
NORDUGRID

NORDUGRID-TECH-16
6/8/08

Security Framework of ARC1

W.Qiang, A.Konstantinov

Abstract

This document is about security design concerns and ideas, as well as security
framework implementation in the ARC1 middleware.

1

Table of Contents

1. Introduction . 1
2. Security architecture in HED. SecHandler and PDP 1

2.1. Structure of SecHandler and PDP . 1
2.2. Interface of SecHandler . 2
2.3. Interface of PDP . 3

3. Policy Evaluation Engine . 4
3.1. Design of policy evaluation engine . 4
3.2. Schemas for policy evaluation engine . 5
3.3. Basic Elements of Policy . 6
3.4. Policy MAtching . 7
3.5. Request Structure . 9
3.6. Rule Composition and Matching . 10
3.7. Rule Elements Matching . 12
3.8. Interface for using the policy evaluation engine 13

4. Policy Decision Service . 14
5. Security Attributes . 15

5.1. Infrastructure . 15
5.2. Available collectors . 15

5.2.1. TCP . 15
5.2.2. TLS . 15
5.2.3. HTTP . 17
5.2.4. SOAP . 17

6. Delegation . 17
6.1. Delegation Architecture . 17
6.2. Delegation Collector . 18
6.3. Delegation PDP . 18
6.4. Delegation interface . 18

7. Schemas, descriptions and examples . 19
7.1. Authorization Policy . 19
7.2. Authorization Request . 19
7.3. Authorization Response . 19
7.4. Interface of policy decision service . 19
7.5. Con�guration of PDP service . 19
7.6. SimpleList PDP con�guration and Policy Example 20
7.7. Arc PDP con�guration and Policy Example 20
7.8. PDP Service Invoker con�guration . 22
7.9. Delegation PDP con�guration . 22
7.10. Delegation SecHandler Con�guration . 22

8. Web Service Security Support . 23
8.1. UsernameToken SecHandler con�guration 23
8.2. X509Token SecHandler con�guration . 23

9. Using Shibboleth IdP for Authentication and Attribute-based Authorization . . . 23
10. Short-Lived Credential Service . 25
11. X.509 Credential Delegation Service . 28

2

1. Introduction

The security framework of the ARC1 includes two parts of capabilities: security capability
embedded in hosting environment, and security capability implemented as plug-ins with well-
de�ned interfaces which can be accessed by hosting environment and applications. The following
design concerns were employed when designing:

[F0B7?] Interoperability and standardization

In consistent with the main design concern of the ARC1, interoperability and standardization
is considered in security framework. For example, in terms of authentication, PKI infrastruc-
ture and proxy certi�cate (RFC3820 [1]) is used as most of the other grid middle-wares do.
Since supporting of standardization is a way for implementing interoperability, some standard
speci�cations have been implemented as prototype and tested, such as SAML speci�cation.

[F0B7?] Modularity and extensibility

Besides the security functionality which is embedded in hosting environment, the other security
functionality is implemented as plug-ins which has well-de�ned interfaces, and is con�gurable and
dynamically loadable. Since the interoperation interface between security plug-in and hosting
environment or applications is prede�ned, it is easy to extend the security functionality in order
to support some other security capability by implementing the interface.

[F0B7?] Backward compatibility

The GSI (Grid Security Infrastructure) based mechanism has been a de-facto solution for grid
security. The design of security framework should be compatible to it.

2. Security architecture in HED. SecHandler and PDP

2.1. Structure of SecHandler and PDP

In the implementation of the ARC1, there is a Service Container � the Hosting Environment
Daemon (HED) (D1.2-2, [2]) which provides a hosting place for various services in application
level, as well as a �exible and e�cient communication mechanism.

HED contains a framework for implementing and enforcing authentication and authorization.
Each Message Chain Component (MCC) or service has a common interface for implementing
various authentication and authorization functionality. This functionality is implemented by
using pluggable components (plug-ins) called SecHandler. The SecHandler components are C++
classes and provide method for processing messages traveling through Message Chains of the
HED. Each MCC or Service usually implement two queues of SecHandlers � one for incoming
messages and one for outgoing called �incoming� and �outgoing� respectively. It is possible for
MCC or Service to implement other set of queues. Please check documentation of particular
component for that particular information. All SecHandler components attached to the queue
are executed sequentially. If any of them fails, message processing fails as well.

Each SecHandler is con�gured inside same con�guration �le used for con�guring whole chain
of MCCs. Some of implemented SecHandler components also make use of pluggable and con�g-
urable sub-modules which speci�cally handle various security functionalities, such as authoriza-
tion, authentication, etc. The currently implemented sub-modules used by some SecHandlers
are Policy Decision Point (PDP) components such as Arc PDP which can process ARC speci�c
Request and Policy documents. Figure 1 gives the structure of a MCC/Service, and the mes-
sage sequence inside it. And Figure 2 shows the con�guration of SecHandler components for an
example �Echo� service.

Figure 1. There are usually two chains of SecHandlers inside the MCC or service. Each
SecHandler will parse the Security Attributes which are generated by the upstream MCC/services
or probably upstream SecHandlers in the same or other MCC/Service, and do message processing
or authenticate or authorize the incoming/outgoing message based on the collected information.
The SecHandler can also change the payload and attributes of Messsage itself. For example,
the Username-Token SecHandler will insert the WSS Username Token [3] into header part of
SOAP message. The PDPs are called by the SecHandlers and are supposed to make authorization
decision. Here the two local PDP and one remote PDP service is just for demonstration, and
one or any number of PDPs can be con�gured under each SecHandler.

[Warning: Draw object ignored]
Figure 2. Example Echo service is con�gured to use two SecHandlers, both responsible for

authorization. First SecHandler uses the identity of client extracted from the incoming message
to map it into local identity like local Linux username. In this case all clients are mapped to

local account �test�. The second one uses two PDPs: one will compose ARC speci�c
authorization request based on the Security Attributes collected from �incoming� message and

evaluate it against the ARC speci�c authorization policy which is de�ned in local �le
�policy.xml�; the other will compare the X509 identity of client extracted from the incoming

message against list of identities stored locally.

2.2. Interface of SecHandler

When one component (MCC or service) is loaded according to the con�guration information,
the SecHandler under the component and the plug-ins like PDP which are attached to the
SecHandler will be loaded as well.

There is one simple interface (see Figure 3) de�ned in class SecHandler, which will be called by
the containing MCC/Service once there is message (incoming or outgoing) need to be processed.

Figure 3. class SecHandler is an abstract class which includes a general interface called Handle
which uses Message object as argument. Any security handler implementation should inherit
class SecHandler and implement the interface according to the actual functionality. The

interface only return simple Boolean value, and any useful information generated during the
calling of this interface should be put into the security attribute of the message, or put into the

payload itself.

class SecHandler {
public:
SecHandler(Arc::Con�g*) {};
virtual �SecHandler() {};
virtual bool Handle(Arc::Message *msg) = 0;

};

Currently, the ARC1 comes with the following four security handler implemented:

[F0B7?] arc.authz � Authorization SecHandler

The arc.authz is responsible for calling the interface of policy decision point and getting back the
authorization result, and then making decision according to this authorization result. There is
one simple interface (see Figure 4) de�ned in PDP, which will be called by arc.authz if con�gured
inside once there is message (incoming or outgoing) need to be processed.

[F0B7?] identity.map � Identity Mapping SecHandler

The identity.map is a speci�c authorization oriented security handler. It will map the global
identity in the message into local identity like system username based on the result returned by
Policy Decision Point components.

[F0B7?] delegation.collector � Delegation SecHandler

The delegation.collector is responsible for collecting the delegation policy information from the
remote proxy credential (proxy certi�cate is compatible to RFC3820) inside the message, and
putting this policy into message's security attribute for the usage of other components, such as
delegation.pdp.

[F0B7?] usernametoken.handler � UseranemToken SecHandler

The task of the usernametoken.handler is to generate the WS-Security Username-Token and
add it into header of SOAP message which is the payload of outgoing message. It can also extract
the WS-Security Username-Token from the header of SOAP message which is the payload of
incoming message.

2.3. Interface of PDP

Figure 4 shows the de�nition of abstract class PDP. The implementation could be some func-
tion which implements the interface by composing the policy evaluation request, evaluating this
request against some policy, and returning the evaluation result, or just by composing the pol-
icy evaluation request, invoking some remote policy decision web service and getting back the
evaluation result.
Figure 4. class PDP is an abstract class which includes a general interface called isPermitted
which uses Message object as argument. Any policy decision point implementation should
inherit class PDP and implement the interface according to the actual functionality. The

interface only return simple Boolean value, and any useful information generated during the
calling of this interface should be put into the security attribute of the message, or put into the

payload itself.

class PDP {
public:
PDP(Arc::Con�g* cfg) { };
virtual �PDP() {};
virtual bool isPermitted(Arc::Message *msg) = 0;

};

Currently, the ARC1 comes with the following four policy decision point implementation:

[F0B7?] arc.pdp � Arc PDP

The Arc PDP will organize the security attributes into the ARC speci�c authorization request,
call the policy evaluator to evaluate the request against the policy (which is in ARC speci�c
format) repository, and get back the evaluation result. See paragraph 3 for detail information
about request schema and policy schema.

[F0B7?] delegtion.pdp � Delegation PDP

The Delegation PDP is basically similar to Arc PDP, except it uses the delegation policy parsed
from remote proxy credential by delegation.collector, and evaluates the request against delegation
policy. See section 6for the design idea and use case of delegation policy in �ne-grained identity
delegation.

[F0B7?] simplelist.pdp � Simplelist PDP

The Simplelist PDP is a simplest implementation of policy decision point. It will match the
identity extracted from the remote credential (or proxy credential) with local list of permitted
identities.

[F0B7?] pdpservice.invoker � PDP Service Invoker

The PDP Service Invoker is a client which can be used to invoke the PDP Service which imple-
ments the same functionality as Arc PDP, except that the evaluation request and response are
carried by SOAP message. The bene�t of implementing PDP Service and PDP Service Invoker
is that the policy evaluation engine can be accessed remotely and maintained centrally.

3. Policy Evaluation Engine

3.1. Design of policy evaluation engine

The ARC1 de�nes speci�c evaluation request and policy schema. Based on the schema de�nition,
one policy evaluation engine is implemented. The design principal of policy evaluation engine is
generality by which the implementation of the policy evaluation engine can be easily extended
to adopt some other policy schema, such as XACML policy schema.

Figure 5 shows the UML class diagram about the policy evaluation engine. It shows all
classes and relations simultaneously for getting the overall picture.

The Evaluator class is the key class for policy evaluation. It accepts request evaluates it
against loaded policy and returns evaluation response.

Three abstract factories - FnFactory, AlgFactory, AttributeFactory - are responsible for cre-
ating the Function, CombiningAlg and AttributeValue objects correspondingly. The classes in-
herited from CombiningAlg class take care of implementing various combining algorithms which
de�ne relations between <Rule/> elements in policy. The AttributeValue type of classes are
used for processing di�erent types of <Attribute/> and similar elements. The Function classes
take care of comparing <Attribute/> elements of request and policy.

The Policy class parses <Policy/> or <Rule/> elements and creates CombingAlg objects
according to the <RuleCombiningAlg/> attribute of <Policy/>, Function objects according

to the <Function/> attribute of <Attribute/> and AttributeValue objects according to the
<Type/> attribute of <Attribute/>. Those objects will be used when evaluating the request.

The Request class is responsible for parsing <Request/> element and creates corresponding
AttributeValue objects according to the <Type/> attribute of <Attribute/>. When evaluating,
each AttributeValue in request will be evaluated against corresponding AttributeValue in the
policy by using relevant Function.

Due to extensible architecture of code it is relatively easy to add support for new types of
AttributeValue, Function and CombingAlg objects in this way supporting various types of XML
based policy languages.

Figure 5. The UML class diagram of the classes inside policy evaluation engine.

3.2. Schemas for policy evaluation engine

The schema for ARC Policy is available at
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/

Policy.xsd .
The hierarchy tree of ARC Policy is show below (numbers show multiplicity of elements)
Policy (1)
Rule (1-)
Subjects (1)
Subject (1-)
Attribute (1-)
Resources (0-1)
Resource (1-)
Actions (0-1)
Action (1-)
Conditions (0-1)
Condition (1-)
Attribute (1-)
The schema for ARC Request is available at
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/

Request.xsd .
The hierarchy tree of ARC Request is show below (numbers show multiplicity of elements)
Request (1)
RequestItem (1-)
Subject (1-)
SubjectAttribute (1-)
Resource (0-)
Action (0-)
Context (0-)
ContextAttribute (1-)
The schema for ARC Response is available at
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/

Response.xsd .
The ARC Response is not used directly in code. It is in use by PDP Service which provides

remote evaluation of policies.

3.3. Basic Elements of Policy

There are 2 basic objects - "policy" and "request". There is 1 main actor - Evaluator. Curretly
there are two types of elements in policy: Policy and Rule. Policy element is made of Rule
elements.

Evaluator matches request to policy and produces one of 4 following results:

[F0B7?] PERMIT - policy explicitely permits activity speci�ed in request because request matches
some part of policy and corresponding e�ect speci�ed in policy is PERMIT.

Example:

Rule: PERMIT person ALICE to PLAY in place called WONDERLAND
Request: person ALICE wants to PLAY in place called WONDERLAND

[F0B7?] DENY - policy explicitely denies activity speci�ed in Request because Request matches
some part of policy and corresponding e�ect speci�ed in policy is DENY.

Example:

Rule: DENY fruit APPLE to GROW on PEACH tree
Request : fruit APPLE to be GROWN on PEACH tree

[F0B7?] INDETERMINATE - request has some part which does not correspond to policy.

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Request.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Request.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Response.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Response.xsd

Example:

Rule: DENY fruit APPLE to GROW on PEACH tree
Request : fruit APPLE to be GROWN on WHEAT ground
Request : �ower SUNFLOWER to be grown on PEACH tree

Explaination : Here, it is not possible to obtain any matching result - neither positive
(DENY or PERMIT) nor negative (NOT_APPLICABLE, see below)

In the request, the "ground" is completely uncomparable to the "tree" in policy. One can
compare "PEACH tree" and "APPLE tree" because they are both "tree"; But it is impossible
to compare "PEACH tree" and "WHEAT ground" becaue they of di�erent kind (Policy is about
tree and Request is about ground).

In a similar way one can't compare "fruit APPLE" and "�ower SUNFLOWER" (here policy
is about fruits and Request is about �ower).

Any other situation which makes it impossibile to compare two attributes will also cause
"INDETERMINATE".

[F0B7?] NOT_APPLICABLE - all parts of the Request have corresponding parts in the Policy,
but some value of those parts are not the same. Hence request does not match policy.

Example:

Rule: DENY fruit APPLE to GROW on PEACH tree
Request : fruit APPLE to be GROWN on APPLE tree
Request : fruit ORANGE to be GROWN on PEACH tree
Request : fruit ORANGE to be GROWN on APPLE tree

Explanation: for each part of the Request evaluator can �nd relevant part in the Policy -
both Policy and Request are about fruit and tree. But the values do not match.

If it is required to reduce evaluation results to boolean value PERMIT maps to TRUE and
rest of results to FALSE.

Note: It would be useful to make it possible to specify secondary e�ect which would become
active in case Request is NOT_APPLICABLE. For example:

DENY fruit APPLE to GROW on PEACH tree otherwise PERMIT
But one should be careful because example above would allow fruit PLUMS to grow on

APPLE trees :)
This kind of requirement can be supported by using the algorithm between policies. For

example, in case of above scenario, we can use some algorithm like "Permit-if-notapplicable".
See below the "Policy matching" part for more explaination.

3.4. Policy MAtching

Policy is made of Rule elements. Request is evaluated against each Rule. Each evaluation
produces same results as policy evaluation described above. The results from all Rules are then
combined in order to produce �nal result for whole policy. Results Combining Algorithm is
speci�ed in Policy. There are 26 algorithms currently:

[F0B7?] Deny-Overrides - this is default if no algorithm speci�ed.

o If there is at least one DENY in results �nal result is DENY.

o Otherwise if there is at least one PERMIT, the �nal result is PERMIT.

o Otherwise if there is at least one NOT_APPLICABLE �nal result is NOT_APPLICABLE.

o Otherwise �nal result is INDETERMINATE.

NOTE: CHECK if algorithm description is correct
Special case is Policy wih no rules. Probably such policy shoudl be treated as always pro-

ducing DENY.
Discussion

If there is no Rule under Policy, it means no restriction from this Policy, what exactly shoud
the Policy give? DENY or NOT_APPLICABLE?

It seems to be more logical to produce INDETERMINATE because there is no rule with
elements which could be compared to request.

[F0B7?] Permit-Overrides.

o If there is at least one PERMIT in results �nal result is PERMIT.

o Otherwise if there is at least one DENY the �nal result is DENY.

o Otherwise if there is at least one NOT_APPLICABLE �nal result is NOT_APPLICABLE.

o Otherwise �nal result is INDETERMINATE.

Special case is Policy wih no rules. Probably such policy should be treated as always producing
DENY.

NOTE: CHECK if algorithm description is correct
Discussion
Question? The same as above.

[F0B7?] Ordered algorithms.

These specify priorities for all four possible results. Their names look like Result1-Result2-
Result3-Result4 with Result# naming result types, for example Permit-Deny-NotApplicable-
Indeterminate. The results are combined in following way:

[F0B7?] o If there is at least one result of Result1 type then �nal result is Result1.

o Otherwise if there is at least one result of Result2 type then �nal result is Result2.

o Otherwise if there is at least one result of Result3 type then �nal result is Result3.

o Otherwise �nal result is Result4.

There are 24 possible combinations of those algorithms.
Note: It would be useful to have more combining algorithms. For example

[F0B7?] Permit-if-notapplicable - the use case could be "DENY fruit APPLE to GROW on PEACH
tree otherwise PERMIT". In this case there is only one Rule under Policy, and this Rule
is with "Deny" e�ect.

o If this Rule gives DENY in results, �nal result is DENY.

o Otherwise if this Rule gives NOT_APPLICABLE, �nal result is PERMIT.

o Otherwise �nal result is INDETERMINATE.

[F0B7?] �Permit-if-allPermit" - Permit if all the Rules gives Permit, this algorithm is useful in case
if we are collecting di�erent policies from a few sources, and we want the request to satisfy
all of them.

o If all of the Rule give PERMIT, the �nal result is PERMIT.

o Otherwise if there is at least one DENY the �nal result is DENY.

o Otherwise if there is at least one NOT_APPLICABLE �nal result is NOT_APPLICABLE.

o Otherwise �nal result is INDETERMINATE.

[F0B7?] OnlyOneApplicable

o If there is one gives INDETERMINATE, �nal result INDETERMINATE is given
immediately.

o Otherwise if there is exactly only one gives applicable result (DENY or PERMIT),
�nal result is as this result.

o Otherwise if there is more than one gives applicable result, �nal result is INDTER-
MINATE.

o Otherwise �nal result is NOT_APPLICABLE.

This algorithm makes sure that only one Rule is selected when making decision.

o FirstApplicable

o If there is one give DENY, PERMIT or INDETERMINATE result, �nal result is
given immediately as this result.

o Otherwise �nal result is NOT_APPLICABLE.

3.5. Request Structure

Request is made of RequestItem elements. Each RequestItem is evaluated against Policy Rule
and for each evaluation separate result is generated as described above.RequestItem is made of
4 elements:

Subject - represents entity requesting speci�ed action

o Resource - destination/object of the action

o Action - speci�es what has to be done on resource

o Context - for additional information which does not �t anywhere else, like the current time.

E�ectively RequestItem may have only one Subject, one Resource, one Action and one Context.
If there are more than one element of any kind of sub-elelemt, then in the evaluator this Re-
questItem is split into several items containing all possible permutations and results are obtained
for every item separately. How results are combined will be explained later.

Additionally Subject could contain sub-elements SubjectAttribute. Those are meant to rep-
resent di�erent kinds of requesters' identities. Example:

o Subject

o SubjectAttribute: name is ALICE

o SubjectAttribute: age is YOUNG

o SubjectAttribute: gender is GIRL

Context could also be made of ContextAttribute elements in the same way as Subject.
The following is an example of the Request:
<Request xmlns="http://www.nordugrid.org/schemas/request-arc">
<RequestItem>
<Subject>
<SubjectAttribute AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</SubjectAttribute>
<SubjectAttribute AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</SubjectAttribute>
</Subject>
<Subject AttributeId="urn:knowarc:shibboleth:attribute">member</Subject>
<Action AttributeId="urn:knowarc:�leoperation">Read</Action>
<Resource AttributeId="urn:knowarc:�leidentity>�le:///home/test</Resource>
<Context AttributeId="urn:knowarc:time" Type="time">2008-09-15T20:30:20</Context>
</RequestItem>
</Request>
While evaluating this RequestItem will be split into two RequestItems:

<Request xmlns="http://www.nordugrid.org/schemas/request-arc">
<RequestItem>
<Subject>
<SubjectAttribute AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</SubjectAttribute>
<SubjectAttribute AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</SubjectAttribute>
</Subject>
<Action AttributeId="urn:knowarc:�leoperation">Read</Action>
<Resource AttributeId="urn:knowarc:�leidentity>�le:///home/test</Resource>
<Context AttributeId="urn:knowarc:time" Type="time">2008-09-15T20:30:20</Context>
</RequestItem>
<RequestItem>
<Subject AttributeId="urn:knowarc:shibboleth:attribute">member</Subject>
<Action AttributeId="urn:knowarc:�leoperation">Read</Action>
<Resource AttributeId="urn:knowarc:�leidentity>�le:///home/test</Resource>
<Context AttributeId="urn:knowarc:time" Type="time">2008-09-15T20:30:20</Context>
</RequestItem>
</Request>
The following means this Subject possesses both of these Attributes.
<Subject>
<SubjectAttribute AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</SubjectAttribute>
<SubjectAttribute AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</SubjectAttribute>
</Subject>

However, the following means two Subject each of which possesses one Attribute.
<Subject AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</Subject>
<Subject AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</Subject>

The "Type" xml-attribute is for distinguishing how to process the xml-node value, which is
critical when evaluate two value from request side and policy side because di�erent type requires
di�erent evaluating/comparing approach. The default "Type" is "string", in this case (also with
the "Function" xml-attribute on the policy side is "equal", which will be explained later), each
letters of these two values will be compared one by one when evaluating them.

The "AttributeId" xml-attribute is for evaluator to �nd the Attribute with AttributeId from
the request side which corresponds to the Attribute with the same AttributeId on the policy
side. Only if two Attributes' AttributeId are equal, the evaluator will then compare the value.

Each RequestItem will be sequencialy and independently evaluated against policy/policies.
So for one Request (including few RequestItems), some RequestItem could get positive evalua-
tion result (PERMIT) from policy engine, others could get negative evaluation result (DENY,
NOT_APPLICABLE, INDETERMINATE).

It is up to policy decision point to make �nal decision according to the evaluation results
returned by evaluator, and the evaluator itself can not give this kind of �nal decision.

NOTE: This probably should be changed because evaluator is fed with complete
policy and complete request. Hence it is illogical that it returns multiple decisions.

Basically the policy decision point will feed policy engine with request, get back evaluation
results,

and make �nal decision.

3.6. Rule Composition and Matching

Policy rule is made of 4 elements - Subjects, Resources, Actions, Conditions (See the following
example). Those are only used to group multiple elements Subject, Resource, Action, Condition.
For instance, you can merge two Rules with the same Resources, Actions, Conditions, and the
same "E�ect" but di�erent Subjects into one Rule.

NOTE: That is strange. Why do we need Rule at all?
There is no logical relationship between Subject, which means you can split one Rule into two

Subject (under Subjects) into two Rule (each of which has one Subject (under Subjects)).From

now only later ones (Subjects with only one Subject as sub-element, and the same for others)
are described. Their meaning is same as in request with Condition corresponding to Context.
Subject and Condition elements are also made of Attributes. All elements may be present more
than one time. During procedure of matching each element in RequestItem is matched against
all elements of same kind in Policy - Subject is matched to Subject, Resource to Resource, etc.
For every combination 3 possible results are produced:

o MATCHED - element from RequestItem matched element in Policy Rule. Example:

RequestItem Resource: place called WONDERLAND
PolicyItem Resource: place called WONDERLAND

o NOT MATCHED - element from RequestItem did not match element in Policy Rule.
Example:

RequestItem Resource: place called WONDERLAND
PolicyItem Resource: place called PLAYGROUND

o INDETERMINATE- element from RequestItem could not be compared to element in Pol-
icy Rule because they are of incompatible ids/belong to di�erent namespaces. Example:

RequestItem Resource: place called WONDERLAND (with namespace "place")
PolicyItem Resource: LEMON tree (with namespace "tree")
The produced results then combined to produce �nal 4 types of results in following way:

o If for every element in RequestItem there is at least one MATCHED result then result for
this Policy Rule is as speci�ed in the corresponding E�ect (Deny or Permit).

o Otherwise if for every element in RequestItem there is at least one gets INDETERMINATE
result then result for Policy Rule is INDETERMINATE.

o Otherwise result is NOT_APPLICABLE.

Special case is then RequestItem does not have the element(s) of some kind (Subject, Action,
Resource or Context/Condition). If there are elements of corresponding kind in the Policy Rule
then such situation should be considered as INDETERMINATE.

The following is an example of the Policy:
<Policy xmlns="http://www.nordugrid.org/schemas/policy-arc" CombiningAlg="Permit-Overrides">
<Rule E�ect="Permit">
<Subjects>
<Subject>
<Attribute AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</Attribute>
<Attribute AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</Attribute>

</Subject>
<Subject AttributeId="urn:knowarc:shibboleth:attribute">member</Subject>

</Subjects>
<Actions>
<Action AttributeId="urn:knowarc:�leoperation">Read</Action>
<Action AttributeId="urn:knowarc:�leoperation">Delete</Action>

</Actions>
<Resources>
<Resource AttributeId="urn:knowarc:�leidentity">�le:///home/test</Resource>
</Resources>
<Conditions>
<Condition AttributeId="urn:knowarc:period" Type="period" Function="Inrange">2008-

09-10T20:30:20/P1Y1M</Condition>
</Conditions>

</Rule>
</Policy>
For the Subject which includes two Attributes in this example:

<Subject>
<Attribute AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</Attribute>
<Attribute AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</Attribute>

</Subject>
These two attributes mean the Rule requires the request should possess both of these two

attributes.
However, if You put these above two Attribute into two Subject elements:
<Subject AttributeId="urn:knowarc:x509:identity">/O=KnowARC/OU=UiO/CN=Physicist</Subject>
<Subject AttributeId="urn:knowarc:voms:attribute>knowarc:atlasuser</Subject>

Then it means the Rule requires the request to possess at least one of these two attributes.
For the xml-attribute "Type" and "AttributeId", the explaination for Request example also

applies here.
The "Function" xml-attribute is for distinguishing di�erent comparison algorithm when com-

paring these two xml-node value. If Function is absent, "equal" will be used as default.

3.7. Rule Elements Matching

For elements without attributes those elements have:

o Kind speci�ed by AttributeId XML attribute. There is no default.

o Matching algorithm speci�ed by Id XML attribute. By default string-equal matching is
used.

o Content

Example: LEMON tree
Kind : tree
Matching algorithm : default
Content : LEMON
Matching procedure consists of following steps:

- Kinds are compared using simple string equal matching. If those do not match then result
is INDETERMINATE.

- Matching algorithm is used to compare content of elements. Result is either MATCH or
NO_MATCH according to matching algorithm.

Each element on the RequestItem must satisfy corresponding element in Rule.In detail, for
Subjects element under Rule, if there is at least one Subject (with one Attribute or a few
Attribute) which is matched by a Subject on this RequestItem, we say this Subjects is matched
by the RequestItem; and also the same for the other elements (Actions, Resources, Conditions).

For elements with multiple Attribute sub-elements the way to judging whether elements
match is if and only if all of the Attribute under the Rule have matching Attributes at Re-
questItem side.

Example of the Subject with three Attributes:
Subject :
SubjectAttribute: name is ALICE
SubjectAttribute: age is YOUNG
SubjectAttribute: gender is GIRL
In XML that is:

<Subject>
<Attribute AttributeId="name">Alice</Attribute>

<Attribute AttributeId="age>YOUNG</Attribute>
<Attribute AttributeId="gender>GIRL</Attribute>

</Subject>
That requires the Subject in the RequestItem to possess at least these three Attributes.
<RequestItem>
<Subject>
<Attribute AttributeId="name">Alice</Attribute>
<Attribute AttributeId="age">YOUNG</Attribute>
<Attribute AttributeId="gender">GIRL</Attribute>
<!--Some other Attribute-->

</Subject>
</RequestItem>
The above example shows that the Subject in the RequestItem "MATCH" one Subject on

the Rule side.
If the Subject in the RequestItem is like this:

<Subject>
<Attribute AttributeId="name">Alice</Attribute>
<Attribute AttributeId="age>YOUNG</Attribute>
<Attribute AttributeId="from">OSLO</Attribute>
<!--Some other Attribute, buts not a "gender"-->

</Subject>
Then evaluator will produce INDETERMINATE as the match-making result of this Subject.
If the Subject in the RequestItem is like this:

<Subject>
<Attribute AttributeId="name">Bob</Attribute>
<Attribute AttributeId="age>YOUNG</Attribute>
<Attribute AttributeId="gender">BOY</Attribute>
<!--Some other Attribute-->

</Subject>
Then evaluator will give NO_MATCH as the match-making result of this Subject.
Finally if and only if all of the elemens (Subjects, Actions, Resources, Conditions) which

are not empty under the Rule have been matched (gets MATCH) to the RequestItem, then the
whole Rule is considered to be matched (produces MATCH result). MATCH is then mapped
to �nal evaluation result depending on the speci�ed E�ect. If E�ect is set to Deny then DENY
decision will be produced for this Rule; if E�ect is Permit then PERMIT.

Otherwise if any of the element (Subjects, Actions, Resources, Conditions) of RequestItem
got INDETERMINATE decision then the INDETERMINATE decision will be made for this
Rule.

Otherwise the NOT_APPLICABLE decision will be made for this Rule. In other words that
means at least one of the elements of this Rule got NO_MATCH and the other elements got
MATCH.

3.8. Interface for using the policy evaluation engine

For making usage of policy evaluation engine more convenient basic Evaluator class is com-
plemented by additional interfaces. Below are examples of steps needed to carry out policy
evaluation and corresponding helper interfaces.

a) Create the policy evaluation object:

// Create object which provides an interface

// for loading other objects

ArcSec::EvaluatorLoader eval_loader;

//Load the Evaluator

ArcSec::Evaluator* eval = NULL;

// Define name of policy evaluator.

// This one is for evaluation ARC policies

std::string evaluator = "arc.evaluator";

eval = eval_loader.getEvaluator(evaluator);

a) Create the policy object:

ArcSec::Policy* policy = NULL;

// Define type of policy � ARC policy in this case

std::string policyclassname = "arc.policy";

// Define source from which policy to be taken

ArcSec::SourceFile policy_source("Policy_Example.xml");

// Load and parse policy

policy = eval_loader.getPolicy(policyclassname, policy_source);

a) Create the request:

ArcSec::Request* request = NULL;

// Define type of request � ARC request in this case

std::string requestclassname = "arc.request";

// Define source from which request to be taken

ArcSec::SourceFile request_source("Request.xml");

// Load and parse request

request = eval_loader.getRequest(requestclassname, request_source);

a) Add the policy into Evaluator object:

eval->addPolicy(policy);

a) Evaluate the request object:

ArcSec::Response *resp = NULL;

resp = eval->evaluate(request);

The steps d) and e) can also be replaced by:
resp = eval->evaluate(request, policy);

The Evalutor::evaluate() method can also be feed up with both Policy/Request objects and
their sources in any combination. See example code at http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/testinterface.cpp
for more details about usage of the interface.

The description of mentioned classes and their methods are avaialble in API document at
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/doc/KnowARC-API.pdf?format=

raw .

4. Policy Decision Service

Policy decision service is a service implementation which contains the functionality of ArcPDP.
It will accept the soap request containing policy decision request and return soap response
containing policy decision response.

The WSDL description of policy decision service is available at http://svn.nordugrid.

org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.wsdl . It's con�guration
is presented in Section 7.5.

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/doc/KnowARC-API.pdf?format=raw
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/doc/KnowARC-API.pdf?format=raw
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.wsdl

5. Security Attributes

5.1. Infrastructure

Security Attributes represent security related information inside HED framework and store infor-
mation representing various aspects needed to perform authorization decison - identity of client,
requested action, targeted resource, constraint policies.

Each kind of Security Attribute is represented by own class inherited from parent SecAttr
class <arc/message/SecAttr.h>. Each Security Attribute stores it's information in internal
format and is capable to export it to one of prede�ned formats using Export() method. Currently
only supported format is ARC Policy/Request XML document described in Section 7.1and 7.2

Collectors of Security Attributes instantiate corresponding classes and link them to Secuirity
Attributes containers - MessageAuth <arc/message/MessageAuth.h> and MessageAuthContext
<arc/message/Message.h> storing collected attributes per request and per session correspond-
ingly. Each attribute is assigned a name. Current implementations of Security Attributes Col-
lectors are either integrated into existing MCCs or implemented as separate SecHandler plugins.
See Section 5.2for available Collectors and corresponding Security Attributes.

Note for service developers: Services may implement own authorization algorithms. But they
may use Security Atributes as well by providing instances of classes inherited from SecAttr and
running them through either con�gured or hardcoded processors/PDPs.

Processors of Security Attributes are implemented as Policy Decision Point components.
Currently there are 2 PDP components available:

[F0B7?] Arc PDP makes use of Security Attributes containing identities of client, resource and
requested action. It evaluates either all or selected set of attributes against speci�ed
Policy documents thus making it possible to enforce policies de�ned/selected by service
providers.

[F0B7?] Delegation PDP is described below in Section 6.3

5.2. Available collectors

Here Security Attribute collectors distributed as part of the ARC1 are described except those
used for Delegation Restrictions. Those are described in Section 6.2

5.2.1. TCP Information is collected inside TCP MCC. The Security Attribute is stored
under name 'TCP' and exports ARC Request with following attributes:

Element AttributeId Content

Resource
http://www.nordugrid.org/schemas/policy-
arc/types/localendpoint

service_ip[:service_port]

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/remoteendpoint

client_ip[:client_port]

Table 1: Security Attributes collected at TCP MCC

5.2.2. TLS Information is collected inside TLS MCC. Generated Security Attribute class is
stored under name 'TLS' and exports ARC Request with following attributes:

Element AttributeId Content

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/tls/ca

signer of �rst certi�cate in
client's chain

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/tls/chain

Subject of certi�cate in
client's chain - multiple items

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/tls/subject

Subject of last certi�cate in
client's chain

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/tls/identity

Subject of last non-proxy cer-
ti�cate in client's chain

SubjectAttribute
http://www.nordugrid.org/schemas/policy-
arc/types/tls/vomsattribute

VOMS attributes extracted
from whole client's chain of
certi�cates

Table 2: Security Attributes collected at TLS MCC

The VOMS attributes are presented in format similar to VOMS FQAN with slight modi�cations.
Di�erently from FQAN all values are prepended with their names like VO and Group. Missing
elements are reported as having string value NULL. Example of VOMS attribute looks like

/VO=knowarc.eu/Group=testers/Role=admin/Capability=NULL
Each set of attributes is accompanied by identi�er of service which provided those attributes.

It is made of voname element with name of VO followed by optional element hostname with
hostname and port of service. Here is an example

/voname=knowarc.eu/hostname=arthur.hep.lu.se:15001
If VOMS extensions contain user de�nable attributes those are presented together with the

information of their grantor. They consist of voname and hostname elements presented above (if
hostname is missing it is assigned string value NULL) followed by user attribute. It's pattern is
quali�er:name=value. Here quali�er acts as namespace and is usually same as VO name. Below
is an example of such attribute

/voname=knowarc.eu/hostname=arthur.hep.lu.se:15001/knowarc.eu:UniqueKnowarcAttribute=False
Which is needed to describe is the con�guration of trusted certi�cates to constrain the At-

tribute Certi�cate (AC) which the service would accept. The trusted certi�cates should be
organized in a chunk which contains a suit of DN of trusted certi�cate in a chain (<VOMSCert-
TrustDNChain>), in which the �rst line is the DN of the VOMS server certi�cate (cert0) which
is used to sign the Attribute Certi�cate (AC), the second line is the DN of the corresponding
issuer certi�cate(cert1) which is used to sign cert0. So if there are one or more intermediate
issuers, then there should be 3 or more than 3 lines of DN in this chunk (considering cert0 and
the root CA certi�cate, plus the intermediate certi�cate). Regular expression is supported as
well for match-making, in this case, only one line of regular expression is needed under one chain.
Also, the trusted certi�cate chain can also be acquired from an independent text �le including
the same format of content.

The chain (<VOMSCertTrustDNChain>) should be con�gured under the con�guration of
TLS MCC. There also could be a few chains, if there are a few VOMS servers which are trusted
by this service container.

<tls:VOMSCertTrustDNChain>
<tls:VOMSCertTrustDN>/O=Grid/O=NorduGrid/CN=host/arthur.hep.lu.se</tls:VOMSCertTrustDN>

<tls:VOMSCertTrustDN>/O=Grid/O=NorduGrid/CN=NorduGrid Certi�cation
Authority</tls:VOMSCertTrustDN>

</tls:VOMSCertTrustDNChain>
<tls:VOMSCertTrustDNChain>

<tls:VOMSCertTrustDN>/DC=ch/DC=cern/OU=computers/CN=voms.cern.ch</tls:VOMSCertTrustDN>
<tls:VOMSCertTrustDN>/DC=ch/DC=cern/CN=CERN Trusted Certi�cation

Authority</tls:VOMSCertTrustDN>
</tls:VOMSCertTrustDNChain>
<tls:VOMSCertTrustDNChain>
<tls:VOMSCertTrustRegex>�/O=Grid/O=NorduGrid</tls:VOMSCertTrustRegex>
</tls:VOMSCertTrustDNChain>

<tls:VOMSCertTrustDNChainsLocation>./</tls:VOMSCertTrustDNChainsLocation>

5.2.3. HTTP Information is collected inside HTTP MCC. The Security Attribute is stored
under name 'HTTP' and exports ARC Request with following attributes:

Element AttributeId Content

Resource
http://www.nordugrid.org/schemas/policy-
arc/types/http/path

HTTP path without host and
port part

Action
http://www.nordugrid.org/schemas/policy-
arc/types/http/method

HTTP method

Table 3: Security Attributes collected at HTTP MCC

5.2.4. SOAP Information is collected inside SOAP MCC. Security Attribute is stored under
name 'SOAP' and exports ARC Request with following attributes:

Element AttributeId Content

Resource
http://www.nordugrid.org/schemas/policy-
arc/types/soap/endpoint

To element of WS-Addressing
structure

Action
http://www.nordugrid.org/schemas/policy-
arc/types/soap/operation

SOAP top level element name
without namespace pre�x

Context
http://www.nordugrid.org/schemas/policy-
arc/types/soap/namespace

Namespace of SOAP top level
element

Table 4: Security Attributes collected at SOAP MCC

6. Delegation

6.1. Delegation Architecture

In current implementation delegation is achieved through Identity Delegation implemented using
X509 Proxy Certi�cates as de�ned in RFC 3820. Client wishing to allow service to act on it's
behalf provides Proxy Certi�cate to the service using Web Service based Delegation interface
described in Section 6.4

For limiting the scope of delegated credentials along with usually used time constraints it
is possible to attach Policy document to Proxy Certi�cate. According to RFC 3820 Policy is
stored in ProxyPolicy extension. In order not to introduce new type of object Policy is assigned
id-ppl-anyLanguage identi�er. RFC 3820 allows any octet string associated with such object.
We are using textual representation of ARC Policy XML document.

Each deployment implementing Delegation Restrictions must use dedicated Security Handler
plugin (see section 5.1) to collect all Policy documents from Proxy Certi�cates used for establish-
ing secure connection. Then those documents must be processed by dedicated Policy Decision
Point plugin (see section 2.3) to make a �nal decision based on collected Policies and various
information about client's identity and requested operation. Service or MCC chain supporting
Delegation Restrictions must accept negative decision of this PDP as �nal and do not override
it with any other decision based on other policies.

6.2. Delegation Collector

This Security Attribute is collected by dedicated Security Handler plugin named "delegation.collector"
avaialble as part of the ARC1 distribution. It extracts policy document stored inside X509 cer-
ti�cate proxy extension as de�ned in RFC3820 and described in Section 6.1All proxy certi�cates
in a chain provided by client are examined and all available policies are extracted.

Extracted content is converted into XML document. Then document is checked to be of
ARC Policy kind. If policy is not recognized as ARC Policy procedure fails and that causes
failure of communication.

Proxy certi�cates with id-ppl-inheritAll [5. RFC3820. http://www.faqs.org/rfcs/rfc3820.html]
property are passed through and no policy document is generated for them. Proxies with other
type of policies including id-ppl-independent are not accepted and generate immediate failure.

6.3. Delegation PDP

The Delegation PDP is similar to the Arc PDP described above except that it takes it's Policy
documents directly from Security Attributes. Di�erently from Arc PDP it is meant to be used
for enforcing policies de�ned by client.

6.4. Delegation interface

Delegation interface in the ARC1 is implemented using Web Service approach. Each ARC1
service wishing to act on behalf of client identity implements this interface in order to accept
delegated credentials. Here is how delegation procedure works (also shown in �gures 6 and 7) :

[F0B7?] Step 1

[F0B7?] Client contacts service requesting operation DelegateCredentialsInit. This operation has
no arguments.

[F0B7?] Service responds with DelegateCredentialsInitResponse message with element TokenRe-
quest. That element contains credentials request generated by service in Value. Type of
request is de�ned by attribute Format. Currently only supported format is x509. Along
with Value service provides identi�er Id which is used in second step.

[F0B7?] Step 2

[F0B7?] Client requests UpdateCredentials operation with DelegatedToken argument. This element
contains Value with serialized delegated credentials and Id which links it to �rst step.
Delegated token element may also contain multiple Reference elements. Reference refers
to the object which these credentials should be applied to in a way speci�c to the service.
The DelegatedToken element may also be used for delegating credentials when Step 2 is
combined with other operations on service in service speci�c way.

[F0B7?] Service responds with empty UpdateCredentialsResponse message.

Optionally step 2 can be skipped and the DelegatedToken element provided to Service as addi-
tional payload of other service speci�c message.

The Id element obtained in the step 1 can be reused multiple times with di�erent content of
the Value element.

WSDL of portType implementing delegation functionality can be found at http://svn.

nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/libs/delegation/delegation.

wsdl .
[Warning: Draw object ignored]

Figure 6. The �ow diagram of delegation procedure with multiple second step and session
expiration.

[Warning: Draw object ignored]
Figure 7. The �ow diagram of delegation procedure with certi�cate transfered as payload of

service speci�c message.

7. Schemas, descriptions and examples

7.1. Authorization Policy

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/
arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd .

7.2. Authorization Request

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/
arc1/trunk/src/hed/pdc/arcpdp/Request.xsd.

7.3. Authorization Response

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Response.xsd.

7.4. Interface of policy decision service

WSDL with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/

arc1/trunk/src/services/pdp/pdp.wsdl .

7.5. Con�guration of PDP service

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/
arc1/trunk/src/services/pdp/pdp.xsd .

Below is an example con�guration of PDP service which can evaluate ARC Request against
ARC Policy stored in local �le.

<Service name="pdp.service" id="pdp_service">

<!--The element <Evaluator/>, <Policy/> and <Request/> configuration

are supposed to be used to load object; element <PolicyStore/> is

supposed to be used to get the location of policy-->

<pdp:PDPConfig>

<pdp:PolicyStore>

<Location Type="file">Policy_Example.xml</Location>

<!-- other policy location-->

</pdp:PolicyStore>

<pdp:Evaluator name="arc.evaluator" />

<pdp:Policy name="arc.policy" />

<pdp:Request name="arc.request" />

</pdp:PDPConfig>

</Service>

See Section 7.7for the explanation of ARC Policy.

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/libs/delegation/delegation.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/libs/delegation/delegation.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/libs/delegation/delegation.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Request.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Request.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Request.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/Policy.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.wsdl
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/services/pdp/pdp.xsd

7.6. SimpleList PDP con�guration and Policy Example

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/simplelistpdp/SimpleListPDP.xsd
.

Below is an example con�guration of SimpleList PDP inside �echo� service.
<Service name="echo" id="echo">

<SecHandler name="arc.authz" id="authz" event="incoming">

<PDP name="simplelist.pdp" location="simplelist"/>

</SecHandler>

<echo:prefix>[</echo:prefix>

<echo:suffix>]</echo:suffix>

</Service>

The attribute �name� of <PDP/> is critical for loading the object. Speci�cally, the name
�simplelist.pdp� is for loading the SimpleList PDP object.

The policy �le �simplelist� is a local �le which contains the list of X509 subjects of authorized
entities. It the peer certi�cate is proxy certi�cate, the identity in this list should only include
the original DN of users's certi�cate.

For example content of simplelist �le may look like this:
/C=NO/O=UiO/CN=test1
/C=NO/O=UiO/CN=test2

7.7. Arc PDP con�guration and Policy Example

XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/
arc1/trunk/src/hed/pdc/arcpdp/ArcPDP.xsd .

Below is an example of con�guration of Arc PDP inside �echo� service.
<Service name="echo" id="echo">

<SecHandler name="arc.authz" id="authz" event="incoming">

<PDP name="arc.pdp">

<PolicyStore>

<Location type="file">Policy_Example.xml</Location>

<!--other policy location-->

</PolicyStore>

</PDP>

</SecHandler>

<echo:prefix>[</echo:prefix>

<echo:suffix>]</echo:suffix>

</Service>

The name �arc.pdp� is for loading the ArcPDP object.
There could be a few policy �les under <PolicyStore/>. The request will be checked against

all of the policies.
There is an example policy for echo service below. See Section 7.1for the policy schema. The

example policy is made of following elements:
1. Line 14 de�nes resource being protected. In this it is everything located under HTTP

path �/Echo�.
2. Lines 17 and 18 de�ne allowed HTTP operations to be �POST� and �GET�. Line 19 also

de�nes SOAP operation �echo� to be applied to service at path de�ned above.
3. Lines 10 and 9 require the requester to present X509 certi�cate with speci�ed identity and

signed by speci�ed Certi�cation Authority.
4. No <Conditions/> de�ned.
5. Line 3 de�nes that if and only if all of the above constraints have been satis�ed by

requester, the <Rule/> evaluates to Permit decision.
The Secuirity Attributes used by Arc PDP are collected by di�erent MCCs. It is possible

for service to collect some application-speci�c attributes by implementing class inherited from
SecAtt. And that should be the task of application developer.

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/simplelistpdp/SimpleListPDP.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/simplelistpdp/SimpleListPDP.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/ArcPDP.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/arcpdp/ArcPDP.xsd

Administrator of service can con�gure Authorization SecHandler - arc.authz - for each MCC
and Service and de�ne reasonable and meaningful policy. While de�ning policy the administrator
must take into account that the attributes de�ned in the policy should be already collected by pre-
vious components in a chain. For instance, policy with AttributeId �http://www.nordugrid.org/schemas/policy-
arc/types/http/path� should not be con�gured inside SecHandler attached to MCCTLS.

1. <?xml version="1.0" encoding="UTF-8"?>

2. <Policy xmlns="http://www.nordugrid.org/schemas/policy-arc" PolicyId="sm-example:arcpdppolicy"

CombiningAlg="Deny-Overrides">

3. <Rule Effect="Permit">

4. <Description>

5. Example policy for echo service

6. </Description>

7. <Subjects>

8. <Subject>

9. <Attribute AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/ca"

Type="string">/C=NO/ST=Oslo/O=UiO/CN=CA</Attribute>

10. <Attribute AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/identity"

Type="string">/C=NO/ST=Oslo/O=UiO/CN=test</Attribute>

11. </Subject>

12. </Subjects>

13. <Resources>

14. <Resource AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/http/path"

Type="string">/Echo</Resource>

15. </Resources>

16. <Actions>

17. <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/http/method"

Type="string">POST</Action>

18. <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/http/method"

Type="string">GET</Action>

19. <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/soap/operation"

Type="string">echo</Action>

20. </Actions>

21. <Conditions/>

22. </Rule>

23. </Policy>

7.8. PDP Service Invoker con�guration

Con�guration XML schema with comments is available at http://svn.nordugrid.org/trac/
nordugrid/browser/arc1/trunk/src/hed/pdc/pdpserviceinvoker/ArcPDPServiceInvoker.

xsd .
Below is an example of con�guration of PDP Service Invoker inside �echo� service.
<Service name="echo" id="echo">

<SecHandler name="arc.authz" id="authz" event="incoming">

<!--Remote pdp service invoking-->

<PDP name="pdpservice.invoker">

<ServiceEndpoint>https://127.0.0.1:60001/pdp.service</ServiceEndpoint>

<KeyPath>./key.pem</KeyPath>

<CertificatePath>./cert.pem</CertificatePath>

<CACertificatePath>./ca.pem</CACertificatePath>

</PDP>

</SecHandler>

<next id="echo"/>

<echo:prefix>[</echo:prefix>

<echo:suffix>]</echo:suffix>

</Service>

The name �pdpservice.invoker� de�nes the PDP Service Invoker object.
The PDP Service Invoker is a client of PDP Service. The con�guration options include

endpoint of service and credentials to be used for establishing secure connection.

7.9. Delegation PDP con�guration

Con�guration XML schema with comments available at http://svn.nordugrid.org/trac/

nordugrid/browser/arc1/trunk/src/hed/pdc/delegationsh/DelegationPDP.xsd .
Below is an example of con�guration of Delegation PDP inside �echo� service.
<Service name="echo" id="echo">

<SecHandler name="arc.authz" id="authz" event="incoming">

<PDP name="delegation.pdp"/>

</SecHandler>

<next id="echo"/>

<echo:prefix>[</echo:prefix>

<echo:suffix>]</echo:suffix>

</Service>

For Delegation PDP, no speci�c con�guration is needed. We only need to switch it on by
adding <PDP name="delegation.pdp"/> under <SecHandler/>

7.10. Delegation SecHandler Con�guration

Below is an example of con�guration of Delegation SecHandler inside TLS MCC component.
<Component name="tls.service" id="tls"> <next id="http"/>

<tls:KeyPath>./key.pem</tls:KeyPath>

<tls:CertificatePath>./cert.pem</tls:CertificatePath>

<tls:CACertificatePath>./ca.pem</tls:CACertificatePath>

<!--delegation.collector must be inside tls MCC-->

<SecHandler name="delegation.collector"

id="delegation" event="incoming"></SecHandler>

</Component>

Current implementation of Delegation SecHandler must be attached to TLS MCC.

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/pdpserviceinvoker/ArcPDPServiceInvoker.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/pdpserviceinvoker/ArcPDPServiceInvoker.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/pdpserviceinvoker/ArcPDPServiceInvoker.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/delegationsh/DelegationPDP.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/delegationsh/DelegationPDP.xsd

8. Web Service Security Support

8.1. UsernameToken SecHandler con�guration

Con�guration XML schema with comments available at http://svn.nordugrid.org/trac/

nordugrid/browser/arc1/trunk/src/hed/pdc/usernametokensh/UsernameTokenSH.xsd .
Below is an example of con�guration of UsernameToken SecHandler inside MCCSOAP com-

ponent.
<Component name="soap.service" id="soap">

<next id="echo"/>

<SecHandler name="usernametoken.handler" id="usernametoken" event="incoming">

<Process>extract</Process>

<PasswordSource>password.txt</PasswordSource>

</SecHandler>

</Component>

UsernameToken SecHandler must be con�gured under SOAP MCC.

8.2. X509Token SecHandler con�guration

Con�guration XML schema with comments available at http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/x509tokensh/X509TokenSH.xsd.
Below is an example of con�guration of X509Token SecHandler inside MCCSOAP component.

<Component name="soap.service" id="soap">

<next id="echo"/>

<SecHandler name="x509token.handler" id="x509token" event="incoming">

<Process>extract</Process>

<CACertificatePath>ca.pem</CACertificatePath>

</SecHandler>

</Component>

X509Token SecHandler must be con�gured under SOAP MCC.

9. Using Shibboleth IdP for Authentication and Attribute-based Au-

thorization

In grid community, GSI (grid security infrastructure) is the de-facto standard about transport
level communication for the legacy grid solution, which implements some enhancement (such
as delegation) based on standard SSL3.0/TLS1.0. In ARC1, besides that GSI is supported
for talking with external grid services which are based on GSI, the standard TLS/SSL is also
supported.

No matter standard SSL/TLS or GSI is used, SSL/TLS based mutual authentication
applies for both of them, and is the default con�guration for grid deployment; and X.509 certi�-
cate is required for both of the client and service sides. X.509 certi�cates is issued by certi�cate
authorities (CA), and then CAs constitute trust federation and guarantee two di�erent X.509
certi�cates from di�erent CAs can accomplish authentication to each other. So if a user would
access grid system, he/she should own a X.509 certi�cate which is issued by a CA that is trusted
by other's entity in the grid system.

AAI (Authentication and Authorization Infrastructure) is a solution for the authentication
and authorization in inter-organization resource sharing, such as electronic resource sharing
between libraries, etc. AAI implicitly applies to community or institutional based authentication
where users from di�erent home communities need to get resources from other communities by
using some federation mechanism. Unlike the X.509 based authentication solution in current Grid
systems, AAI does not require users to provide X.509 certi�cate, instead, it can support di�erent

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/usernametokensh/UsernameTokenSH.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/usernametokensh/UsernameTokenSH.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/usernametokensh/UsernameTokenSH.xsd
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/src/hed/pdc/usernametokensh/UsernameTokenSH.xsd

types of authentication, such as username/password authentication, IP address authentication,
etc. There are several implementations of AAI, among which Shibboleth is one implementation
which has been widely deployed.

Shibboleth provides cross-domain single sign-on and attribute-based authorization while
preserving user privacy. It is based on the OASIS Security Assertion Markup Language (SAML),
speci�cally, the new version of Shibboleth supports SAML 2.0 speci�cation. For authentication,
the main SAML pro�le that Shibboleth implements is the SAML2.0 web browser SSO pro�le,
which de�nes two functional components, an Identity Provider and a Service Provider. The
Identity Provider (IdP) is responsible for creating, maintaining, and managing user identity,
while the Service Provider (SP) is responsible for controlling access to services and resources
by using the SAML assertion produced and issued by IdP upon request. In order to discover
which home community does a user come from, Shibboleth speci�es an optional third component
called �Where Are You From?� (WAYF) service to aid in the process of IdP discovery, and this
IdP discovery process is also standardized and de�ned in SAML 2.0 speci�cation and called as
�Identity Pro�le Discovery Pro�le�.

The SAML2.0 web browser SSO pro�le is utilized for the authentication in ARC middle-
ware. But since the SSO pro�le is primarily supposed to protect Web applications and provide
authentication for Web users, some external code on the client and service side is implemented
to integrate the SSO pro�le. On the client side, apart from the client interface for writing Web
Service client, the user agent functionality of the Web browser is implemented in order to mimic
its behavior, such as HTTP redirection and cookie processing. In fact, implementation of the
user agent is also based on the client interface of ARC, speci�cally, the HTTPs client interface,
since the client interface of ARC can support di�erent protocols which are incarnated by di�erent
MCCs. The client developers who would use SAML2.0 SSO pro�le should call the user agent
interface and then the Web Service client interface. On the service side, the Service Provider
functionality (based on the HTTP MCC con�gured together with TLS MCC) is implemented,
which is called SP Service. For Identity Provider, the Shibboleth IdP implementation is used.
Figure 6 shows the process of SAML2.0 SSO integrated in ARC client and service.

Figure 8. SAML2.0 SSO pro�le in ARC
The steps shows in Figure 8 are described as follows:

1. The client uses the user agent interface to launch a HTTP request including the IdP name
(to which the user belongs) to the service side. The endpoint of the SP (Service Provider)
service is the same as that of the other target services, except the last part of the endpoint
is �saml2sp� which is speci�c for pointing to the SP Service. Note that we use Identity
Provider (IdP) name here to simplify the IdP discovery process in order to avoid the IdP
discovery process, because we suppose that the user who would access the target services
should better know where is he from initially.

2. The SP Service searches the metadata (we use the same metadata format as de�ned in Shib-
boleth) and gets the location of the single sign-on service (hosted in IdP) and also the loca-
tion of assertion consuming service (hosted in this SP itself) in order to compose the SAML
<samlp:AuthnRequest> message. Then SP Service issues this <samlp:AuthnRequest>

message by using its own X.509 certi�cate (note that in the SAML SSO pro�le, X.509
certi�cates are still needed for IdP and SP) and sends back to user agent.

3. User agent sends the <samlp:AuthnRequest> message to the Identity Provider.

4. Identity Provider requires an act of authentication. The authentication mechanism is
outside of the SAML2.0 SSO pro�le. Shibboleth IdP implementation chooses some login
handlers for authentication. The current user agent implementation is compatible with
the Username/Password login handler of Shibboleth IdP. Through the HTTP protocol,
the user agent will feed IdP with the username/password which has been given by the
caller of user agent interface.

5. Once the authentication has been succeeded, the IdP issues a SAML response including
an encrypted (encrypted by destination SP's public key) SAML assertion, and then this
SAML response will be delivered by the user agent to the Service Provider.

6. The SP Service veri�es and checks the SAML response, decrypts and stores the SAML as-
sertion into session/connection context. The SAML assertion includes the <saml:AuthnStatement>
and <saml:AttributeStatement>.

7. The WS client launches the Grid/Web Service request via the same connection as the one
which is used by user agent to contact SP Service.

8. The Grid/Web Service checks the <saml:AuthnStatement> from the session context to
see if the session is still valid through the SecHandler called �SAML SecHandler�. If valid,
service handles the service processing and returns the response to WS client. Note that
service requires that WS client is from the same connection as the one on which user agent
contact SP service, in order to guarantee that the validity of SSO pro�le result e�ects the
WS client/Web Service interaction.

The SP service and other functional service(s) are hosted by the same container, and they use
the same X.509 credential. The client authentication is switched o�, so that client doesn't need
to use any X.509 credential. Only the trusted certi�cates (CA certi�cates for both SP and IdP)
need to be con�gured for the client side, so that SP and IdP can authenticate themselves to the
client. As required by the SAML2.0 pro�le, the SP and IdP should have trust relationship to
each other.

One bene�t of the SAML2.0 SSO pro�le that is worth mentioning is: the Identity Provider
could cache the authentication result through session management once the user agent has
succeeded to authenticate; then for a short period this authentication result is valid so that the
user agent doesn't need to feed IdP with user's username and password the next time (if this
point of time is not out of the scope of valid period) it authenticates against IdP. So user (or the
client on behalf of this user) can travel across multiple security domains with only providing his
name and password once, which is the characteristic of single sign-on.

Since the Shibboleth implementation of SAML is standard-compliant and widely deployed,
the solution implemented in ARC can easily interoperate with other SAML implementations
with minimum change, and more importantly, this solution can succeed to utilize the widely
deployed SAML implementation for authentication in Grid systems by avoiding the usage of
X.509 certi�cate.

Moreover, even though the implementation is based on the ARC middleware, the idea
can be adopted by other Grid middlewares if they only require server authentication instead of
mutual authentication.

10. Short-Lived Credential Service

However, most of the widely used Grid middlewares are based on GSI while GSI requires
mutual authentication. Also for Web Service based Grid solution, we cannot prevent service side

from requiring client X.509 certi�cate. Based on the solution described in Section 9, a short lived
credential service (SLCS) is implemented by which user can get a short-lived X.509 certi�cate
without being bothered to contact any registration authority (RA) or certi�cate authority (CA).

The SLCS service is also a Web Service (standard Web Service implemented by using ARC
service interface), and the SLCS client is a speci�c command-line interface (CLI) which includes
the user agent and WS client. The whole process of SLCS invocation is showed in Figure 9 (from
step 1 to step 8), which is the same as in Figure 8, except that step 7 and step 8 are invoked for
the SLCS certi�cate request and response.

Figure 9.Short lived credential service

SLCS service is supposed to run together with SP service for achieving the SAML2 SSO
pro�le. A typical con�guration for SLCS service is as follows:

</Chain>
<Component name="tcp.service" id="tcp">

<next id="tls"/>
<tcp:Listen><tcp:Port>60000</tcp:Port></tcp:Listen>

</Component>
<Component name="tls.service" id="tls">

<next id="http"/>
<tls:KeyPath>./testkey-nopass.pem</tls:KeyPath>
<tls:Certi�catePath>./testcert.pem</tls:Certi�catePath>
<!--tls:CACerti�catePath>./cacert.pem</tls:CACerti�catePath-->
<tls:ClientAuthn>false</tls:ClientAuthn>

</Component>
<Component name="http.service" id="http">

<next id="plexer">POST</next>
</Component>
<Plexer name="plexer.service" id="plexer">

<next id="samlsp">/saml2sp</next>
<next id="soap">/slcs</next>

</Plexer>
<Component name="soap.service" id="soap">

<next id="slcs"/>
<SecHandler name="saml2ssoassertionconsumer.handler" id="saml2ssosp"

event="incoming"/>
</Component>
<Service name='saml.sp' id='samlsp'>

<MetaDataLocation>./test_metadata.xml</MetaDataLocation>
<ServiceProviderName>https://squark.uio.no/shibboleth-sp</ServiceProviderName>

</Service>
<Service name="slcs.service" id="slcs">

<next id="slcs"/>
<slcs:CACerti�cate>./CAcert.pem</slcs:CACerti�cate>
<slcs:CAKey>./CAkey.pem</slcs:CAKey>
<slcs:CASerial>./CAserial</slcs:CASerial>

</Service>
</Chain>

As shown in the above table, a plexer dispatches the message �ow (outgoing from http.service)
into two SP service (saml.sp) and SOAP service (soap.service). Since the client authentication
is switched o�, it is not necessary to con�gure <CACerti�catePath> or <CACerti�cateDir> for
TLS MCC.

SP service needs to be con�gured with <MetaDataLocation> and <ServiceProvider-
Name>.

SLCS service needs to be con�gured with <CACerti�cate> <CAKey> and <Caserial>.
SLCS client generates a X.509 certi�cate request, launches a Web Service request

which includes the certi�cate request; SLCS service then gets the certi�cate request, composes a
distinguished name (DN), issues a certi�cate (short lived, 12 hours by default) with the SAML
attribute (from the SAML2.0 SSO pro�le) as the X.509 certi�cate extension, and puts the
certi�cate in to the Web Service response; SLCS client get the response and stores the X.509
certi�cate into local repository.

The CLI for the SLCS client is like this:
$./arcslcs -S https://127.0.0.1:60000/slcs -I https://idp.testshib.org/idp/shibboleth

-U myself -P myself

Since the lifetime of the short lived credential is normally short, it is not a must to protect
the private key by a pass phrase. As illustrated in steps (a) and (b) in Figure 7, if the private key

is not protected through the Web Service client, the user can use the X.509 certi�cate to access
Grid Service or Web Service from any kind of middleware. If the private key is protected, she
can use the X.509 certi�cate to generate a proxy certi�cate (by using a command-line interface
utility such as grid-proxy-init , voms-proxy-init, or arcproxy), and then use the proxy certi�cate
to access a Grid/Web Service.

It is worth mentioning that since the ARC middleware can support GSI communication by
con�guring the GSI MCC, together with the X.509 certi�cate, the Web Service client developed
with the ARC Web Service client interface can interoperate with Grid Service that requires GSI
communication.

It should be noticed that the process of composing the distinguished name (DN) for the
certi�cate is a critical issue for the SLCS service. Since the Shibboleth Identity Provider uses
the eduPerson schema for the de�nition of <saml:Attribute> in <saml:AttributeStatement>,
we pick the relatively distinguishable attribute �eduPersonPrincipalName� for the DN. A typical
eduPersonPrincipalName value could be alice@example.org, then the DN is �/O=knowarc/OU=example.org/CN=alice�.

The obvious bene�t of the SLCS service is that: If a user passes the authentication to
her home Identity Provider, she can get the X.509 credential anywhere simply by running the
SLCS client command together with providing her username and password to this home IdP,
and then access the Grid system conveniently. Thanks to the single sign-on characteristic of
SAML2.0 SSO pro�le, this user doesn't not need to input her username and password in a valid
period after the �rst time she succeeds to authenticate against her home IdP by running the
SLCS client command on the same node, even if this SLCS client command is supposed to run
against a few SLCS services to get a few SLCS credentials.

11. X.509 Credential Delegation Service

References

1. RFC3820- Internet X.509 Public Key Infrastracture (PKI) Proxy, http://rfc.net/

rfc3820.html

2. D1.2-2 The ARC container (�rst prototype), http://www.knowarc.eu/documents/Knowarc_
D1.2-2_07.pdf

3.Web Service Security Username Token Pro�le 1.1. http://www.oasis-open.org/committees/
download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf

4. OGSA® Basic Execution Service Version 1.0, http://www.ogf.org/documents/GFD.

108.pdf

5. OASIS Web Services Security (WSS) TC. http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss

http://rfc.net/rfc3820.html
http://rfc.net/rfc3820.html
http://www.knowarc.eu/documents/Knowarc_D1.2-2_07.pdf
http://www.knowarc.eu/documents/Knowarc_D1.2-2_07.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

	Introduction
	Security architecture in HED. SecHandler and PDP
	Structure of SecHandler and PDP
	Interface of SecHandler
	Interface of PDP

	Policy Evaluation Engine
	Design of policy evaluation engine
	Schemas for policy evaluation engine
	Basic Elements of Policy
	Policy MAtching
	Request Structure
	Rule Composition and Matching
	Rule Elements Matching
	Interface for using the policy evaluation engine

	Policy Decision Service
	Security Attributes
	Infrastructure
	Available collectors
	TCP
	TLS
	HTTP
	SOAP

	Delegation
	Delegation Architecture
	Delegation Collector
	Delegation PDP
	Delegation interface

	Schemas, descriptions and examples
	Authorization Policy
	Authorization Request
	Authorization Response
	Interface of policy decision service
	Configuration of PDP service
	SimpleList PDP configuration and Policy Example
	Arc PDP configuration and Policy Example
	PDP Service Invoker configuration
	Delegation PDP configuration
	Delegation SecHandler Configuration

	Web Service Security Support
	UsernameToken SecHandler configuration
	X509Token SecHandler configuration

	Using Shibboleth IdP for Authentication and Attribute-based Authorization
	 Short-Lived Credential Service
	 X.509 Credential Delegation Service

