
Nordic Testbed for Wide Area
Computing And Data Handling

16/5/2003

The NorduGrid Grid Manager and GridFTP Server

Description and Administrator’s Manual∗

A.Konstantinov

∗Comments to: aleks@fys.uio.no





Contents

1 Introduction 4

2 Main concepts 4

3 Input/output data 4

4 Job flow 5

5 URLs 6

6 Internals 7

7 Cache 9

7.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.2 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Files and directories 10

8.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.2 Configuration file of the Grid Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.3 Configuration file of the GridFTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.4 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.5 LRMS support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.6 Runtime environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Installation 18

9.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.5 Configuration of the GridManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.6 Configuration of the GridFTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.7 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.8 Using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3



1 Introduction

One of the problems the user of widely distributed computing networks faces is different configuration of
Computing Elements (CE) controlled by different administrators. This makes even initial preparation of a job
non-trivial task. This is especially important in case of NorduGrid [1], where some CEs are not dedicated to
NorduGrid and can not be completely reconfigured at low level. Thus some layer capable of performing most
of site-dependent pre- and post-computation job is necessary.

The aim of grid-manager (GM) is to take care of job pre- and post-processing. It provides an interface to
stage-in files containing input data and program modules and transfer or store output results.

The GM is part of the NorduGrid software and for it’s connection to other parts “An Overview of The Nordu-
Grid Architecture Proposal” [2] should be studied. It is heavily using Globus ToolkitTM as it’s underlying
software and completely depends on it.

Additioanlly part of the GM the specialized GridFTP Server (GFS) is installed. This server supports gsiftp
protocol (reach enough subset) and has network and local file access parts separated. It’s main purpose is to
provide access to the user files based on the user subject and job owner.

You should use this manual for installation and configuration purposes only if You are installing

the GM separately from NorduGrid Toolkit. Else use it only to understand how it works.

2 Main concepts

A job is a set of input files (which may or may not include executables), a main executable and a set of output
files. The process of gathering input files, executing a job, and transferring/storing output files is called a
session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in SD. The
job is supposed to produce new data files also in SD. GM does not guarantee the availability of any other
places accessible by the job other than SD. The SD is also the only place which is controlled by the GM. It
is is accessible by the user from outside through GridFTP protocol. Any exchange of data (including also
program modules) is done through GridFTP protocol [3] only. A URL for accessing input/output files is
constructed from the base path (called gridarea) available through the NorduGrid Information System as part
of nordugrid-cluster under attribute nordigrid-cluster-gridarea and jobid (jobid is a subdirectory in the
gridarea).

Each job gets an identifier (jobid). This a handle which identifies the job in the GM and the NorduGrid
Information System [4].

Each job is initiated and controlled through GFS or optionally Globus GRAM [5]. All job parameters (not
data) are passed to the GM through Globus GRAM or GFS in RSL-coded [6] description (job description -
JD). The GM adds it’s own attributes to Globus RSL [7].

3 Input/output data

The main task of the GM is to take care of processing input and output data (files) of the job. Input files are
gathered in SD. There are 2 ways to put file into the SD:

• Downloads initiated by the GM. Such files (name and source) are defined in the JD. It is the sole respon-
sibility of the GM to make sure that a file will be available in the SD.

4



The supported sources are at the moment: gsiftp and ftp (http and https should work too, but were not
tested).

• Upload initiated by the user directly or through the User Interface (UI). Because the SD becomes available
immediately at the time of submission of JD, UI can (and should) use that to upload data files which are
not otherwise accessible by the GM. An example of such files can be the main executable of the job, files
containing job’s options/parameters, etc. These files can (and should) also be specified in the JD.

There is no other reliable way for a job to obtain input data on the CE belonging to NorduGrid. Access to
AFS, NFS, FTP, HTTP and any other remote data transport during execution of the job is not guaranteed.

Job stores output files in the SD. Those files also belong to 2 groups:

• Files which are supposed to be moved to a Storage Element (SE) and optionally registered in a Replica
Catalog (RC). The GM takes care of those files. They have to be specified in the JD.

• Files which are supposed to be fetched by the user. The user runs UI to obtain those files. They must

also be specified in the JD.

4 Job flow

From the point of view of the GM a job passes through various states. Picture 1 presents a diagram of the
possible states of a job. A user can examine the state of a job by querying the NorduGrid Information System

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELLING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

Rerun

Figure 1: Job states

using the UI or any other tool. Below is description of all actions taken by the GM at every state:

• Accepted - At this state the job has been submitted to a CE but not processed yet. The GM will analyze
the JD and move to the next stage. If JD can not be processed the job will move to the state Finishing.

• Preparing - The input data is being gathered in the SD. The GM is downloading files specified in the JD
and waiting for files which are supposed to be downloaded by the UI. If all files are successfully gathered
the job moves to the next state. If any file can’t be downloaded or it takes UI too long to upload a file -
the job moves to Finishing state.

5



• Submitting - This is a point of interaction with Local Resource Management System (LRMS). At the
moment only PBS is supported. The job is being submitted for execution. If the local job submission is
successful the job moves to the next state. Otherwise it moves to Finishing.

• InLRMS - The job is queued or being executed in the LRMS. The GM takes no actions except waiting
until job finishes.

• Finishing - The output data is being processed. Specified data files are moved to the specified SEs and
are optionally registered at RC. The user can download data files from the SD by using UI or any other
tool. All the files not specified as output files are removed from the SD.

• Finished - No more processing is performed by the GM. The user can continue to download data files
from the SD. The SD is kept available for some time (default is 1 week). The ’deletion’ time can be
queried at NorduGrid Information System as attribute nordugrid-pbs-job-sessiondirerasetime of
nordugrid-pbs-job.

In the case of the failure special processing is applied to output files. All specified output files are treated as
downloadable by user. No files will be moved to the SE.

If the job is allowed to rerun it can go into a loop between InLRMS and Submitting. However, the
maximum number of times this can happen can be specified in the GM configuration or in the JD.

5 URLs

The GM and it’s components support following data transfer protocols and corresponding URLs:

• ftp - ordinary FTP

• gsiftp - GridFTP, enhanced FTP protocol with security, encryption, etc.

• http - ordinary HTTP with PUT and GET methods

• https - HTTP wrapped with Globus GSI

In addition to standard URL fields GM supports options. Options are of kind name or name=value and are
inserted into URL after host and port and are separated by ’;’

protocol://host[:port][;option[;option[...]]]/path

Following options are supported:

threads=# specify number of parallel transfers to use (currently works for GridFTP only, default is one),

cache=yes—no whether GM should cache file (default is yes),

secure=yes—no whether data should be transfered using encryption (currently works for GridFTP only, default
is no unless specified differently in configuration),

exec=yes—no means file should be treated as executable (currently only used internally).

Example: gsiftp://grid.domain.org:2811;threads=10;secure=yes/dir/input 12378.dat
Also following meta-data servers are supported:

6



• rc - Globus Replica Catalog

• rls - Globus/EDG Replica Location Service

URLs for source/destination files specified through meta-data servers look like

• rc://[location[—location[...]]][@host[:port]/distinguished name]/lfn

• rls://[url[—url[...]]@]host[:port]/lfn

Here

lfn Logical File Name, that should be used for registering/querying in the RC,

distinguished name DN of collection in LDAP server used for registering/querying,

location name of location (usually this is host[:port] of SE), each location can have options appended to it in
a way location;options.If only ;options part is preset, those options are treated as specified for every
location.

url full or partial url corresponding to physical location of file (partial urls are allowed only if file is
going to be retrieved).

6 Internals

For each local UNIX user listed in the GM configuration a control directory exists. In this directory the GM
stores information about jobs belonging to that user. Multiple users can share the same control directory. To
make it easier to recover in the case of failure, the GM stores most information in files rather than in memory.
All files belonging to same job have names starting with job.ID. here ID is the job identifier.

The files in the control directory and their formats are described below:

• job.ID.status - current state of the job. It contains one word of text representing the current state of the
job. Possible values are :

– ACCEPTED

– PREPARING

– SUBMITTING

– INLRMS

– FINISHING

– FINISHED

– CANCELING

See section 4 for a description of the various states.

• job.ID.description - contains the RSL description of the job.

• job.ID.local - information about job used by the GM. It consists of lines of format “name = value” . Not
all of them are always available. The following names are defined:

7



– subject - user subject also known as the distinguished name (DN)

– starttime - the time when the job was accepted

– lifetime - time to live for the SD after job finished

– cleanuptime - time when job will to removed from cluster and SD deleted

– notify - email addresses and flags to send mail to about job specified status changes

– processtime - when to start processing the job

– exectime - when to start job execution

– rerun - number of retries left to run the job

– jobname - name of the job as supplied by the user

– lrms - name of LRMS to run the job at

– queue - name of the queue to run the job at

– localid - job id in lrms (appears only then the job is at state InLRMS)

– args - list of command-line arguments including the executable

– dowloads - number of files to download into SD before execution

– uploads - number of files to upload from SD after execution

– stdlog - directory name which holds files containing information about job when accessed through
GridFTP interface

– clientname - name and ip address:port of client machine (name is provided by user interface)

This file is filled partially during job submission and fully when the job moves from the Accepted to the
Preparing state.

• job.ID.input - list of input files. Each line contains 2 values separated by a space. First value contains
name of the file relative to the SD. Second value is a url or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input 12378.dat

url - ordinary url for gsiftp, ftp, http or https protocols with the addition of ’replica catalog url’ (RC
url) and ’replica location service url’ (RLS url).
Each url can contain additional options.

file description - [size][.checksum].

size - size of the file in bytes.

checksum - checksum of the file identical to the one produced by cksum (1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files which
are not required to exist.

This file is used by the ’downloader ’ utility. Files with ’url’ will be downloaded to the SD and files with ’file
description’ will simply be checked to exist. Each time a new valid file appears in the SD it is removed from
the list and job.ID.input is updated. Any external tool can thus track the process of gathering input files by
checking job.ID.input.

8



• job.ID.output - list of output files. Each line contains 1 or 2 values separated by a space. First value is
the name of the file relative to the SD. The second value, if present, is a url. Supported urls are the same
as those supported by job.ID.input.

This file is used by the ’uploader ’ utility. Files with url will be uploaded to SE and remaining files will be
left in the SD. Each time a file is uploaded it is removed from the list and job.ID.output is updated. Files not
mentioned as output files are removed from the SD at the the beginning of the Finishing state.

• job.ID.failed - the existence of this file marks the failure of the job. It can also contain one or more lines of
text describing the reason of failure. Failure includes the return code different from zero of the job itself.

• job.ID.errors - this file contains the output produced by external utilities like downloader , uploader ,
script for job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can
be just useful information about actions taken during the job processing.

• job.ID.diag - information about resources used during execution of job. It’s format is similar to that of
job.ID.local. The following names are defined:

– nodename - name of computing node which was used to execute job

– runtimeenvironments - used runtime environments sparated by ’;’

and other information provided by GNU time utility

There are other files with names like job.ID.* which are created and used by different parts of the GM. Their
presence in the control directory can not be guaranteed and can change depending on changes in the GM code.

7 Cache

The GM can cache input files. Caching is enabled if corresponding command is present in configuration file.
The GM does not cache files marked as executable in job. Caching can also be explicitly turned off by user for
each file by using cache=no option in url (for url options look section 6). The disc space occupied by cache can
be controlled by removing unused files. For more information look in section 8.2.

7.1 Structure

Cache directory contains plain files. Those are

• list - stores names of the files (8 digit numbers) and corresponding urls delimited by blank space. Each
pair is delimited by some amount of \0 codes. Also creation and expiration times are stored if available

• statistics - stored strings containing name=value . Following names are defined:

– hardsize -size of file system for storing cached data

– hardfree - amount of disc space available on that file system

– softsize - if cache exceeds this size files are started beeing removed

– softfree - space left till softsize (can be negative)

– claimed - space used by files claimed by running jobs

9



– unclaimed - space used by jobs not being currently used by any job

• ########.info - stores state of file. State is represented by one character:
c - just created, content is empty.
f - failed to download (treated same as ’c’).
r - ready to be uses, content is valid.
d - being downloaded. ’d’ is followed by identifier of application/job downloading that file. During
content’s download this file has write lock set.

• ########.claim - stores list of identifiers of applications/jobs using this file. Identifiers are stored
one per line.

• ######## - files storing content of corresponding url (######## stands for name consisting of
digits). These can be stored in separate directory.

Files list and ########.info has to be stored on filesystem which has support for file locking.

7.2 How it works

If job requests input file, which can/allowed to be cached, it is stored in cache directory instead and soft-link is
created in the SD, pointing to that file. Alternatively file can be stored in cache and then copied to the SD.

Before downloading file the GM tries to determine it’s size and to preallocate space in cache directory, by
writing file of same size. If that fails (file system has no more space), it tries to remove oldest cache files, which
are not being used by any job. That means hard limit of cache size is space available at file-system. In
case cache gets full and it is impossible to free any space, job fails.

Before giving access to cached file the GM contacts initial file source to check if user is allowed to do that.
Also file creation or validity times are checked to make sure cached file is freah enough. If it is impossible

to obtain creation and invalidation times for file it is invalidated 24 hours after downloaded.
Also the GM checks cache periodically. If used space exceeds high water-mark given in configuration file it

tries to remove oldest unused files to reduce size to low water-mark. This sets soft limit of cache size.
There are 2 kinds of caches available. Files in private cache are owned by Unix user to which grid user is

mapped. Those files are readable only by that particular Unix user. Another kind of cache is shared. Files are
owned by Unix user who started GM and are readable by everyone.

8 Files and directories

8.1 Modules

The GM consists of few separate executable modules. Those are:

• grid-manager - Main module. It is responsible for processing the job, moving it through states, running
other modules. This is the only module which can be run from root account. Other modules will be
always run by grid-manager using account of the owner of the job.

• downloader - This is a module responsible for gathering input files in the SD. It processes the job.ID.input
file and updates it.

• uploader - This module is responsible for delivering output files to the specified SEs and registration at
the RC. It processes and updates the job.ID.output file.

10



• smtp-send.sh and smtp-send - These are the modules responsible for sending e-mail notifications to the
user. The format of the mail messages can be easily changed by editing the simple shell script smtp-send.sh.

• submit-*-job - Here * stands for the name of the LRMS. The only supported LRMS is PBS (and the name
is submit-pbs-job). This module is responsible for the job submission to the LRMS. This is a shell script
derived from corresponding file of Globus ToolkitTM .

• cancel-*-job - This one is for canceling the job, which was submitted to LRMS.

• parse-*-log - This shell script is responsible for notifying the GM about completion of the job.

• scan-*-job - Alternative to parse-*-log. In case of PBS parse-pbs-log uses logs to find out status if a job.
While scan-pbs-job uses unreliable qstat comamnd for that.

Also available few administrator and user level utilities

• ngcopy - copy file from url to url. Accepts both ordinary and RC urls. Syntax:
ngcopy [-h] [-v] [-c cache path [-C cache data path]] [-d level] source destination
-h - print short reminder
-v - print version
-d - set debug level
-c - use cache at ’cache path’
-C - store cached data at ’cache data path’
-s - use secure data transfer (this eats a lot of CPU power).

• ngremove - remove file at given url. Accepts both ordinary and RC urls. In case if RC url is given without
location, deletes also meta-information about file (aka logical file name).

ngremove [-h] [-v] [-c] [-d level] url
-h - print short reminder
-v - print version
-d - set debug level
-c - continue with meta-data even if it failed to delete real file.

• gm-jobs - prints list of jobs available on cluster and amount of jobs in every state.
gm-jobs [-l]
-l-l - print more information about each job.

8.2 Configuration file of the Grid Manager

The GM configuration is done through single configuration file. The GM looks for the configuration file at the
following places:

• $NORDUGRID LOCATION/etc/grid-manager.conf

• /etc/grid-manager.conf

The configuration file consists of lines containing comment (line starts from #) or configuration options. Fol-
lowing options are defined:
Global options:

11



• joblog [path] - specifies where to store log file containing information about started and finished jobs.

• securetransfer yes—no - specifies whether to use encryption while transfering data. Currently works
for GridFTP only. Default is no. It is overriden by value specified in URL options.

• localtransfer yes—no - specifies whether to use pass file downloading/uploading task to computing node.
If set to yes the GM won’t download/upload files. Instead it composes script submitted to LRMS in way
to make it do that. This requires instalaltion of GM and Globus to be accessible from computing nodes
and environment variables GLOBUS LOCATION and NORDUGRID LOCATION to be set accordingly.
Default is no.

• maxjobs [max processed jobs [max frontend jobs [max running jobs] [max transferred files]]] - specifies
maximum number of jobs being processed by the GM at different stages:
max processed jobs - maximal amount of jobs being processed by GM. This does not limit amount of jobs,
which can be submitted to cluster
max frontend jobs - maximal amount of jobs heavily using resources of frontend (applied before moving
job to PREPARING and FINISHING states)
max running jobs - maximal amount of jobs passed to Local Resource Management System
max transferd files - maximal number of files beeing transfered in parallel by every job
Missing value or -1 means no limit.

• copyurl template replacement - specifies that urls, starting from template should be accessed in a different
way (most probably Unix open). The template part of the URL will be replaced with replacement.
replacement can be either url or local path starting from ’/’. It is advisable to end template with ’/’.

• linkurl template replacement [node path] - mostly identical to copyurl but file won’t be copied. Instead
soft-link will be created. replacement specifies the way to access the file from the frontend, and is used to
check permissions. The node path specifies how the file can be accessed from computing nodes, and will
be used for soft-link creation. If node path is missing - local path will be used instead. Both node path
and replacement should not be urls.

NOTE: Urls which fit into copyurl or linkurl are treated like more easily accessible than other urls. That
means if GM has to choose between few urls from which should it download input file, these will be tried
first.

Per UNIX user options:

• mail e-mail address - specifies an email address from which the notification mails are sent.

• defaultttl time in seconds - specifies the time for the SD to be available after job finished.

• defaultlrms default lrms name default queue name - specifies default names for the LRMS and queue,
which are used if not specified in the JD (currently it is not allowed to override used LRMS by using JD).

• session path - specifies path to the directory in which the SD is created. If the path is * the default one
is used - $HOME/.jobs .

• cache path [link path] - specifies the directory to store cached data. Empty path disables caching. Default
is not to cache data. Optional link path specifies the path at which cache is accessible at computing nodes.
If link path is set to ’.’ files are not soft-linked, but copied to session directory.

12



• privatecache path [link path] - same as cache command, but cache belongs (owned) to user. For shared
caches use ’cache’.

• cachedata path - allows to specify separate place to store cache files containing data itself. This can be
useful in case of big data storage available only on NSF server which does not support file locking. If
command or path is missing - default is to store data at place specified in cache or privatecache command,
together with control files.

• cachesize high mark [low mark] - specifies high and low water-mark for space used by cache. Values
are specified in bytes. Both high mark and low mark can be negative values. In that case corresponding
positive value means space left on filesystem. If low mark is omitted it becomes equal to high mark. By
default this feature is turned off. To turn it off explicitly cachesize without parameters should be specified.
If turned off cache will grow up till it fills whole file system.

All per-user commands should be put before control command which initiates serviced user.

• control path username [username [...]] - This option initiates UNIX user as being serviced by the GM.
path refers to the control directory (see section 6 for the description of control directory). If the path is *
the default one is used - $HOME/.jobstatus . username stands for UNIX name of the local user. Multiple
names can be specified. If the name is * it is substituted by all names found in file /etc/grid-security/grid-
mapfile (for the format of this file one should study the Globus project [8]).
Also the special name ’.’(dot) can be used. Corresponding control directory will be used for any user.
This option should be the last one in the configuration file.

• helper username command [argument [argument [...]]] - associates external program with the local UNIX
user. This program will be kept running under account of the specified user. username stands for the
name of the user. Special names can be used: ’*’ - all names from /etc/grid-security/grid-mapfile, ’.’ - root
user. The user should be already configured with control option (except root, who is always configured).
command is an executables and arguments are passed as arguments to it. At the moment this option is
supposed to be used to run parse-*-log programs. If all the users are supposed to use the same LRMS (the
only option supported now) and job control directory is the same it is easier to have one helper process
running as root. parse-*-log is designed in the way it serves all the users if run by root.

8.3 Configuration file of the GridFTP Server

The GFS configuration file is at $NORDUGRID LOCATION/etc/gridftp-server.conf . Format of this configu-
ration file is similar to that of the GM.

• encryption yes—no - specifies if server will allow data transfer to be encrypted. Default is yes.

• pluginpath path - specifies the path where plugin libraries are installed

• group name - define the group containing the user with the specified subjects. The subjects are given in
the following lines, one subject per line, till keyword end . If line starts with file keyword it is followed
by path to a file, containing list of subjects. Format of the file is similar to one of Globus grid-mapfile
(local user names can be missing and are ignored if present).

• groupcfg name - select the group to which all following lines apply. Only unaffected option is groupcfg .
If name is empty (or no groupcfg is used at all) following lines apply to all users.

13



• plugin path library name - make plugin library name to serve virtual path path (similar mount command
of Unix). Following lines contain plugin specific options till keyword end . GFS comes with 2 plugins:
filepligin.so and jobplugin.so.

– jobplugin.so does not have any specific options, so the following line should contain only word end.
It reads the configuration file of the GM located at the standard place as specified in the section 8.2.

– filepligin.so supports following options:

∗ mount path - defines the place on local filesystem to which file access operations apply

∗ dir path options - specifies access rules for accessing files in path (relative to virtual and real
path) and all the files below.
options is the list of the following keywords:

· nouser - do not use local file system rights, only use those specifies in this line

· owner - check only file owner access rights

· group - check only group access rights

· other - check only ”others” access rights

The options above are exclusive. If none of the above specified usual Unix access rights are
applied.

· read - allow reading files

· delete - allow deleting files

· append - allow appending files (does not allow creation)

· overwrite - allow overwriting already existing files (does not allow creation, file attributes
are not changed)

· dirlist - allow obtaining list of the files

· cd - allow to make this directory current

· create owner:group permissions or:permissions and - allow creating new files. File will be
owned by owner and owning group will be group. If ’*’ is used, the user/group to which
connected user is mapped will be used. The permissions will be set to permissions or &
permissions and (second number is reserved for the future usage).

· mkdir owner:group permissions or:permissions and - allow creating new directories.

8.4 Directories

The GM is installed into a single installation point referred as $NORDUGRID LOCATION and following sub-
directories are used:

$NORDUGRID LOCATION/bin - program modules
$NORDUGRID LOCATION/etc - configuration file
$NORDUGRID LOCATION/sbin - System V start-up scripts
$NORDUGRID LOCATION/lib - gridftp server’s plugins
The GM also uses following directories:

• session root directory - In this directory the SD is created. It can be multiple directories for the various
users specified in the configuration file. Because Globus jobmanager is run under the user account,
administrator installing the GM must take care that session root directory is writable by the user, who

14



is going to have SD there. If You are using job submission through gridftp interface the session root
directory and have You daemons run by root account You do not need to make it writebale for users,
but they still need executable (x) access on it. This directory should also be shared among cluster nodes.

• control directory - In this directory the SD stores an information about the accepted jobs. Permission
requirements are the same as those for the session root directory, except in last case there is no need to
keep executable permissions for all users.

8.5 LRMS support

The GM only supports PBS at the moment. This support is provided through submit-pbs-job, cancel-pbs-job
and parse-pbs-log scripts. submit-pbs-job creates job’s script and submits it to PBS. Created job’s script is
responsible for moving data between frontend machine and cluster node (if required) and execution of actual
job.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified
on frontend in GM’s environment and overwritten on cluster’s node through PBS configuration.

PBS BIN PATH - path to PBS executables.

TMP DIR - path to directory to store temporary files.

RUNTIME CONFIG DIR - path where runtime setup scripts can be found.

GNU TIME - path to GNU time utility.

NODENAME - command to obtain name of cluster’s node.

RUNTIME LOCAL SCRATCH DIR - if defined should contain path to the directory on computing
node, which can be used to store job’s files during execution.

RUNTIME FRONTEND SEES NODE - if defined should contain path corresponding to RUNTIME LOCAL SCRATCH DIR
as seen on frontend machine.

Figures 2,3,4 present possible combinations for RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE
and explain how data movement is performed. Pictures a) correspond to situation right after all input files are
gathered in session directory and actions taken right after job’s script starts. Pictures b) show how it looks
while job is running and actions which are taken right after it finished. Pictures c) stand for final situation,
when job files are ready to be uploaded to external storage element or be downloaded by user.

Frontend Cluster node

Session directory Session directory

Figure 2: Both RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE undefined.
Job is executed in session directory placed on frontend.

15



Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session directory Session directory
imported from
frontend

Job files

Scratch directory
Copy of session dir.

stdout+stderr stdout+stderr

COPY before execution

SOFT-LINKS

MOVE after execution

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

a)

b)

c)

Figure 3: RUNTIME LOCAL SCRATCH DIR is set to value representing sratch directory on computing node,
RUNTIME FRONTEND SEES NODE undefined.

a) After job script starts all input files are moved to ’scratch directory’ on computing node.

b) Job runs in separate directory in ’scratch directory’. Only files representing job’s stdout and stderr
are placed in original ’session directory’ and soft-linked in ’scratch’. After execution all files from
’scratch’ are moved back to original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

16



Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session link

Job files

Scratch directory
Session directory

COPY before execution

MOVE after execution

a)

b)

Scratch directory

Job files

Session directory

Scratch directory

Frontend Cluster node

Scratch directory

b)
Scratch directory

SOFT-LINK

Session directory

Session link

Job files

Session directory

Figure 4: Both RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE are set to
valuea representing sratch directory on computing node and way to access that scratch from frontend corre-
spondingly.

a) After job script starts all input files are moved to ’scratch directory’ on computing node. Original
’session directory’ is removed and replaced with soft-link to copy of session directory in ’scratch’ as
seen on frontend.

b) Job runs in separate directory in ’scratch directory’. All files are also available on frontend through
soft-link. After execution soft-link is replaced with directory and all files from ’scratch’ are moved
back to original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

17



8.6 Runtime environment

The GM can run specially prepared bash scripts prior creation of job’s script and before executing job’s main
executable. Those scripts are requested by user through runtimeenvironment attribute in RSL and are run with
only argument ’0’ or ’1’ for creation of job’s script and execution of job accordingly. In case of ’0’ argument
some environment variables are defined and can be changed to influence job’s execution later:

• joboption directory - session directory.

• joboption args - command to be executed as specified in RSL.

• joboption env # - array of ’NAME=VALUE’ environment variables (not bash array).

• joboption runtime # - array of requested runtimeenvironment names (not bash array).

• joboption num - runtimeenvironment currently beeing processed (number starting from 0).

• joboption stdin - name of file to be attached to stdin handle.

• joboption stdout - same for stdout.

• joboption stderr - same for stderr.

• joboption maxcputime - amout of CPU time requested (minutes).

• joboption maxmemory - amout of memory requested (megabytes).

• joboption count - number of processors requested.

• joboption lrms - LRMS to be used to run job.

• joboption queue - name of a queue of LRMS to put job into.

• joboption nodeproperty # - array of properties of computing nodes (LRMS specific, not bash array).

• joboption jobname - name of the job as given by user.

For example joboption args could be changed to wrap main executable or joboption runtime could be expanded
if current one depends on others.

In case of ’1’ argument script is called just before optional staging to computing node is performed (de-
scribed in section 8.5) and job is run. It is executed on computing node. It could for example adjust RUN-

TIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE variables and perform
other necessary tasks to prepare environment for some third-party software package.

9 Installation

9.1 Requirements

The GM is provided as C++ sources. It was tested and should compile on recent enough Linux systems using
gcc compiler and GNU make (gcc versions 2.95, 2.96, 3.2 were tested). You will also need Globus 2.x installed
http://www.globus.org/gt2/install/beta-download.html.

18



9.2 Preparation

Get distribution of GM at http://grid.uio.no/GM/. Pick the latest version. Download and unpack it.

Read and edit file Make.inc . Make sure GLOBUS LOCATION points to the Globus installation directory
and GLOBUS FLAVOR is the one You have, gcc32dbgpthr or gcc32pthr are advised. The GM was tested only
with gcc32dgpthr threaded version of Globus and it uses threads itself. So it most probably won’t work properly
with non-threaded version of Globus libraries. Variable NORDUGRID LOCATION should contain path where
the GM is to be installed. Make sure linker can find Globus libraries (use LD LIBRARY PATH environment
variable for example).

Do not forget to edit variables which set the paths to the PBS installation: PBS LOCATION and PBS SPOOL
.

Read comments to find out meaning of other variables.

9.3 Compilation

Run ’make’ in the main source directory. This will create few executables in various sub-directories. Those are:

• grid-manager

• downloader

• uploader

• rsl/ng-parse-rsl

• misc/smtp-send

• globus-script-ng-submit

• init/grid-manager

• init/gridftp-server

• PBS/submit-pbs-job

• PBS/cancel-pbs-job

• PBS/parse-pbs-log

• PBS/scan-pbs-job

• gridftp/gridftp-server

Few libraries will also be created:

• libui.a

• gridftp/fileplugin/fileplugin.so

• gridftp/jobplugin/jobplugin.so

19



9.4 Installation

Run ’make install’ in the main source directory. This will create directories
$NORDUGRID LOCATION/bin
$NORDUGRID LOCATION/sbin
$NORDUGRID LOCATION/etc
$NORDUGRID LOCATION/lib
$NORDUGRID LOCATION/libexec
$NORDUGRID LOCATION/include

and install few files there.

9.5 Configuration of the GridManager

To make GM to interoperate with other parts of the NorduGrid software it should exist only one session
root directory and only one control directory. It is advisable to use the template configuration file $NORDU-
GRID LOCATION/etc/grid-manager.conf.template . Copy it to $NORDUGRID LOCATION/etc/grid-manager.conf.
Then read section 8.2 and comments inside configuration file and edit it if needed.

Now place a file $NORDUGRID LOCATION/sbin/grid-manager into /etc/rc.d/init.d/ and enable it with
chkconfig. Alternatively You can make a soft-link. This is SystemV style start-up script. If You have BSD style
system configuration You can call it from /etc/rc.d/rc.local. In the other cases read Your system’s manual.
The GM is designed to be able to run both as root and as ordinary user. You can chose the name of the user
by modifying variable GM USER in start-up script. It is better to keep it empty and run GM as root if You
want to serve few users.

You may need to adjust few paths in files $NORDUGRID LOCATION/bin/submit-pbs-job and $NORDU-
GRID LOCATION/bin/cancel-pbs-job . You can edit variables described in 8.5 or set them in environemnt
before starting GM.

Unless You want to use GFS for job submission (strongly advised) now it’s time to configure Globus job-
manager. Please note, that the GM does not support submission through Globus GRAM (gatekeeper, job-
manager) for version newer than 2.0. Few files called

globus-script-ng-submit
globus-script-ng-queue
globus-script-ng-rm
globus-script-ng-poll
ng-parse-rsl

were installed in Your $GLOBUS LOCATION/libexec . You have to to add new resource to Globus gatekeeper
configuration with ’-rdn ng’. You can choose any name for it, but it is advisable to call it jobmanager-ng. For
how to do that study Globus distribution documentation. Look for it at http://www.globus.org/gt2/.

9.6 Configuration of the GridFTP Server

Local file access in the GFS is implemented through plugins (shared libraries). There are 2 plugins provided
with the GFS: fileplugin.so and jobplugin.so . The fileplugin.so is intended to be uses for plain file access with
the configuration senitive to user subject and is not necessary for setting a NorduGrid compatible site. The
jobplugin.so is using information about jobs being controlled by GM and provides access to session directories
of the jobs owned by user. It also provides an interface (virtual directory and virtual operations) to submit,
cancel clean and obtain information about the job.

20



To make GFS to interoperate with other parts of the NorduGrid software only one jobplugin.so is required
to be configured. It is advisable to use the template configuration file $NORDUGRID LOCATION/etc/gridftp-
server.conf.template . Copy it to $NORDUGRID LOCATION/etc/grid-manager.conf. Then read section 8.3
and comments inside configuration file and edit it if needed. You can leave only part which configures jobplugin.so
plugin.

There is no additional configuration job required for the GFS.

9.7 Running

To start the GM run the System V start-up script $NORDUGRID LOCATION/sbin/grid-manager with an
argument ’start’. To start the GFS run the start-up script $NORDUGRID LOCATION/sbin/gridftp-server
with an argument ’start’. Or if You added them to system configuration, behave according to Your systems
requirements.

Both scripts also support other usual options like start, restart, etc. grid-manager script also accepts
additional options:

lightcleanstart - after the GM starts it removes all jobs with states FINISHED,

cleanstart - all recognized jobs are removed,

distcleanstart - all files present in control and session directories are removed.

The GM writes debug information into stderr and startup script redirects it into a file /var/log/grid-manager.log.
GFS startup scripts redirects server’s output to /var/log/gridftp-server.log . Also file /var/log/gm-jobs.log
(default path in configuration template) contains information about all started and finished jobs, 2 lines per job
(1 when job is started and 1 after it finished).

9.8 Using

Refer to the description of the User Interface part [9] and extensions to RSL [7] for using the GM.

Appendix. Job control over jobplugin.so

Virtual tree

Under mount point of jobplugin gridftp client can see directories representing job belonging to user, who started
client. Directory per job. Directories names are same as jobs’ identifiers. Those directories are directly connected
to session directories of jobs and contain same files and subdirectories. Except if jobs session directory is moved
to computing node. In that case directories only contains files with redirected stdout and strderr as specified
in xRSL.

If job’s xRSL has stdlog specified job’s directory also contains subdirectory with same name, which contains
files with information about job as created by GM. The most important are ’errors’ and ’status’. ’errors’
contains stderr of separate modules run by GM in order to process job (downloader, uploader, job’s submission
to LRMS). ’status’ contains one word representing state of job.

Also under mount point there is one additional directory named ”new”.

21



Submission

Each xRSL put into directory ”new” is accepted as job’s description. jobplugin parses it and client gets positive
response if there are no errors in request.

Job gets identifier and directory with corresponding name appears. If job’s description contains input files
which should be delivered from client’s machine, client must upload them to that directory under specified
names.

Because each job gets identifier there should be a way for client to obtain it. For that prior to providing xRSL
client sends command CWD to change current directory to ”new”. In this way job’s identifier is reserved, new
directory corresponding to that identifier is created and client is redirected to it (as specified in FTP protocol).
Job’s description put into ”new” will get reserved identifier.

Cancellation

Job is canceled by performing DELE (delete file) command on directory representing job. It can take some
time (few minutes) before job is actually canceled. Nevertheless client gets response immediately.

Cleaning

Job’s content is cleaned by performing RMD (remove directory) command on directory representing job. If
job is in ”FINISHED” state it will be cleaned immediately. Otherwise it will be cleaned after it reaches state
”FINISHED”.

References

[1] NorduGrid project. http://www.nordugrid.org

[2] An Overview of The NorduGrid Architecture Proposal. http://www.nordugrid.org/documents/

nordarch.pdf

[3] GridFTP: Universal Data Transfer for the Grid. http://www.globus.org/datagrid/deliverables/

C2WPdraft3.pdf

[4] The NorduGrid Information System. http://www.nordugrid.org/documents/ng-infosys.pdf

[5] Globus Resource Allocation Manager. http://www.globus.org/gram/

[6] The Globus Resource Specification Language RSL v1.0. http://www-fp.globus.org/gram/rsl_spec1.

html

[7] Extended Resource Specification Language. http://www.nordugrid.org/documents/xrsl.pdf

[8] The Globus Project. http://www.globus.org/

[9] The NorduGrid User Interface. http://www.nordugrid.org/documents/NorduGrid-UI.pdfhttp://www.
nordugrid.org/documents/NorduGrid-UI.pdf

22


