
Nordic Testbed for Wide Area Com-
puting And Data Handling

23/3/2004

THE HTTP(S,G)AND SOAP SERVER/FRAMEWORK

Code and Usage Description∗

A.Konstantinov

∗Comments to: aleks@fys.uio.no

Contents

1 Introduction 4

2 Classes 4
2.1 HTTPS_Connector . 4
2.2 HTTP_Service . 5
2.3 HTTP_ServiceAdv . 6
2.4 HTTP_Client . 8
2.5 HTTP_ClientSOAP . 8

3 Server 8
3.1 Overview . 8
3.2 Configuration . 8
3.3 Logger Service . 9
3.4 Storage Element (SE) Service . 10

4 Building 10

3

1 Introduction

THE HTTP(S,G)AND SOAP FRAMEWORK
The HTTP SOAP framework (httpsd) is a set of C++ classes and code to make it easier to write SOAP over HTTP

over GSI or SSL services. Pure HTTP is also possible. It also includes HTTP(S,G) server.
The code is provided as part of NorduGrid ARC software and uses some shared pieces of code, including third-

party software. It can be obtained fromhttp://ftp.nordugrid.org/download/ by downloading source. Third-party
software include Globus ToolkitTM[1], gSOAP[2], VOMS and GACL (last 2 are included in sources).

The code builds into standalone server which listens on 2 TCP/IP ports for incoming connections and understands
subset of HTTP wrapped with GSI or SSL. There are plans to add support for plain HTTP.

There are following C++ classes availble:

• Server side:

– HTTPS_Connector,

– HTTP_Service,

– HTTP_ServiceAdv.

• Client side

– HTTP_Client

– HTTP_ClientSOAP

2 Classes

2.1 HTTPS_Connector

Defined in httpsd.h

class HTTPS_Connector {
public:
unsigned int pid;
HTTPS_Connector(globus_io_handle_t *s,const char* url,HTTP_Services& serv,list

<AuthEvaluator*>& auths);
~HTTPS_Connector(void);
operator bool(void);
size_t read(char* buf, size_t l);
int write(const char* buf, size_t l);
size_t readline(char* buf, size_t l);
void loop(void);
static void identity(globus_io_handle_t* handle,const char* subject,gss_cred_id_t cred);
const char* identity_subject(void) const;
const char* identity_proxy(void) const;
AuthUser& identity(void);
list<AuthEvaluator*>& authorizations(void);
const char* url(void);

};

It’s purpose is to serve as a socket for accepting data from a client and to send a response from a server. It is imple-
mented as a wrapper over globus_io functions from Globus ToolkitTM libraries and takes care of encoding/decoding data
automatically.

size_t HTTPS_Connector::read(char* buf, size_t l)

Reads at mostl bytes into bufferbuf. Returns number of read bytes. Returned 0 means it could not read data. This most
probably happens due to closed connection.

4

int HTTPS_Connector::write(const char* buf, size_t l)

Sendsl bytes from bufferbuf to network. Returns either 0 if data is sent or 1 ortherwise.

size_t HTTPS_Connector::readline(char* buf, size_t l)

Reads line delimited by ’\n’ character. Characters ’\n’ and ’\r’ at end of line are stripped. Returns number of read
characters.

void HTTPS_Connector::loop(void)

Waits for a HTTP request coming from the open connection, initiates an instance of requested service and call corre-
sponding methods. Exits after connection is closed.

Useful functions

Following functions return 0 in case of success and 1 otherwise.
int skip_request(HTTPS_Connector &c,int &keep_alive)- reads and skips HTTP header and message body (if avail-

able). Variablekeep_alivewill be reset to 0 if information in header does not allow connection to continue.
int skip_header(HTTPS_Connector &c,int &keep_alive)- skips HTTP header. Support forkeep_alivecurrently is not

implemented.
int send_response_header(HTTPS_Connector &c,int keep_alive,int code,char* type,int size)- creates and sends re-

sponse HTTP header incuding first line with response code provided in variablecode. Variablestype(if not NULL) and
size(if not 0) are used to specify Content-Type and Content-Length accordingly.keep_aliveinforms client if server is
willing to keep connection open.

int send_file(const char* fname,HTTPS_Connector &c)- sends content of file namedfnameover open connection.
Currently it is used to send error responses which contain user-readable information. But together withsend_response_header
andstat_fileit can be used to implement minimalistic web server.

int stat_file(const char* fname,unsigned long long int &size)- checks for existence of filefnameand obtains it’s size.
int send_error_response(HTTPS_Connector &c,int keep_alive,int code,char* type,char* content)- sends response

header containing response codecodewith Content-Type set totypeand with body containing message incontent. If
contentis NULL then file with name $NORDUGRID_LOCATION/share/error{value ofcode}.html is used for message
body. Otherwise message is sent without body.

2.2 HTTP_Service

Defined in httpsd.h

class HTTP_Service {
public:
HTTP_Service(void);
virtual ~HTTP_Service(void);
virtual HTTP_Error get(const char* uri,int &keep_alive);
virtual HTTP_Error put(const char* uri,int &keep_alive);
virtual HTTP_Error post(const char* uri,int &keep_alive);

};
typedef enum {
HTTP_OK = 200,
HTTP_NOT_IMPLEMENTED = 501,
HTTP_NOT_ALLOWED = 403,
HTTP_NOT_FOUND = 404,
HTTP_ERROR = 500,
HTTP_FAILURE = -1

} HTTP_Error;

This is just a template for every serviceinstanceaccessible through the HTTP_Connector. All functions return HTTP_NOT_IMPLEMENTED.

5

Implemented services must return HTTP_OK on success. Service is supposed to process and skip whole request
(header and body) if it does not return HTTP_NOT_IMPLEMENTED or HTTP_NOT_FOUND. Otherwise calling HTTP_Connector
will do that. Also service is supposed to send response to client by itself if it returned HTTP_OK or HTTP_FAILURE.

Following are function prototypes which are called by server code to configure aerver and to create service instance.
Each service must have corresponding set of such functions.

typedef bool (*service_configurator)(istream& f,const char* uri, HTTP_Service_Properties &prop);
typedef HTTP_Service* (*service_creator)(HTTPS_Connector& c, const char* uri, void* arg);
class HTTP_Service_Properties {
public:
bool subtree;
void* arg;

};

service_configuratoris called during startup of server and is supposed to process configuration available through streamf
and create service specific data structures.uri is URL for this particular service specified in server’s configuration (can be
relative). It should fillpropwith information about service. Currently that issubtreewhich tells server code if this service
is going to server all URLs starting from one specified inuri, andarg which should point to service specific information
and is then passed to function responsible for creating service instances.

service_creatoris called to create service instance when client requests that server.c is the HTTP_Connector transport
class to be used for commnication with client,uri contains URL used to call service (absolute) andarg is the one filled by
service_configurator.

2.3 HTTP_ServiceAdv

Defined in service_soap.h

class HTTP_ServiceAdv:public HTTP_Service {
protected:
HTTPS_Connector *c;
// HTTP Header
uint64_t range_start[MAX_RANGES];
uint64_t range_end[MAX_RANGES];
uint64_t entity_range_start;
uint64_t entity_range_end;
uint64_t entity_size;
int nranges;
bool range_passed;
bool failure_parsing;
uint64_t length;
bool length_passed;
bool entity_range_passed;
bool entity_size_passed;
bool unsupported_option_passed;
// SOAP
bool ignore_soap_output;
struct soap sp;
char soap_fbuf[1024];
int soap_fbuf_n;
public:
HTTP_ServiceAdv(HTTPS_Connector *c_);
virtual ~HTTP_ServiceAdv(void);
HTTP_Error parse_header(int &keep_alive);
HTTP_Error send_header(int &keep_alive,int code = 200);
HTTP_Error send_header(int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t full_size);

6

static int soap_fsend(struct soap *sp, const char* buf, size_t l);
int soap_flush(void);
static size_t soap_frecv(struct soap* sp, char* buf, size_t l);
static int soap_fopen(struct soap*, const char*, const char*, int);
static int soap_fclose(struct soap*);
static int soap_parse(struct soap *sp);
void soap_init(void);
void soap_deinit(void);
HTTP_Error soap_post(const char* uri,int &keep_alive);
virtual void soap_methods(void);

};

This is an extension of HTTP_Service class which provides support for integrating gSOAP and few useful methods.
HTTP_ServiceAdv takes care of storing pointer to transport class (c) and gSOAP struct soap (sp).

HTTP_ServiceAdv SOAP capabilities

If You want Your service to use SOAP the it must:

• call soap_init in constructor and then set sp.namespaces to namespaces of Your SOAP methods and sp.user to
pointer to pointer to service (this will be changed in a future),

• call soap_deinitin destructor,

• call soap_postin postmethod after processing HTTP header (You can useparse_headerfor that),

• implementsoap_methodsin a way gSOAP uses to process SOAP requests

void HTTP_Your_Service::soap_methods(void) {
if((sp.error = soap_serve_YourNamespace__YourMethod1(&sp)) != SOAP_NO_METHOD) return;
if((sp.error = soap_serve_YourNamespace__YourMethod2(&sp)) != SOAP_NO_METHOD) return;

}

HTTP_Error HTTP_ServiceAdv::parse_header(int &keep_alive)

This method parses content of HTTP header and places results into following fields:

range_start[],range_end[],nranges,range_passed - data ranges requested by client (Range),

entity_range_start,entity_range_end,entity_range_passed - ranges data presented in body (Content-Range),

entity_size,entity_size_passed - size of data presented in body (Content-Range),

length,length_passed - size of body (Content-Length),

failure_parsing - method failed to parse header,

unsupported_option_passed - there was an option which requires to be processed but method does not support it,

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,int code = 200)

Sends response header which requires no body.

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t
full_size)

Sends response header suitable for passing part of data set in body.

7

2.4 HTTP_Client

class HTTP_Client {
public:
typedef int (*get_callback_t)(unsigned long long offset,unsigned long long size,char* buf,void* arg);
typedef int (*put_callback_t)(unsigned long long offset,unsigned long long *size,char* buf);
HTTP_Client(const char* base);
~HTTP_Client(void);
operator bool(void);
int connect(void);
int disconnect(void);
int PUT(const char* path,unsigned long long int offset,unsigned long long int size,const unsigned char* buf,unsigned long long int fd_size);
int GET(const char* path,unsigned long long int offset,unsigned long long int size,get_callback_t callback,void* arg);
bool keep_alive(void);
unsigned long long int size(void);

};

This methods allows to connect to remote site using HTTP, HTTPS or HTTPG protocol. Base URL is specified as
constructor’s argumentbase.

Actuall connection is done by calling methodconnect. This method can be called even if connection is already
established. It returns) on success. To close connect usedisconnect.

MethodGET implements HTTP GET method. It takespath relative to base URL, sends GET request to server also
providing the range of required data starting atoffsetof sizelength. Each time chink of data arrives it callscallbackwith
offsetandsizeof data inbuf. callback can be called multiple times depending on requested and available size.

MethodPUT implements HTTP PUT method. It sends in body the content ofbuf of lengthsizeand presents it to
server as part of bigger dataset of sizefd_sizestarting atoffset.

2.5 HTTP_ClientSOAP

class HTTP_ClientSOAP: public HTTP_Client {
public:
HTTP_ClientSOAP(const char* base,struct soap *sp);
~HTTP_ClientSOAP(void);

};

This class takes care of initializing and configuring gSOAP structurespso it can communicate tp server through HTTP_Client.
Upon creation argumentbaseis passed to HTTP_Client’s constructor. Thenspcan be used with gSOAP calls to implement
SOAP client.

3 Server

3.1 Overview

Server is accessible from outside through 2 TCP/IP ports. Data is authenticated/wrapped/unwrapped using SSLv3 and
GSI (Fig.1).

3.2 Configuration

Server is configurued from single configuration file ($NORDUGRID_LOCATION/etc/httpds.conf by default). That file is
regenerated from /etc/nordugrid.conf if You use SysV startup scripthttpsd. Syntax is similar to that of Grid Manager and
GridFTP server as described in “The NorduGrid Grid Manager and GridFTP Server” manual in a chapter “Configuration
of the Grid Manager”.

It accepts generic commandsuser, logfile, pidfileanddebugin a same way as descibed in above mentioned manual.
Additionally it accepts commands:

gsiport TCP/IP port for GSI connections,

8

[h]
g
l
o
b
u
s
_
i
o

GSI

SSL

H
T
T
P

GET

PUT

POST gSOAP

Figure 1: Server layout.

sslport TCP/IP port for SSL connections (SSLv3 only).

Authorization is based on specified groups. For more information about groups please look in “The NorduGrid Grid
Manager and GridFTP Server” manual in a chapter “Configuration of the GridFTP Server”. Actual configuration of al-
lowed operations for every method is configured using service-specific commands andHTTPS_Connector::authorizations
method.

Definition of access groups is followed by definitions of services. Each definition starts from commandservice
followed by service’s name (predefined in source code) and URL. It is followed by lines containing service-specific
commands till line containing commadend.

service name URL
command1
command2

end

The URL can be either absolute or contain only a path or a port and a path. For example:
httpg://grid.uio.no:8000/logger
:8001/logger
/logger

3.3 Logger Service

Logger is a frontend to database server (currently MySQL) which allows to store and to retrieve an information about jobs
executed on clusters with NorduGrid software installed.

It supports 2 SOAP methods for adding and retrieveing records respectively. It also provides simple web interface
through HTTP GET and POST methods. Unfortunately this interface is not very usefull because no web browser I know
about supports pure SSLv3.

Corresponding client is provided as part of NorduGrid software installed on cluster’s frontend.
It has 2 service-specific commands:

• acl_read [group [group [...]]]

• acl_write [group [group [...]]]

• acl_query [group [group [...]]]

Groups listed inacl_readcommand are allowed to retrieve information about job records. Clients still can only retrieve
information about jobs which they are owners of. And those listed inacl_writecan add new records. Groups inacl_query
are allowed to retrieve information about all jobs.

Other supported commands are:

• sqlcontact [user [password]]

• sqlcontactsource path

9

They provide username and password used to access MySQL database.sqlcontactsourcepoints to file which contains
username and password in first line.

Logger service can be communicated using utilitylogger.

3.4 Storage Element (SE) Service

This is so called “Smart” SE and is supposed to be capable of:

• providing interface to store and retrive data

• taking care of automatic registration of incoming content,

• automatic replication of data,

• recovering from failures.

For more information please refer to “NorduGrid Smart Storage Element”.

4 Building

Server with all services is part of NorduGrid toolkit. It is built together with all other components of toolkit if option
–enable-experimentalis supplied to./configurescript or if built without autotools. Following third-party software is
required to build and use server and services:

• gSOAP - for SOAP protocol,

• MySQL - to store information about jobs handled by Logger service,

• libxml - for GACL, which is used by SE service to control access to data.

If You have those components installed in non-standard places, use./configure –helpto find out how to pass that informa-
tion to script.

Alternatilvely if static Makefiles are used to build server editgrid-manager/Make.incfile. And run makein grid-
managerdirectory if You want to build all components of toolkit. Or ingrid-manager/httpsdirectory to build onlyhttpsd
server and related utilities.

References

[1] http://www.globus.org/toolkit/

[2] gSOAP: Generator Tools for Coding SOAP/XML Web Service and Client Applications in C and C++,
http://www.cs.fsu.edu/~engelen/soap.html

10

