIF and USIT for providing resources for running the
storage tests.

The work has been supported by the European Commis-
sion through the KnowARC project (contract nr. 032691)
and by the Nordunet3 programme through the NGIn
project.

References

[1] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and
K. Stockinger, “Data management in an international data grid
project.” Springer-Verlag, 2000, pp. 77–90.

[2] Y. Deng and F. Wang, “A heterogeneous storage grid enabled
by grid service,” SIGOPS Oper. Syst. Rev., vol. 41, no. 1, pp.
7–13, 2007.

[3] M. Ellert et al., “Advanced Resource Connector middleware
for lightweight computational Grids,” Future Gener. Comput.
Syst., vol. 23, no. 1, pp. 219–240, 2007.

[4] NorduGrid Collaboration. [Online]. Available:
http//:www.nordugrid.org/

[5] Z. Nagy, J. K. Nilsen, and S. Toor, Documentation of the ARC
storage system, NorduGrid, NORDUGRID-TECH-17. [Online].
Available: http://www.nordugrid.org/documents/arc1-storage-
documentation.pdf

[6] M. de Riese, P. Fuhrmann, T. Mkrtchyan, M. Ernst, A. Kulyavt-
sev, V. Podstavkov, M. Radicke, N. Sharma, D. Litvintsev,
T. Perelmutov, and T. Hesselroth, dCache Book. [Online].
Available: http://www.dcache.org/manuals/Book/Book-a4.pdf

[7] G. Behrmann, P. Fuhrmann, M. Grønager, and J. Kleist, “A
Distributed Storage System with dCache,” Journal of Physics:
Conference Series 119 (2008) 062014.

[8] D. Cameron, M. Ellert, J. Jönemo, A. Konstantinov,
I. Marton, B. Mohn, J. K. Nilsen, M. Nordén, W. Qiang,

G. Rőczei, F. Szalai, and A. Wäänänen, The Hosting
Environment of the Advanced Resource Connector middle-
ware, NorduGrid, NORDUGRID-TECH-19. [Online]. Available:
http://www.nordugrid.org/documents/ARCHED article.pdf

[9] dCache project. [Online]. Available: http://www.dcache.org
[10] Fermi National Accelerator Laboratory. [Online]. Available:

http://www.fnal.gov
[11] Nordic DataGrid Facility. [Online]. Available:

http://www.ndgf.org/
[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
a distributed storage system for structured data,” in OSDI ’06:
Proceedings of the 7th symposium on Operating systems design
and implementation. Berkeley, CA, USA: USENIX Association,
2006, pp. 205–218.

[13] M. Burrows, “The Chubby lock service for loosely-coupled dis-
tributed systems,” in OSDI ’06: Proceedings of the 7th sympo-
sium on Operating systems design and implementation. Berke-
ley, CA, USA: USENIX Association, 2006, pp. 335–350.

[14] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[15] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made
live: an engineering perspective,” in PODC ’07: Proceedings
of the twenty-sixth annual ACM symposium on Principles of
distributed computing. New York, NY, USA: ACM, 2007, pp.
398–407.

[16] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC stor-
age resource broker,” in CASCON ’98: Proceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 1998, p. 5.

[17] M. Wan, A. Rajasekar, R. Moore, and P. Andrews, “A Simple
Mass Storage System for the SRB Data Grid,” in MSS ’03: Pro-
ceedings of the 20 th IEEE/11 th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSS’03). Wash-
ington, DC, USA: IEEE Computer Society, 2003, p. 20.

[18] C. Boeheim, A. Hanushevsky, D. Leith, R. Melen, R. Mount,
T. Pulliam, and B. Weeks, “Scalla: Scalable Cluster Architec-
ture for Low Latency Access Using xrootd and olbd Servers,”
Stanford Linear Accelerator Center, Tech. Rep., 2006.

[19] R. Brun and F. Rademakers, “ROOT – An object ori-
ented data analysis framework,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol.
389, no. 1-2, pp. 81–86, April 1997. [Online]. Available:
http://dx.doi.org/10.1016/S0168-9002(97)00048-X

[20] EU KnowARC project. [Online]. Available:
http://www.knowarc.eu/

[21] A. Konstantinov, The ARC Computational
Job Management Module - A-REX, Nor-
duGrid, NORDUGRID-TECH-14. [Online]. Available:
http://www.nordugrid.org/documents/arex tech doc.pdf

[22] P. Celis and J. Franco, “The analysis of hashing with lazy dele-
tions,” Inf. Sci., vol. 62, no. 1-2, pp. 13–26, 1992.

[23] Filesystem in Userspace. [Online]. Available:
http://fuse.sourceforge.net/


