
The NorduGrid Brokering Al-
gorithm
1 Finding Resources

The search for available resources can either use the Grid Information Index
Service (GIIS) to find available clusters, or use an explicit list of clusters. By
default the GIIS method is used unless the user uses the -c or -C option with
ngsub or the -k or -K option with ngresub.

When the GIIS method is used a list of top level GIIS servers must be
available. If the user uses the -g or -G option with ng(re)sub, this list is compiled
from these options, otherwise the first available file in the following list is used:

• ${HOME}/.nggiislist

• ${NORDUGRID LOCATION}/etc/giislist

• /etc/giislist

When a standard installation of the NorduGrid toolkit is used, a default list
of GIIS servers is installed in ${NORDUGRID LOCATION}/etc/giislist.

Each GIIS server is queried about its GIIS registrations. If a registration
from another GIIS server is found it is added to the list of GIIS servers, unless
it isn’t already there. If registration from a cluster is found it is added to the
list of clusters, unless it isn’t already there. When all GIIS servers (the ones in
the original list as well as the ones found during the search) have been queried
the list of clusters is completed.

From the list of clusters, either the one obtained from the GIIS search, or
the implicit list compiled from the command line options, any cluster rejected
by using a -c or -C option to ngsub (or a -k or -K option to ngresub) with an
argument starting with a minus sign are removed.

The Grid Resource Information Service (GRIS) servers on the found clusters
are then queried about the characteristics and current state of the clusters and
the queues available on them. Information about jobs not yet queued in the
Local Resource Management System (LRMS), i.e. jobs in ACCEPTED and
PREPARING states are also retrieved from the GRIS server, and the amount
of free CPU’s for each queue is adjusted to make room for these jobs.

2 Matching Resources

For each job that should be submitted the queues found on the available clusters
are stepped through to find possible submission targets. Queues that report a
different status than “active” are rejected as are queues where the user is not
authorized to submit jobs, queues that have reached their queueing limit and
queues that don’t have any CPU’s.

The characteristics of the cluster and the queue are then compared to the
XRSL description of the job that is about to be submitted. The following
attributes in the XRSL are considered: “cluster”, “queue”, “count”, “cputime”,

1



“gridtime”, “memory”, “architecture”, “middleware”, “runtimeenvironment”,
“opsys” and “nodeaccess”. If any of these attributes can’t be matched the
queue is rejected.

At this point, the amount of needed disk space is calculated. The sizes of all
the input files are obtained by querying the replica catalogue (RC), replica loca-
tion service (RLS), gsiftp and http servers as specified in the XRSL description.
Also the sizes of local input files are evaluated. The results of these queries are
kept so that when more than one job is submitted using the same ng(re)sub
command and these jobs use partly the same input files, the size of the common
files don’t have to be queried for more than once.

The input files are grouped into the following classes: REMOTE, LOCAL,
REMOTENOCACHE, LOCALNOCACHE, CACHED and NOLOCATION, de-
pending on where they are located w.r.t. the cluster that is being considered
as a target, and any “local” and “cache” options given in the XRSL. If any of
the input files end up in the NOLOCATION class (e.g. an input file that has
a “local” option set, but is not available locally on the cluster) the queue is
rejected. Local files that will be uploaded from the submitting computer are
grouped in the REMOTENOCACHE class.

The sizes of the files are then added into two sums, one for those that will be
downloaded to the cache (REMOTE, LOCAL) and one for those that will end
up in the job’s session directory (REMOTENOCACHE, LOCALNOCACHE).
The size of the job’s output files given by the “disk” attribute in the XRSL is
added to the latter sum. These sums are then compared to the available space
in the cache and the user’s free disk space. If there is no cache on the cluster
being considered, the sum of the sums is compared to the user’s free disk space.
If the sizes are to big the queue is rejected.

3 Choosing the Submission Target

After having considered all the available queues, the remaining queues are the
possible targets. At this point two things can happen. Either there exists at
least one possible target where the amount of free CPU’s available for the user
is greater than or equal to the number of CPU’s specified in the XRSL, or there
are no such targets.

If there are targets with free CPU’s available, these are ranked according to
the total size of the files that have to be transferred from a remote site (i.e. the
files in the REMOTE and REMOTENOCACHE classes). The target with the
smallest size is chosen. If there is more than one such cluster these in turn are
ranked according to the total size of the files that must be downloaded from a
local site (i.e. the LOCAL and LOCALNOCACHE classes). If there is still more
than one cluster with the smallest total size, one of these is chosen at random
with a weight given to each queue proportional to the number of free CPU’s
available for the user in that queue.

If there are no targets with enough free CPU’s available, the job is submitted
to the target where the ratio between the number of queued jobs and the total
number of CPU’s is the smallest.

If the submission of the job to the selected queue fails the queue is rejected
and a new target is chosen among the remaining possible targets using the same
algorithm, until there are no more targets available.

2



If the submission is successful, the information about available CPU’s and
available disk space on the selected target is adjusted for the resources that will
be used by the just submitted job. Input files that the job will download to the
cache on the cluster will be tagged, so that if a subsequent job will use the same
file it will be grouped in the CACHED class when the same cluster is considered
for that job.

The submission then continues with matching resources for the next XRSL
job description.

3


