NORDUGRID

8,/4/2004

THE NORDUGRID USER GUIDE

Contents

1 Introduction

2 NorduGrid Client Installation

2.1

2.2

System-wide installationo Lo
2.1.1 Globus Toolkit e
2.1.2 Download the client
2.1.3 Build . ..o e
2.1.4 Imstall the client e
2.1.5 Certificates e
2.1.6 Request a Certificate
2.1.7 Launch a Grid Session
Local Installation e
2.2.1 Download e
2.2.2 Unpack e e
2.2.3 Configure L e e
2.2.4 Certificates e
2.2.5 Request a Certificate e
2.2.6 Launch a Grid Session

3 Getting Access to Grid Resources

3.1

3.2

Authentication: Grid Certificates e
3.1.1 Working with certificates: examples oL 0oL,

Authorization: The Virtual Organizations

4 Describing Grid Tasks

4.1

4.2

Task Description Language: xXRSL
4.1.1 URLS . . o e
4.1.2 Task Description: Attributes
Examples e e
4.2.1 Hello World e
4.2.2 An Own Executable e
4.2.3 Many Executables

10
10
11
11
13
14
14
14
14
15
15
15
15

17
17
18
19

5 Grid Session

5.1 Logging Into The Grid
5.2 Logging Out
5.3 Working with jobs

5.3.1
5.3.2
9.3.3
5.3.4
5.3.5
9.3.6
9.3.7
5.3.8
5.3.9

5.4.1

5.4.2 Erasing Grid Files

Submit A Job

Querying Job Status
Capturing Job Output
Retrieving Job Output
Killing Jobs 0oL
Re-submitting Jobs
Cleaning Up After Jobs
Renewing User Proxy

Synchronizing The Job ID List
5.4 Working with files
Copying Grid Files

6 Data Management

6.1 gsincftp
6.2 Replica Catalog in Examples

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

Define who you are
Create a collection
Add a location to a collection
Upload and register a file to a collection
Register existing at a location file to a collection
Remove and unregister a file
Remove a location from a collection
Find locations (URL prefixes) for a collection

Find a URL prefix for a location known by name

7 The Grid Monitor

7.1 The Grid Monitor

7.2 Cluster Description
7.3 Queue Details
7.4 Job Information

7.5 User Information

7.6 Attributes Overview

7.7 “Match-it-yourself”
7.8 Storage Resources

7.9 List of Users

8 HOWTO

CONTENTS

CONTENTS

A RPM For Everybody
A.1 Listing Contents of an RPM Package
A.2 Printing Out an PM Package Information
A.3 Simple Unpacking of an RPM Archive
A4 Creating a Private RPM Database L
A.5 Installing an RPM Package e
A.6 Upgrading RPM Packages
A.7 Relocating RPM Packages
A.8 Dealing with Dependencies
A9 Listing Installed Packages
A.10 Uninstalling RPM Packages e
A .11 Building RPM from Source e

B Known Grid Certificate Authorities

63
63
63
64
64
65
65
65
66
66
67
67

69

CONTENTS

Chapter 1

Introduction

The NorduGrid toolkit is a light-weight Grid solution, designed to support a dynamic, heterogeneous Grid
facility, spanning different computing resources and user communities. It provides middleware to interface
between user applications and distributed resources.

The NorduGrid middleware is almost entirely based on the Globus Toolkit® API, libraries and services [I].
In order to support the original NorduGrid architecture, several innovative approaches were used, such as
the Grid Manager [2] and the User Interface (Section 5). Several Globus components were extended and
developed further, such as the Information Model [3] and the Extended Resource Specification Language
(Section 4).

The NorduGrid User Guide puts together descriptions of user-end parts of the toolkit, serving as a user
manual and a reference. It also includes basic examples and the NorduGrid client installation instructions.

This User Guide does not provide detailed description of third-party tools, such as the Globus Toolkit® |
giving only minimal necessary information.

The definitive description of the components and services can be found in separate manuals:

User Interface : ”The NorduGrid toolkit user interface”, user manual [4]
xRSL : ”Extended Resource Specification Language” [5]
Grid Manager : "The NorduGrid Grid Manager”, description and administrator’s manual [2]

Grid Monitor : ”The Grid Monitor”, usage manual [6]

Detailed installation and configuration instructions are included in the NorduGrid software distribution,
available for download at:

http://www.nordugrid.org
Any further questions should be addressed to

nordugrid-support@nordugrid.org

http://www.nordugrid.org

CHAPTER 1. INTRODUCTION

Chapter 2

NorduGrid Client Installation

The very first step to get acquainted with the NorduGrid facilities is to download and install the client
package. There are several ways to do it, you just have to choose which suits you best. Binary distributions
are available for several GNU /Linux flavors, such as RedHat, Slackware or Mandrake. Source distributions
are available as well. The client package may be installed system-wide by a system administrator, as well as
locally by any user.

2.1 System-wide installation

This Section is oriented primarily towards users with system administrator privileges. Local installation by
any user is described in Section 2.2.

For a system-wide installation, usage of RPMs is recommended for those Linux platforms which support it.
Otherwise, the client can be built from the sources.

2.1.1 Globus Toolkit

Globus Toolkit® must be installed at your machine prior to any system-wide NorduGrid installation. You
may get it from the Globus project Web site [I], however, it is recommended to use the distribution available
at the NorduGrid download area, as it contains several important bug fixes.

Case A. If you already have a Globus Toolkit® installed on your system, check that the flowing variables
are defined and point to the proper locations:

echo $GLOBUS_LOCATION $GPT_LOCATION

If the variables are not defined, define them according to your installation.

Case B. If there is no Globus installation, or you want to profit from the Globus Toolkit® distribution with
most recent bug fixes and patches, download from http://ftp.nordugrid.org/download (see Figure 2.1)
and install the necessary packages in the following order:

rpm -Uvh gpt-<wersion>.rpm

export GPT_LOCATION=/opt/gpt

rpm -Uvh globus-<wersion>.rpm

export GLOBUS_LOCATION=/opt/globus
rpm -Uvh globus-config-<wersion>.rpm

You may well want to install Globus Toolkit® from pre-compiled tarballs provided at the NorduGrid down-
load site. In such a case, take care to execute post-installation procedures:

http://ftp.nordugrid.org/download

10 CHAPTER 2. NORDUGRID CLIENT INSTALLATION

1Grid tools External software CA certificates Applications

- g datagrid [& atlas (&
xperimental globus others root
globus-config
gpt

SHIFT- or CIRL-click to select multiple packages = Reset Getlatest
GPT(2.2.10,2003-06-24 CEST 13:37:53)

[i386 rpm]
redhat-6.2 (1386 tgz]
full
[alpha rpm] oy
redhat-7.2 s

Globus Toolkit (2.4.1, 2003-07-01 CEST 13:59:21)

[i386 rpm]
redhat-6 2 (1386 tgz]
full
[alpha rpm] Tiligoti]
redhat-7 2 —

external/globus-config (0.20, 2003-06-26 CEST 21:44:27)

[noarch rpm]
[noarch tgz]

[

redhat-6.2

[full rpm]

Figure 2.1: Downloading Globus-related packages (GPT, Globus and Globus configuration) from the Nordu-
Grid Web site. This example shows which packages to download for the RedHat 7.2 Linux distribution.

<globus location>/setup/globus-post-install-script <globus location>

Here <globus location> is the directory in which you unpacked Globus (by default /opt/globus).

NB: on some systems and distributions, certain additional external packages need to be installed (most
notably, Perl components). They are normally available from the NorduGrid downloads area, “External
software” section.

2.1.2 Download the client

Download a NorduGrid client package suitable for your operating system from the NorduGrid Downloads
area at http://ftp.nordugrid.org/download|:

— If you are installing on top of an older Globus version, download a full source NorduGrid RPM
(nordugrid-<wersion>.src.rpm) or a tarball (nordugrid-<wersion>.tgz) (see Figure 2.2).

— If you just have installed Globus as described in Section 2.1.1, download just a binary client RPM
nordugrid-client<wersion>.rpm (see Figure 2.2).

2.1.3 Build

If you have installed Globus as described in Section 2.1.1, skip this Section.

http://ftp.nordugrid.org/download

2.1. SYSTEM-WIDE INSTALLATION 11

Tagged release (0.3.24, 2003-07-01 CEST 14:27:07)

distribution ca-utils client doc gridmap-utils monitor server standalone source

[i386 rpm] [i386 rpm] [1386 rpm] [i386 rpm] (1386 rpm] [1386 rpm]

rednat82 Tiagstol (38617 [386taz] [386tgz] [i386tgz] [1386taz]

[1386 tgz]
[full rpm]
[full tgz]
[alpha rmpha rpm] [alpha rpm] [alpharpm] [alpha rpm] [alpha rpm% [CVS tgz]
redhat.7.2 [alpha t Ipha tgz] [alpha tgz] [alpha tgz] [alpha igz] [alpha igz] ha tgz]
. 1386 rpm] [1386 rpm] [1386 rpm] [i386 rpm] [1386 rpm] [1386 rpm] [1386 tgz]
[i386tgz] [i3861gz] [i386 tgz] [i386 tgz] [i386tgz] [i386 tgz]

Figure 2.2: Downloading different client packages: (1) binary client RPM, (2) standalone pre-compiled
archive, (3) full source RPM.

If you are installing on top of an older Globus version, you have to rebuild the client from source. To do it
with a source NorduGrid RPM, do:

rpm --rebuild nordugrid-<wersion>.src.rpm

This will create several binary RPMs; you will need only nordugrid-client<wversion>.rpm.

Alternatively, to build from a tarball, do the following:

cat README

tar xvzf nordugrid-<wersion>.tgz
cd nordugrid-<wersion>
./configure

make

make install

2.1.4 Install the client
Install the NorduGrid client RPM:

rpm -Uvh nordugrid-client<wersion>.rpm

Set up the environment variables:

source /etc/profile.d/globus.sh
source /etc/profile.d/nordugrid.sh

2.1.5 Certificates

Depending on what is your Grid certificate issuing authority (Certificate Authority, CA, see Chapter 3) ,
and which Grid resources you intend to use, you will have to install public certificates and other attributes
of the necessary authorities. Table 2.1 presents a short check-list, summarizing which certificates you would
need.

The NorduGrid CA certificate and the signing policy files are distributed from the NorduGrid Web site,
“Certificate Authority” section, as well as through the downloads area at http://ftp.nordugrid.org/
download , see Figure 2.3..

Install all the downloaded CA RPMs:

rpm -Uvh ca_NorduGridx

Alternatively, use the provided tarballs or download and install the necessary files one by one from the CA
Web page directly. In any case, the obtained CA attributes should be copied into the $X509_CERT_DIR di-
rectory.

http://ftp.nordugrid.org/download
http://ftp.nordugrid.org/download

12 CHAPTER 2. NORDUGRID CLIENT INSTALLATION

Your certificate H Will use NorduGrid resources ‘ Will use other Grid resources ‘

NorduGrid certificate || NorduGrid CA certificate and
signing policy

Other Grid certificate || Your issuing CA certificate and | Certificates, signing policies and
signing policy file (if any) and the | other attributes (if any) of all the
NorduGrid CA certificate and | CAs that certified the resources
signing policy

No Grid certificate NorduGrid CA certificate and
signing policy, and certificate re-
quest configuration files

Table 2.1: Check-list of needed certificates

re CA certificates Applications

datagrid B allas
others I root
[~]

nultiple packages ~Resst Get latest

CA certificates (0.16, 2003-06-21 CEST 11:37:00)
ASGCCA CERN CESNET NorduGrid CNR:

debian-3.0 [noarch rpm] [noarch rpm] [noarchrp [noi
: [noarchtgz] [noarchtgz] [noarchigz] Trrem o [nc

Figure 2.3: Downloading NorduGrid CA attributes: certificates are platform- and system-independent.

By default, the X509_CERT_DIR variable is not set up. The standard location for Globus keys is
/etc/grid-security/certificates. However, it is always possible to point the X509_CERT_DIR vari-
able to any directory where you prefer to store the certificates. This could be useful if you assume that
different users may trust different CAs, not necessarily those centrally accepted.

The recommended procedure to obtain other CA certificates and attributes is to fetch them directly from
the CAs in question. They are typically available from their respective Web sites (for a non-authoritative
list, see Appendix B) .

If for some reason it is impossible to fetch your CA attributes (e.g., Web site unavailable, holiday season
etc.), you may download the necessary files from the NorduGrid downloads area at http://ftp.nordugrid.
org/download|. The attributes are platform- and system-independent. Install the CA attributes either from
RPMs:

rpm -Uvh <your CA name>x*

or from the provided tarballs.

IMPORTANT! The rule of thumb when installing the NorduGrid middleware is always to check the
contents of the $X509_CERT_DIR folder and to make sure that it does contain certificates and signing
policy files of your certificate issuer CA. A typical listing of the folder should look as follows:

> 1s -1 $X509_CERT_DIR
1£0e8352.0
1£f0e8352.signing_policy
bc870044.0

http://ftp.nordugrid.org/download
http://ftp.nordugrid.org/download

2.1. SYSTEM-WIDE INSTALLATION 13

bc870044 .signing_policy
d64ccb53.0

Here 8-symbol file names with extension “.0” are the certificates containing public keys of different
CAs.

2.1.6 Request a Certificate

To request a personal or a host certificate, you must decide to which authority you want to submit such
a request. Appendix B lists some known authorities and their contact addresses. Each CA has its own
procedure, which you have to follow.

If you have no certificates and are a resident of a Nordic country*, you should request the certificate from
the NorduGrid Certificate authority. To do this, you should first download at http://ftp.nordugrid.org/
download the corresponding certrequest-config configuration package, residing in section “CA certifi-
cates” (see Figure 2.4). Install the RPM package using

rpm -Uvh ca_NorduGrid-certrequestx*

or use the provided tarballs. The following files will be installed in /etc/grid-security/certificates:
globus-host-ssl.conf.1£0e8352

globus-user-ssl.conf.1f0e8352
grid-security.conf.1£0e8352

You may well prefer installing the files in any other location defined by the $X509_CERT_DIR variable.

Despite appearance, this is not a part of a general installation and is specific only for the Nordic countries
residents.

CA certificates Applications
| certrequest_config B atlas
boost
boost-jam

cemnlib

ct multiple packages Reset | Getlatest

certificate_authorities/certrequest-config (0.1, 2003-09-01 CEST 13:08:36)

ca_NorduGrid-certrequest-config

debian-3.0 oarch pm])

Figure 2.4: Downloading NorduGrid CA certificate request configuration package.
The certificate request then should be prepared by doing the following:

grid-cert-request -int -ca

From the presented list, select the NorduGrid CA, and then enter the requested information at each interac-
tive prompt. Typically, you should use the suggested default values, except of the case of the Organisational

*The term “Nordic countries” refers to Denmark, Finland, Iceland, Norway and Sweden.

http://ftp.nordugrid.org/download
http://ftp.nordugrid.org/download

14 CHAPTER 2. NORDUGRID CLIENT INSTALLATION

Unit (“OU”, your domain, default is nbi.dk) and your proper name. Upon request, type and confirm your
password. Follow the printed suggestions strictly, i.e. do the following;:

cat $HOME/.globus/usercert_request.pem | mail ca@nbi.dk

Alternatively, simply send the file $HOME/ . globus/usercert_request.pem to ca@nbi.dk.

The certificate request procedure creates the new directory .globus in your $HOME area, and places there
three filesT:

usercert_request.pem the official certificate request, to be mailed to ca@nbi.dk
userkey.pem your private key

usercert.pem your public certificate placeholder (initiated with zero size)

When and if the CA fulfils your request, they will send you the actual public certificate, which you must
store as $HOME/ . globus/usercert.pem, overwriting the placeholder.

If you are not a Nordic country resident, you may well try (upon consulting the NorduGrid personnel at
nordugrid-support@nbi.dk) to use the same procedure to request a certificate from another Certificate
Authority. However, most of them have own established procedures (see Appendix B for a reference),
and you are strongly advised to follow them.

2.1.7 Launch a Grid Session
Log into the Grid:

grid-proxy-init

Type your password when requested, and enjoy the Grid world!

2.2 Local Installation

For a local installation by a user without system administrator privileges, it is advised to download and
install a stand-alone distribution of the NorduGrid client. This package is distributed in .tgz format and
contains all the required third-party components (Globus Toolkit®). Provided with the package are scripts
to do all the necessary initial configuration and setup.

2.2.1 Download

Download a pre-compiled stand-alone binary distribution suitable for your operating system from the Nordu-
Grid Downloads area at http://ftp.nordugrid.org/download , see Figure 2.2.

2.2.2 Unpack
Put the downloaded package in a directory of your choice and execute

tar xvzf nordugrid-standalone-<wersion>.tgz

This will create a new directory nordugrid-standalone-<wersion>, and the downloaded .tgz package can
be safely removed

‘LKeys and certificates, as well as their locations, can be called different names. In the instructions above, default naming
scheme was used. If for some reasons you would like to use different names, feel free to contact nordugrid-support@nbi.dk for
further directions.

http://ftp.nordugrid.org/download

2.2. LOCAL INSTALLATION 15

2.2.3 Configure

Configure and set up environment variables (most notably, $NORDUGRID_LOCATION and $GLOBUS_LOCATION) by
doing the following:

cd nordugrid-standalone-<wversion>
source setup.sh

If you are working in a C shell, use setup.csh instead. Upon first execution, this will print a lot of
informational output. Make sure there are no ”error” or ”failure” messages.

2.2.4 Certificates

The standalone installation will create a directory $NORDUGRID_LOCATION/share/certificates which has
to be populated with all the certificates you will need in your work. Follow the steps in Section 2.1.5,
describing what has to be downloaded and where it has to be installed. Refer to Appendix A for instructions
how to work with RPM files without having system administrator privileges, or simply use the provided
tarballs instead of RPMs.

The standard location defined by Globus for the certificates is /etc/grid-security/certificates.
However, if you have no system administrator privileges, you must either relocate the certificates to your
$NORDUGRID_LOCATION/share/certificates directory, or create $HOME/.globus/certificates direc-
tory and store the certificates there. The third option is to define the X509_CERT_DIR variable, pointing
to any directory where you prefer to store the certificates.

2.2.5 Request a Certificate
If you do not have a personal certificate, refer to Section 2.1.6 for instructions on what has to be downloaded

and how to issue a certificate request. Just as recommended in the previous Section, take care of relocating
the files from the default /etc/grid-security/certificates directory to one of the following locations:

$NORDUGRID_LOCATION/share/certificates

$HOME/ .globus/certificates
$X509_CERT_DIR

2.2.6 Launch a Grid Session
Log into the Grid:

grid-proxy-init

Type your password when requested, and enjoy the Grid world!

16

CHAPTER 2. NORDUGRID CLIENT INSTALLATION

Chapter 3

Getting Access to Grid Resources

Sections 2.1.5 and 2.1.6 touch the issue of authentication and authorization on the Grid. In order to be able
to use the NorduGrid middleware in most basic way, you don’t have to know much more than explained
there. However, more complex tasks may arise, and this Section attempts to provide bits of knowledge which
will help you in understanding the access control issues. For a description of the Grid login procedure, refer
to Section 5.1.

3.1 Authentication: Grid Certificates

In a Grid environment such as the NorduGrid, users normally don’t have local password-protected accounts
on computing resources they intend to use. You should hold instead an electronic certificate, which ensures
unique authentication. Possession of a certificate, however, does not automatically authorize you to use all the
Grid resources. Access control for the computing resources is a matter of a local policy: site administrators
retain the full control of choosing which Grid user is allowed to use local resources. Typically, such local
authorization process is done by mapping an accepted set of Grid users onto a set of local user accounts.

Since Grid services act on behalf of users, such services and all the resources which provide them must be
certified as well.

Certification is done by trusted authorities of the Grid, called Certificate Authority (CA). Typically,
there is one CA per country. For a non-authoritative list of CAs, refer to Appendix B.

The Grid utilizes public key, or asymmetric, cryptography for authentication of users, resources and ser-
vices [7]. According to the basics of the public key cryptography, each resource on the Grid has a key pair:
a public and a private key. The public key is, quite naturally, made public while the private key must be
kept secret. Encryption and authorization is performed using the public key, while decryption and digital
signature is performed with the private key.

It is important to note that generating a key pair does not automatically provide you access to the Grid
resources. A CA needs to sign your key pair, thus confirming your identity. This signing procedure of the
CA is often referred to as “issuing a certificate”.

Within the Globus era, the key file (e.g., userkey.pem) and the certificate file (e.g., usercert.pem) corre-
spond to the key pair of the public-key cryptography. The userkey.pem file (or resourcekey.pem when a
Grid resource is concerned) contains the private key encrypted with your password (called “pass phrase” by
Globus). The certificate file (usercert.pem) contains your public key together with additional important
information such as the Subject Name (SN) of the certificate holder, the name of the signing CA, and a
digital signature of this CA. The important role of the CA is to establish a trustful connection between the
identity of the user and the public key in the certificate file. The digital signature of the CA in the user’s
certificate file officially declares that the public key in the file belongs to the specific user (Subject Name).
The certificate files are encoded with the x.509 [§] format.

In order to obtain a valid “passport” to the Grid, you need to create a key pair and submit your public key
to your CA (this process is called as a “certificate request”) for a signature. The CA will follow its certificate
policy and upon successful evaluation of your request your public key will be signed and posted back to you.

17

18 CHAPTER 3. GETTING ACCESS TO GRID RESOURCES

As it was mentioned before, all the resources (i.e. gatekeepers, users, services) require a CA-signed key pair
to be able to operate on the Grid.

An unsigned key par is generated by the following command:

grid-cert-request

The created files are placed by default in your .globus directory. The userkey.pem holds your private key
encoded with your pass phrase (you are prompted to supply this pass phrase during the key pair generation).
This file must only be readable by its owner. The usercert_request.pen file contains your unsigned public
key together with your Subject Name and the name of your CA. This file should be mailed to the CA. The
grid-cert-request creates an empty usercert.pen file as well, just as a placeholder, which later can be
overwritten with your CA-signed certificate.

Please always remember that a Grid passport consists of two files, the private key file and the public
certificate file. You need to have both of them, the certificate file (usercert.pem) alone is not enough
for the Grid. If you loose one of your key files, you will have to regenerate a new CA-signed key pair.

You can use the openssl [9] cryptography toolkit and the Globus provided commands to create, check and
convert between different formats, and to manipulate your certificate files (actually, the Globus commands
are just a friendly interface to the openssl toolkit). For further information, please read the man pages for
openssl, verify and x509 commands, or use the Globus commands with the -help option.

3.1.1 Working with certificates: examples

Certificate request: the following command creates a key pair for a user or a gatekeeper and prepares a
formal certificate request

grid-cert-request
Change pass phrase of the certificate: use this command to change the pass phrase of the private key

file userkey.pem:

grid-change-pass-phrase -file userkey.pem

Please note that once you forget the pass phrase, the certificate has to be requested anew, as there is no
way to re-generate a password.

Inspect a certificate: to print all the information from the public certificate file usercert.pem, do the
following

grid-cert-info -file usercert.pem -all

Duplicate a certificate with a new pass phrase: using this tool, your private key is encoded with a
new pass phrase and stored in the new_userkey.pen file (first it asks for your old pass phrase, then twice
for the new).

openssl rsa -in userkey.pem -des3 -out new_userkey.pem

Verify the certificate: to verify the usercert.pem certificate using the public key of the issuing CA,
which is supposed to be in located in the specified CApath, do this:

3.2. AUTHORIZATION: THE VIRTUAL ORGANIZATIONS 19

openssl verify -CApath /etc/grid-security/certificates/ usercert.pem

Dump contents of the certificate: with this command you can display the contents of the usercert.pem
certificate

openssl x509 -noout -text -in usercert.pem
Convert your Grid certificate into a Web one: to convert your certificate from the original pem format
to pkcs12 one, which can be used to authenticate yourself on the Web via Internet browsers, issue:

openssl pkcsl2 -export -in usercert.pem -inkey userkey.pem -out cert.pl2

3.2 Authorization: The Virtual Organizations

NB: possession of a Grid certificate, even signed by a legal CA, does not automatically allow you to use
any Grid resources!

As it was mentioned above, in order to be able to do such things as copy files over the Grid, or submit Grid
jobs, your identity should be mapped to a local account on each resource — be it a computing cluster or a
storage facility. As long as this mapping is done, you are authorized to use a resource as any local user.

To facilitate and automate such mapping, NorduGrid have set up a collective authorization method, the
NorduGrid Virtual Organization (VO),, following practices of other Grid testbeds. This VO maintains a list
of people which are authorized to use the NorduGrid resources. The VO tools provide an automatic method
for the sites to easily maintain the VO member”«< "local Unixz user” mappings. These tools periodically
query the VO user database and automatically generate the local grid-mapfiles following the local policy
formulated in the VO-tools configuration file. The automatic mapping does not violate the site autonomy,
because the site administrators retain a full control over their systems thanks to the possibility of denying
access to "unwished” Grid users in the NorduGrid VO-tools configuration file.

The database of the VO is maintained by the VO managers. Their responsibility is to add, delete or modify
user entries.

You must contact a local NorduGrid VO manager in order to be added to the NorduGrid VO. The
contact information can be found at the NorduGrid Web site. If you are not a Nordic countries resident,
you may be added to the Guests VO.

The NorduGrid VO supports the creation of groups. A group is a subset of the a VO and is maintained by
an appointed group manager. The group manager selects members of the group out of the full VO database.
With the existence of the user groups, the site administrators can implement group based mappings, such
that all the members of a certain group are mapped to the same local Unix user, in addition to the default
user-based mappings.

Technically, the VO database is stored in an LDAP [10] database. For this purpose, a GSI [II] enabled
OpenLDAP server is used, providing an entry and attribute level access control, based on the Grid cer-
tificates. The database managers, being authenticated and authorized through their certificates, make use
of the OpenLDAP command line tools in order to add, delete or modify entries in the VO database. The
NorduGrid sites periodically (4 times a day) run the nordugridmap utility in order to query the VO LDAP
server and automatically create/update local user mappings according to a site policy (as defined in a
nordugridmap.conf configuration file).

20

CHAPTER 3. GETTING ACCESS TO GRID RESOURCES

Chapter 4

Describing Grid Tasks

To describe a task to be submitted to the NorduGrid resources, a special scripting language is used. It is
strongly based on the Resource Specification Language (RSL), developed by the Globus project [12]. Using
RSL allows passing job options and definitions to resource management systems. The NorduGrid architecture
certain extensions to the RSL. This concerns not only introduction of new attributes, but also differentiation
between two levels of the job options specifications:

User-side RSL, i.e., the set of attributes specified by a user in a job-specific file. This file is interpreted
by the User Interface (UI) [], and after the necessary modifications is passed to the Grid Manager
(GM) [2)

GM-side RSL, i.e., the set of attributes pre-processed by the Ul, and ready to be interpreted by the
GM

As a user, you have to know only the user-side part, and utilize it to describe your Grid tasks.

In what follows, the description of the NorduGrid-extended RSL, further denoted as xRSL, is given, using
the following notations:

<XXXX> parameter to be substituted with a corresponding string or a number
[xxxx] optional parameter
xxx|yyylzzz list of possible values of a parameter

-t ”same as above”

4.1 Task Description Language: xRSL

For a complete description of Globus RSL, see reference [12]. xRSL uses the same syntax conventions, but
changes the meaning and interpretation of some attributes.

A Grid task is described by the mean of xRSL attributes, which can be either passed via a command-line,
or, more conveniently, be collected a so-called xRSL-file (suggested extension .zrsl). Such a file contains a
plain list of attribute assignment strings (relations) and boolean operands “&” (for AND) and “|” (for OR).
Attribute names are case-insensitive.

A relation associates an attribute name with a value:

executable=’’a.out’’

Here executable is an attribute name, and a.out is its value. An attribute can have several values (blank-
separated list):

arguments=‘‘abc’’ €123’° ¢‘dir/file’’

21

22 CHAPTER 4. DESCRIBING GRID TASKS

or even correspond to pairs of values:

inputFiles=(‘‘thescript’’ ‘‘http://my.site.org/taskX/scriptl.sh’’)
(“‘my.idx’’ $HOME/index/the_index.bin)
(¢‘thescript’’ “¢’?))

In the examples above, some strings are quoted, while some are not. When explicitly quoted, a string may
contain any character. However, most literals used in job description (e.g. attribute names themselves, file
names etc) don’t have to be quoted, if they don’t contain special characters.

The special characters are:

+ & | C)Y = < > r nwn o~ @ g

To quote a string containing special characters, you can use pairs of either single or double quotes. If
your string, however, contains both such characters, you can define any character as an own delimiter, by
preceding it with the “carat” (~) character: jobName="#My °‘good’’ job~* makes use of a carat-escaped
asterisk as a delimiter.

Typically, an xRSL job description starts with an ampersand (“&”) , to indicate implicit conjunction (AND
style) of all the attribute relations, enclosed in parentheses:

&(attributel=’’valuel’’) (attribute2=’’value2’’)...

Whenever a disjunct-request (OR style) of two or more attributes is needed, the following construction can
be used:

(| (attribute=’’valuel’’) (attribute=’’value2’’)...)

In expressions, the following operands are allowed:

Commented lines should start with “(*” and be closed with “*)”:
(*attribute=’’valuel’’*)

Comments can not be nested.

Multiple job descriptions in one file are realized via a standard Globus RSL multi-request operand “+”,
which should precede the multiple job descriptions:

+(&C) @G D)) @)

The xRSL attributes can be written in a single string, or split in lines arbitrary; blank spaces between
(attribute=’’value’’) pairs and inside relations are ignored.

4.1.1 URLs

File locations in NorduGrid can be specified both as local file names, and as Internet standard Uniform
Resource Locators (URL). However, there are some additional options, used by the Grid Manager.

The following transfer protocols and metadata servers are supported:

e ftp — ordinary File Transfer Protocol (FTP)
o gsiftp — GridFTP, the Globus-enhanced FTP

4.1. TASK DESCRIPTION LANGUAGE: XRSL 23

e http — ordinary Hyper-Text Transfer Protocol (HTTP)

e https — HTTP with Globus GSI authentication

e 1ldap — ordinary Lightweight Data Access Protocol (LDAP) [10]
e rc — Globus Replica Catalog (RC) [13]

e rls — Globus/EDG Replica Location Service (RLS) [14]

file — local file access

An URL can be used in a standard form, i.e.

<protocol>://host[:port]/<file>

Or, to enhance the performance, it can have additional options:

<protocol>://host[:port] [;option[;option[...]1]]/<file>

For a metadata service URL, construction is the following:

rc://[location[|location[...]]@]<host>[:port]/<DN>/<1fn>
rls://[url(lurl([...]]@]<host>[:port]/<1lfn>

Here the URL components are:

location <location_name_in_RC>[;option[;option[...]1]]

host[:port] IP address of a server

DN Distinguished Name (as in LDAP) of an RC collection
1fn Logical File Name

url URL of the file as registered in RLS

file local to the host file name with a full path

The following options are supported:
threads=<number> specifies number of parallel streams to be used by GridFTP; de-
fault value is 1, maximal value is 10
cache=yes|no indicates whether the GM should cache the file; default is yes
secure=yes|no indicates whether the GridF'TP data channel should be encrypted;

default is no

Local files are referred by specifying either location relative to the job submission working directory, or by
an absolute path (the one that starts with “/”), preceded with a file:// prefix.

Examples of URLs are:

http://grid.domain.org/dir/script.sh
gsiftp://grid.domain.org:2811;threads=10/dir/input_12378.dat
ldap://grid.domain.org:389/1c=collectionl,rc=Nordugrid,dc=nordugrid,dc=org
rc://grid.domain.org/lc=collectionl,rc=Nordugrid,dc=nordugrid,dc=org/zebra/fl.zebra
file:///home/auser/griddir/steer.cra

24 CHAPTER 4. DESCRIBING GRID TASKS

4.1.2 Task Description: Attributes

A task is typically described by a binary executable to be processed by a computer, parameters passed to
that executable, and requirements which must be met by a system to be able to execute the task. For
example, a simple “Hello World” task description would specify /bin/echo as the executable and “Hello
World” as the argument. In xRSL language it will look as follows:

& (executable=‘‘/bin/echo’’) (arguments=‘‘Hello World’’)

In a more complex case, a binary executable may have to be downloaded from a remote location, process
an input data and create an output file. This task specification will have to include locations of all three
files: executable, input and output, and perhaps few other requirements, e.g., the necessary disk space and
an e-mail address to which the notification of the task completion should be sent. Such an xRSL file may
be written like the following:

&

(executable=‘ ‘myprog’’)

(inputFiles=
(¢ ‘myprog’’ ‘‘http://www.myserver.org/myfiles/myprog’’)
(“‘myinput’’ ‘‘gsiftp://www.mystorage.org/data/file007.dat’’)

)
(outputFiles=

(¢ ‘myoutput’’ ‘‘gsiftp://www.mystorage.org/results/file007.res’’)
)

(disk=1000)
(notify=‘‘e myname@mydomain.org’’)

As you can see, the xRSL attribute names are largely self-explanatory. xRSL handles most possible task
description attributes, and the next Section contains the comprehensive list of them, complete with usage
examples.

Attributes

The following attributes can be specified in a user’s xRSL file or string for job description.

executable

Usage: (executable=<string>)

Example: (executable="myprog.exe")
The executable to be submitted to LRMS.
string file name (including path), local to the computing element (CE)

If an executable has to be transferred from the submission node, it has to be specified in the inputFiles
list, otherwise it will be added to that list by the UL

If the file name starts with a leading slash (7/”), it is considered to be the full path to the executable
at a CE; otherwise the location of the file is relative to the session directory (where job input and files are
stored). If the attribute’s value starts with an environment variable (?$...”), the value of this variable is
resolved locally, but if it is enclosed in double quotes, it will be resolved at the remote computing element:
(executable=$RO0T_DIR/myprog.exe) — $ROOT_DIR is resolved locally (will cause errors if the path does
not exist at the execution machine)

(executable=’’>$ROOT_DIR/myprog.exe’’) — $ROOT_DIR will be resolved remotely

For more discussion on practical use of this attribute, refer to Section 4.2.2.

4.1. TASK DESCRIPTION LANGUAGE: XRSL 25

arguments

Usage: (arguments=<string> [string] ...)
Example: (arguments="10000" $(ATLAS)/input.dat)

List of the arguments for the executable.

string an argument

inputFiles

Usage: (inputFiles=(<filename> <location>) ...)

Example: (inputFiles=(filel.dat gsiftp://grid.quark.lu.se/scratch/test.dat)
(file2.dat /scratch/bigfile.dat)
(file3.dat ""))

List of files to be copied to the computing element before the execution.

filename file name, local to the computing element and always relative to
the session directory

location location of the file (gsiftp, https, ftp, http URLs, or a path,
local to the submission node). If void ("), the input file is taken
from the submission directory.

If the list does not contain the standard input file (as specified by stdin) and/or the executable file (as
specified by executable if the given name), the UI appends these files to the list.

executables

Usage: (executables=<string> [string] ...)

Example: (executables=myscript.sh myjob.exe)

List of files from the inputFiles set, which will be given executable permissions.

string file name, local to the computing element and relative to the ses-
sion directory

If the executable file (as specified in executable and is relative to the session directory) is not listed, it will
be added to the list by the UL

cache

Usage: (cache=yes|no)

Example: (cache=yes)

Specifies whether input files specified in the inputFiles should be placed by default in the cache or not.
This does not affect files described by the executable, which will be placed in the session directory always.

If not specified, default value is “yes”.

outputFiles

26 CHAPTER 4. DESCRIBING GRID TASKS

Usage: (outputFiles=(<string> <URL>) ...)
Example: (outputFiles=(filel.dat gsiftp://grid.uio.no/storage/file_num_11)
(file2 rc://grid.fi.uib.no/groupl/result2))

List of files to be retrieved by the user or uploaded by the GM and registered in a Replica Catalog.

string file name, local to the Computing Element (CE)

URL URL of the remote file (gsiftp, https, ftp, http or a Replica
Catalog pseudo-URL); if void (7”), the file is kept for manual
retrieval.

Using a RC pseudo-URL (see Section 4.1.1), you should make sure that the location is already defined in
the RC. If few locations are specified, only those found in the RC will be used. GM will store output files
in one location only. If the first one in the list fails, it would try the next. If no locations are specified, all
found in the RC will be used.

If in RC pseudo-URL the component host [: port] /DN is not specified, the one given in the replicaCollection
attribute is used.

If the list does not contain standard output and/or standard error files (as specified by stdout/stderr), the
UI appends these file names to the list. If the <URL> is not specified (void, ””), files will be downloaded by
the user via the UI.

cpuTime

Usage: (cpuTime=<time>)
Example: (cpuTime=240)
Maximal CPU time request for the job.
time time (minutes)

If only number is specified, the time is assumed to be minutes. Otherwise, a free format is accepted, i.e.,
any of the following will be interpreted properly:

1 week

3 days

2 days, 12 hours

1 hour, 30 minutes
36 hours

9 days

240 minutes

memory

Usage: (memory=<integer>)
Example: (memory>=500)
Memory required for the job.

integer size (Mbytes)

disk

Usage: (disk=<integer>)
Example: (disk=500)

4.1. TASK DESCRIPTION LANGUAGE: XRSL 27

Disk space required for the job.

integer disk space ,Mbytes

runTimeEnvironment

Usage: (runTimeEnvironment=<string>)

Example: (runTimeEnvironment=Atlas-1.1.0)
Required runtime environment
string environment name

The site to submit the job to will be chosen by the Ul among those advertising specified runtime environments.
Before starting the job, the GM will set up environment variables and paths according to those requested.

To request several environments, repeat the attribute string:

(runTimeEnvironment=ENV1) (runTimeEnvironment=ENV2) etc. To make a disjunct-request, use a boolean
expression:

(| (runTimeEnvironment=envl) (runTimeEnvironment=env2)).

Runtime environment string interpretation is case-insensitive. If a runtime environment string consists of a
name and a version number, a partial specification is possible: it is sufficient to request only the name.

Use the “>=” operator to request a version “equal or higher”.

middleware

Usage: (middleware=<string>)
Example: (middleware=NorduGrid-0.3.99)

Required middleware.
string Grid middleware name

The site to submit the job to will be chosen by the Ul among those advertising specified middleware. Usage is
identical to that of the runTimeEnvironment. Use the “>=" operator to request a version “equal or higher”.
Request (middleware=nordugrid) defaults to (middleware>=nordugrid-0.0.0.0).

stdin

Usage: (stdin=<string>)
Example: (stdin=myinput.dat)
The standard input file.
string file name, local to the computing element

The standard input file should be listed in the inputFiles attribute; otherwise it will be forced to that list
by the Ul

stdout

Usage: (stdout=<string>)
Example: (stdout=myoutput.txt)

The standard output file.

28 CHAPTER 4. DESCRIBING GRID TASKS

string file name, local to the computing element and relative to the ses-
sion directory.

The standard output file should be listed in the outputFiles attribute; otherwise it will be forced to that
list by the UL If the standard output is not defined, UI assigns a name.

stderr

Usage: (stderr=<string>)

Example: (stderr=myjob.err)
The standard error file.

string file name, local to the computing element and relative to the ses-
sion directory.

The standard error file should be listed as an outputFiles attribute; otherwise it will be forced to that list
by the UL If the standard error is not defined, UI assigns a name.

join

Usage: (join=yes|no)
Example: (join=yes)

If ”yes”, joins stderr and stdout files into the stdout one. Default is no.

gmlog

Usage: (gmlog=<string>)
Example: (gmlog=myjob.log)
The job log file, containing all the job-related messages from the GM.

string file name, local to the computing element and relative to the ses-
sion directory

The job log file should be listed as an outputFiles attribute; otherwise it will be forced to that list by the
UL

jobName

Usage: (jobName=<string>)
Example: (jobName=MyJob)
User-specified job name.
string job name

This name is meant for convenience of the user. It can be used to select the job while using the UL It is also
available through the Information System.

ftpThreads

4.1. TASK DESCRIPTION LANGUAGE: XRSL 29

Usage: (ftpThreads=<integer>)
Example: (ftpThreads=4)

Defines how many parallel streams will be used by the GM during gsiftp transfers of files.
integer a number from 1 to 10

If not specified, parallelism is not used.

cluster

Usage: (cluster=<string>)

Example: (cluster=nbi)
The name of the execution cluster.
string known cluster name, or a substring of it

Use this attribute to explicitly force job submission to a cluster, or to avoid such. The job will not be
submitted if the cluster does not satisfy other requirements of your job. Disjunct-requests of the kind
(| (cluster=clus1) (cluster=clus2)) are supported. To exclude a cluster, use (cluster!=clus3).

queue

Usage: (queue=<string>)
Example: (queue=pclong)
The name of the remote batch queue.
string known queue name

Use this attribute to explicitly force job submission to a queue.

startTime

Usage: (startTime=<time>)
Example: (startTime="2002-05-25 21:30")

Time to start job execution at a worker node. Unless you have computing nodes pre-allocated by some other
means, this does not guarantee that the job will actually start running at the specified time; however it
guarantees that it will not be launched before.

time time string, YYYY-MM-DD hh:mm:ss

lifeTime

Usage: (1ifeTime=<time>)
Example: (1ifeTime=60)

Maximal time to keep job files (the session directory) on the gatekeeper upon job completion.
time time (days)

Typical life time is 1 day (24 hours). Specified life time can not exceed local settings.

30 CHAPTER 4. DESCRIBING GRID TASKS

notify

Usage: (notify=<string> [string] ...)
Example: (notify="be your.name@your.domain.com")
Request e-mail notifications on job status change.
string string of the format: [b] [q] [£] [e] [c] userl@domainl [user2@domain2]

here flags indicating the job status are:
b — begin (PREPARING)
q — queued (INLRMS)
f — finalizing (FINISHING)
e —end (FINISHED)
¢ — cancellation (CANCELED)

No more than 3 e-mail addresses per status change accepted.

replicaCollection

Usage: (replicaCollection=<URL>)
Example: (replicaCollection="ldap://grid.uio.no:389/1c=TestCollection,
rc=NorduGrid,nordugrid,dc=org")
Location of a logical collection in the Replica Catalog.

URL LDAP directory specified as an URL (1dap://host[:port]/dn)

rerun

Usage: (rerun=<integer>)

Example: (rerun=2)
Number of reruns (if a system failure occurs).
integer an integer number

If not specified, the default is 0. Default maximal allowed value is 2.

architecture

Usage: (architecture=<string>)
Example: (architecture=i686)

Request a specific architecture.

string architecture (e.g., as produced by uname -a)

nodeAccess

Usage: (nodeAccess=inbound |outbound)

Example: (nodeAccess=inbound)

Request cluster nodes with inbound or outbound IP connectivity. If both are needed, a conjunct request
should be specified.

4.2. EXAMPLES 31

dryRun

Usage: (dryRun=yes|no)
Example: (dryRun=yes)

If ”yes”, do dry-run: RSL is parsed, but no job submission to LRMS is made. Use for xRSL validation.

rsl_substitution

Usage: (rsl_substitution=(<stringl> <string2>))
Example: (rsl_substitution=(ATLAS /opt/atlas))

Substitutes <string2> with <stringi> for internal RSL use.
stringl new internal RSL variable
string2 any string, e.g., existing combination of variables or a path

Use this attribute to simplify xRSL editing. Only one pair per substitution is allowed. To request several
substitution, concatenate such requests. Bear in mind that substitution must be defined prior to actual use
of a new variable stringl.

environment

Usage: (environment=(<VAR> <string>) [(<VAR> <string>)] ...)
Example: (environment=(ATLSRC /opt/atlas/src)
(ALISRC /opt/alice/src))
Defines execution shell environment variables.
VAR new variable name
string any string, e.g., existing combination of variables or a path

Use this to define variables at an execution site.

count

Usage: (count=<integer>)
Example: (count=4)

Specifies amount of sub-jobs to be submitted for parallel tasks.

integer a number (default is 1)

4.2 Examples

In this section you can find some examples of xRSL job description.

While the entire xRSL can be passed to the ngsub as a single string at a command line, it is much more
convenient to create a file with an arbitrary name, containing the xRSL string, and pass the file using
ngsub -f filename . Formatting of the file is not important, as long as it does not contain Microsoft/DOS
linefeeds.

Attribute names are case-insensitive, that is, you can use CPUTime or cputime interchangeably. The only
attribute wich must be specified is executable, others can be added by the user depending on the needs,
in no particular order.

32 CHAPTER 4. DESCRIBING GRID TASKS

4.2.1 Hello World

The simplest way to say “Hello World” is to assume that any cluster on the Grid has the Unix echo executable
in the /bin/ directory. In most cases it will work, so the following xRSL file can be composed:

&

(* main executable of the task *)
(executable=/bin/echo)

(* arguments for the main executable *)
(arguments="Hello World")

(* standard output will be redirected to this file: *)
(stdout="hello.txt")

(* standard error will be redirected to this file: *)
(stderr="hello.err")

(* Grid Manager auxilliary logs will be stored in this directory: *)
(gmlog="gridlog")

(* give job a distinct name for easy monitoring *)
(jobname="My Hello Grid")

(* instruct cluster that your job should be placed in a queue with *)
(* the sufficient time limit for the job to get completed *)
(cputime=5)

(* choose only those clusters which have a proper NorduGrid installation *)
(middleware>="nordugrid-0.3.24")

In this example, strictly speaking, only the executable and arguments are needed to describe the task.
However, as the job will be executed in batch (like everything on the Grid), you will never see the message
“Hello World” on your screen. Instead, you should instruct the Grid Manager to capture the standard
output to a file, which you can later retrieve. This is how stdout attribute appears in the xRSL. It may
happen that something goes wrong (e.g., echo is located in /usr/bin/), and an error will be produced. To
be able to analyze the errors, users are advised to use stderr and gmlog attributes, which instruct the
Grid Manager where to store possible error messages.

Job name is a convenient way to identify the task. Although every job is assigned a unique Grid ID, it is
far from being intuitive, and as soon as you plan to submit more than one job, you should think of a set of
good names for them, which would save you much time. The attribute jobname should be used to associate
every job with a user-defined name.

Since the Grid will parse the task to a batch system, it is always a good idea to specify the needed CPU
time. Some clusters are known to have the default execution time set to 0, which effectively kills any job.
The cputime attribute takes the time value (in minutes) and passes it to the Grid Manager. Do not
overestimate the time, as your job may end up in a “long” queue, and wait unnecessarily long time before
being executed.

The last attribute in this example is middleware . This may be quite helpful in the environment where

some clusters run untested versions of the middleware. When not sure what to specify, do ngsub -v , and
use the printed version number.

4.2.2 An Own Executable

In the previous Section, the executable attribute had the value /bin/echo.

A very important thing to understand is that the Grid Manager always expects the file specified by the
executable attribute to be at the execution machine, not user’s machine.

4.2. EXAMPLES 33

This means that if a user wants to submit a job executing an own tool say_hello and specifies in the xRSL
text (executable=say_hello), the Grid Manager will attempt to execute a file say_hello in the temporary
session directory, local to the job. Naturally, this file will not appear there by magic. Instead, the User
Interface, prior to job submission, will interpret such a request as if a user has the executable file say_hello
in the current directory at the submission machine, and will upload the file to the destination. Absence of
the leading slash (/) makes the User Interface assume that the file in question resides locally, in the path
relative to the current directory.

So far, so good, but what if the executable resides not in the current directory, but elsewhere on your
computer, or, even better, at a remote location? If this is the case, you have to instruct the User Interface
how to get the file by using the inputfiles attribute:

&
(* main executable of the task *)
(executable=say_hello)
(* arguments for the main executable *)
(arguments="Hello again")
(* where does the executable reside *)
(inputfiles=(say_hello file:///home/john/bin/say_hello))
(* standard output will be redirected to this file: *)
(stdout="hello.txt")

The inputfiles attribute instructs the User Interface to copy the file from /home/john/bin/say_hello
on your local computer to say_hello in the session directory at the execution machine. If the file resides
at an GridFTP or HTTP server, use gsiftp:// or http:// respectively instead of file://to specify the
protocol.

4.2.3 Many Executables

The Grid Manager is capable of managing more than one executable file, and xRSL provides means for users
to specify such files. A typical example is when a user script prepares and starts a pre-compiled binary. In
this case, both files must be given executable permissions, but only the “main” script should be submitted
for execution by the local system. To make this working, users must list all the files which need executable
permissions in the executables attribute, as shown below:

&

(executable=run.sh)
(arguments=1664900 100000)
(executables=ffungen)
(inputFiles=(ffungen ""))
(outputFiles=(ffun.hbook gsiftp://hathi.hep.lu.se/test/flong/flongl.hbook))
(jobName=flongl)

(stdout=flongl.out)

(join=yes)

(notify="e oxana.smirnova®Ghep.lu.se")
(ftpThreads=6)
(middleware="NorduGrid-0.3.26")

34

CHAPTER 4. DESCRIBING GRID TASKS

Chapter 5

Grid Session

Before starting your first Grid session, check whether the following have been accomplished:
1. You have the NorduGrid client installed (see Chapter 2)
2. You have a valid Grid certificate (see Section 3.1)

3. You are a member of one of the NorduGrid-accepted VOs (see Section 3.2)

5.1 Logging Into The Grid

Access to the Grid resources in the Globus world is made via a so-called proxy — a kind of a temporary
token, which you pass to the Grid services, allowing them to act on your behalf.

Initialization of the proxy is done via the standard Globus command:

grid-proxy-init

This command searches for your public certificate and private key in the default directory ($HOME/ . globus),
and upon a pass phrase confirmation, creates a file containing your Grid proxy in the /tmp directory of your
computer. The proxy file name typically starts with ¢ ‘x509up_u’’, which is followed by your UNIX/Linux
UID.

This Globus proxy is public, hence anybody having access to it can impersonate you. To minimize this risk,
proxies have limited lifetime. By default, a proxy is valid for 24 hours. This, however, means that if your
Grid task will last longer than the proxy validity, it will not be able to get finished because of the proxy
expiration. Either for this reason, or, on contrary, if you’d like to have your proxy short-living, it is possible
to create a proxy with a user-defined life span:

grid-proxy-init -valid 27:45

In this example, a proxy will leave 27 hours and 45 minutes.

To avoid troubles, please always try to make sure that your proxy has a validity period sufficient for
your task to come to completion. However, it is not advised to generate proxies living several days.

The grid-proxy-init command has several options: e.g., you can select a location of the newly generated
proxy, or specify another location for your Grid certificate and/or key. For detailed information on these
options, use grid-proxy-init -help.

35

36

If you are using different computers to log in to the Grid, it is strongly advised NOT TO COPY your
private key across the systems. Instead, use a dedicated machine to generate a proxy, and then copy the
proxy file to another computer, preferably into your $HOME directory, and describe the new proxy location

CHAPTER 5. GRID SESSION

in the X509_USER_PROXY environment variable:

scp /tmp/x509up_u230 another.machine.org:myproxy
ssh another.machine.org

export X509_USER_PROXY=$HOME/myproxy

5.2 Logging

Logging out is performed by destruction of the proxy. You can either physically erase the corresponding file,

or issue

grid-proxy-destroy

Out

5.3 Working with jobs

Job submission on the NorduGrid is made via the User Interface (UI) part of the NorduGrid toolkit [4].
The UI provides a set of command line tools, allowing to submit jobs, trace their status, kill jobs, retrieve
job output, and perform some other related functions. For a complete description, please refer to the Ul

manual [4].

5.3.1 Submit A Job

The ngsub command is the most essential one, as it is used for submitting jobs to the NorduGrid. The jobs

are described using the extended resource description language (xRSL), see Section 4.

ngsub [options] [xrsl]

Options:
-c, —cluster

-C, —-clustlist

-g, —giisurl

-G, -giislist

-f, -file

-0, —joblist
-dryrun
—dumpxrsl

-t, —timeout

-d, —-debug

-X, —anonymous

-X, —gsi

-v, —-version

-h, -help

Arguments:

xrsl ...

[-]textemname
[-]textemfilename
url

filename

filename

filename

time

debuglevel

explicitly select or reject a specific cluster
list of clusters to select or reject

URL of a central Information System server
list of GIIS URLs

xrsl file describing the job to be submitted
file where the job IDs will be stored

add dryrun option to the xRSL

do not submit — dump transformed xRSL to stdout
timeout for queries (default 40 sec)

0 = none, 1 = some, 2 = more, 3 = a lot
use anonymous bind for queries

use GSI-GSSAPI bind for queries

print version information

print this help

xrsl strings describing the jobs to be submitted

A simple “Hello World” job would look like:

5.3. WORKING WITH JOBS 37

ngsub ’&(executable=’’/bin/echo’’) (arguments=’’Hello World’’) (stdout=’’hello.txt’’)’

Hint: use single quotes for the xRSL string and double quotes for attribute values.

Such a request would submit the task to any available cluster, as there are no specific requirements specified.
The job will be executed in batch mode, and the standard output will be written to a file hello.txt at the
execution cluster. You will have to retrieve this file manually, using ngget command (Section 5.3.4).

If a submission was successful, the job ID will be printed by ngsub.
If a job is successfully submitted, a job identifier (job ID) is printed to standard output. This job ID
uniquely identifies the job while it is being executed. A typical job ID looks like follows:

gsiftp://site.it.uni.org:2812/jobs/10308913211503407485

You should use this as a handle to refer to the job when doing other job manipulations, such as querying
job status (ngstat, Section 5.3.2), killing it (ngkill, Section 5.3.5), re-submitting (ngresub, Section 5.3.6),
or retrieving the result (ngget, Section 5.3.4).

Every job ID is a valid URL for the job session directory. You can always use it to access the files related
to the job, by using data management tools (see Section 5.4 and Chapter 6).

The job description in the xRSL format can be given either as an argument on the command line, as in the
example above, or can be read from a file by using the -f option. Several jobs can be requested at the
same time by giving more than one xRSL argument, or by repeating the —-f option. It is also possible to mix
xRSL arguments and -f options in the same ngsub command.

To validate your xRSL script without actually submitting a job, use the ~dryrun option: it will capture
possible syntax or other errors, but will instruct the GM not to submit the job for execution.

If the -o option is given, the job identifier is also written to a file with the specified filename. This file can

later be used with the corresponding -i option of the other job manipulating User Interface commands.

ngsub -o my_jobid_list -f myjob.xrsl ngkill -i my_jobid_list

The -c option can be used to force a job to be submitted to a particular cluster, or to reject submission
to a cluster. The matching is done by case insensitive substring match to the cluster name (i.e. hostname)
or to the cluster alias name, as defined in the Information System. The -c option can be repeated several
times, for example:

ngsub -c grid.nbi.dk -c grid.tsl.uu.se -f myjob.xrsl

This will submit a job to either grid.nbi.dk or grid.tsl.uu.se. For convenience, you may list the sites
in a file, and use the -C option to refer to the whole list:

ngsub -C preferred_sites -f myjob.xrsl

If a cluster name or file name is preceded with a minus sign (“-”), this cluster (or the list) will be avoided
during the submission. This gives a possibility to blacklist unwanted sites:

ngsub -C -blacklist -f myjob.xrsl

The ngsub command locates the available clusters by querying the Information System. By default, a
list of the NorduGrid Information System servers is distributed with the middleware and is stored in
$NORDUGRID_LOCATION/etc/giislist. However, a user is free to choose another set of servers, either by
storing them in $HOME/.nggiislist file, or by specifying them via the -g option:

38 CHAPTER 5. GRID SESSION

ngsub -g ldap://hostname[:port]/DN -f myjob.xrsl

You may prefer to store the list of GIIS servers in a file other than the default one, and use the -G option
to instruct ngsub to contact those servers instead:

ngsub -G my_GIIS_list -f myjob.xrsl

If you would like to trace the process of resource discovery and requirements matching, a very useful option
is =d. The following command:

ngsub -d 2 -f myjob.xrsl

will print out the steps taken by the User Interface to find the best cluster satisfying your job requirements.

It often happens that some sites that ngsub has to contact are slow to answer, or are down altogether. This
will not prevent you from submitting a job, but will slow down the submission. To speed it up, you may
want to specify a shorter timeout (default is 40 seconds) with the -t option:

ngsub -t 5 -f myjob.xrsl

5.3.2 Querying Job Status
The ngstat command is used for obtaining the status of jobs that have been submitted to NorduGrid.

ngstat [options] [job ...]

Options:

-a, -all all jobs

-i, -joblist filename file containing a list of jobids
-c, -clusters show information about clusters

-C, -clustlist [-]textemfilename list of clusters to select or reject

-s, -status statusstr only select jobs whose status is statusstr
-g, -giisurl url URL of a central Information System server
-G, -giislist filename list of GIIS URLs

-q, —queues show information about clusters and queues
-1, -long long format (extended information)

-t, -timeout time timeout for queries (default 40 sec)

-d, -debug debuglevel 0 = none, 1 = some, 2 = more, 3 = a lot
-X, —anonymous use anonymous bind for queries

-X, -gsi use GSI-GSSAPI bind for queries

-v, -version print version information

-h, -help print this help

Arguments:

job ... list of job IDs and/or jobnames

Typicaly, one should use ngstat with the job ID as printed by ngstat. If the job IDs were saved to a file,
ngstat -i filename will give the list of all the jobs status. Many users prefer to use ngstat -a to display
the status of all the jobs they ever submitted*. To check the status of jobs being on a particular stage of
execution (e.g., only running jobs), use the -s option:

*QOr, more precisely, since the last they ran ngclean

5.3. WORKING WITH JOBS

ngstat -s ¢ ‘INLRMS: R’’

39

The list of basic job status codes:

Most of the states can be appended with the

failed, starting with “: FAILURE” string.

ACCEPTED job submitted but not yet processed
PREPARING input files are being retreived
SUBMITTING interaction with LRMS ongoing
INLRMS: Q job is queued by LRMS

INLRMS: R job is running

FINISHING output files are being transferred
FINISHED job is finished

CANCELING job is being cancelled

DELETED job is removed due to expiration time

“

: PENDING” message, if the processing of the
state have not been started yet. The FINISHED state may be followed by an error message if the job

end.

The jobs are normally removed from the clusters if they were not retrieved within 24 hours after job

A standard output produced by ngstat is rather short, informing the user only about the job status. Use
ngstat -1 to receive the complete job information as stored in the system.

5.3.3 Capturing Job Output

It is often useful to monitor the job progress by checking what it prints on the standard output or error.
The command ngcat assists here, capturing the corresponding information from the execution cluster and
pasting it on the user’s screen. It works both for running tasks and for the finished ones. This allows a user
to check the output of the finished task without actually retreiving it.

ngcat [options] [job ...]

Options:

-a, -all all jobs
-i, -joblist filename

-c, —-clusters

-C, -clustlist [-]textemfilename

-s, -status statusstr

-0, —-stdout

-e, —stderr

-1, -gridlog

-t, —-timeout time

-d, -debug debuglevel

-X, —anonymous

-X, -gsi

-v, -version

-h, -help print this help
Arguments:

job ...

file containing a list of job IDs

show information about clusters

list of clusters to select or reject

only select jobs whose status is statusstr
show the stdout of the job (default)
show the stderr of the job

show the grid error log of the job
timeout for queries (default 40 sec)

0 = none, 1 = some, 2 = more, 3 = a lot
use anonymous bind for queries

use GSI-GSSAPI bind for queries

print version information

list of job IDs and/or jobnames

40 CHAPTER 5. GRID SESSION

As one can see, ngcat can capture not only the standard output (-o option), but also the standard error
(-e option) and the errors reported by the Grid Manager (-1 option).

5.3.4 Retrieving Job Output

To retrieve the results of a finished job, the ngget command should be used. It will download the files
specified by the outputfiles xRSL attribute (see Section 4.1.2) to the user’s computer.

ngget [options] [job ...]

Options:

-a, -all all jobs

-i, -joblist filename file containing a list of jobids

-c, —-cluster [-]1textemname explicitly select or reject a specific cluster

-C, -clustlist [-]textemfilename list of clusters to select or reject

-s, -status statusstr only select jobs whose status is statusstr
-dir dirname download directory (the job directory will be created in this directory)

-j, -usejobname use the jobname instead of the digital ID as the job directory name
-keep keep files on gatekeeper (do not clean)

-t, -timeout time timeout for queries (default 40 sec)

-d, -debug debuglevel 0 = none, 1 = some, 2 = more, 3 = a lot

-X, —anonymous use anonymous bind for queries

-X, -gsi use GSI-GSSAPI bind for queries

-v, -version print version information

-h, -help print this help

Arguments:

job ... list of job IDs and/or jobnames

The files to be retrieved by ngget should be described by the xRSL as follows:

(outputfiles=(filel “”)(file2 “”))

That is, while the filenames must be listed, no output destination should be requested. This will tell the
Grid Manager not to erase the files after job’s end and allow the User Interface to download them.

Files specified as stdout, sterr and the gmlog directory are always treated as outputfiles by the UI,
which means you don’t have to add them to the output files list.

By default, ngget will create in your current directory a new folder, with the same name as the remote session
directory (typically, a numerical string). This new directory will contain all the files listed for download in
your xRSL. If you would like to store the files in another location, use the -dir option. The option -j will
assign your job name to the local directory with the output files (be careful not to call all the jobs same
name when using this option).

When the job result is retrieved, the session directory is erased from the execution machine, and the job ID
is removed from your list of submitted jobs. If you however want to keep the job for a while, use the -k
option.

Beware that the job results will be removed by the Grid Manager at the execution machine in 24 hours
after the job completion independently of whether you retrieved the results or not.

5.3. WORKING WITH JOBS

5.3.5 Killing Jobs

41

It happens that a user wishes to cancel a job. This is done by using the ngkill command. A job can be
killed at practically any stage of processing through the Grid.

ngkill [options] [job ...]

Options:

-a, -all all jobs

-i, -joblist filename file containing a list of jobids

-c, -clusters show information about clusters

-C, -clustlist [-]textemfilename list of clusters to select or reject

-s, -status statusstr only select jobs whose status is statusstr
-keep keep files on gatekeeper (do not clean)

-t, -timeout time timeout for queries (default 40 sec)

-d, -debug debuglevel 0 = none, 1 = some, 2 = more, 3 = a lot

-X, —anonymous use anonymous bind for queries

-X, -gsi use GSI-GSSAPI bind for queries

-v, -version print version information

-h, -help print this help

Arguments:

job ... list of job IDs and/or jobnames

Job cancellations are processed in an asynchronous manner, so it may take a few minutes before the job
is actually cancelled.

5.3.6 Re-submitting Jobs

Quite often it happens that a user would like to re-submit a job, but has difficulties recovering the original
job description xRSL file. This happens when xRSL files are created by scripts on-fly, and matching of xRSL
to the job ID is not straightforward. The utility called ngresub helps in such situations, allowing users to
resubmit jobs known only by their IDs.

Ounly jobs where the gmlog attribute was given in the xRSL description (see Section 4.1.2) can be
resubmitted.

ngresub [options] [job ...]

42
Options:
-a, —all
-i, -joblist filename
-c, —-cluster [-]textemname

-C, -clustlist [-]textemfilename
-s, —status statusstr

-k, -kluster [-]textemname
-K, -Klustlist [-]textemfilename
-g, -giisurl url

-G, -giislist filename

-0, -joblist filename
-dryrun
—dumpxrsl
-keep

-t, —-timeout time

-d, -debug debuglevel

-X, —anonymous
-X, —gsi

-v, —version

-h, -help
Arguments:
job ...

CHAPTER 5. GRID SESSION

all jobs

file containing a list of jobids

explicitly select or reject a specific cluster

list of clusters to select or reject

only select jobs whose status is statusstr

explicitly select or reject a specific cluster as re-submission target
list of clusters to select or reject as re-submission target
URL of a central Information System server

list of GIIS URLs

file where the job IDs will be stored

add dryrun option to the xRSL

do not submit — dump transformed xRSL to stdout
keep files on gatekeeper (do not clean)

timeout for queries (default 40 sec)

0 = none, 1 = some, 2 = more, 3 = a lot

use anonymous bind for queries

use GSI-GSSAPI bind for queries

print version information

print this help

list of job IDs and/or jobnames

If the original job description contained input file locations specified as relative paths (non-URLs), the
command must be issued in the same directory as the original ngsub instruction.

It is important to distinguish -c and -k options (as well as -C and -K). The former stands for -cluster and
is used to instruct ngresub to look for jobIDs and descriptions only at a given cluster (or exclude a cluster).
This is convenient to use together with the —a option, in case you would like to re-submit all the jobs which
were originally sent to a specific cluster. The latter option, -k, stands for ~kluster, and should be used to
specify p