
Nordic Testbed for Wide Area Com-
puting And Data Handling

28/9/2004

THE HTTP(S,G)AND SOAP SERVER/FRAMEWORK

Code and Usage Description∗

A.Konstantinov

∗Comments to: aleks@fys.uio.no

Contents

1 Introduction 4

2 Classes 4
2.1 HTTPS_Connector . 4
2.2 HTTP_Service . 5
2.3 HTTP_ServiceAdv . 6
2.4 HTTP_Client . 8
2.5 HTTP_ClientSOAP . 8

3 Server 8
3.1 Overview . 8
3.2 Configuration . 8
3.3 Building . 9
3.4 Starting . 10

3

1 Introduction

The HTTP SOAP framework (httpsd) is a set of C++ classes and code to make it easier to write SOAP over HTTP over
GSI or SSL services. Pure HTTP is also possible. As result it includes HTTP(S,G) server.

The code is provided as part of NorduGrid ARC software and uses some shared pieces of code, including third-party
software. It can be obtained fromhttp://ftp.nordugrid.org/download/ by downloading any source package cur-
rently available. Required third-party software include Globus ToolkitTM[1](for globus_io), gSOAP[2], VOMS(optional).
One of included services uses GACL (included in sources).

The code builds into standalone server which listens on 2 TCP/IP ports for incoming connections and understands
subset of HTTP wrapped with GSI or SSL. There are plans to add support for plain HTTP.

There are following C++ classes availble:

• Server side:

– HTTPS_Connector,

– HTTP_Service,

– HTTP_ServiceAdv.

• Client side

– HTTP_Client

– HTTP_ClientSOAP

2 Classes

2.1 HTTPS_Connector

Defined in httpsd.h

class HTTPS_Connector {
public:
unsigned int pid;
HTTPS_Connector(globus_io_handle_t *s,const char* url,HTTP_Services& serv,list

<AuthEvaluator*>& auths);
~HTTPS_Connector(void);
operator bool(void);
size_t read(char* buf, size_t l);
int write(const char* buf, size_t l);
size_t readline(char* buf, size_t l);
void loop(void);
static void identity(globus_io_handle_t* handle,const char* subject,gss_cred_id_t cred);
const char* identity_subject(void) const;
const char* identity_proxy(void) const;
AuthUser& identity(void);
list<AuthEvaluator*>& authorizations(void);
const char* url(void);

};

It’s purpose is to serve as a socket for accepting data from a client and to send a response from a server. It is imple-
mented as a wrapper over globus_io functions from Globus ToolkitTM libraries and takes care of encoding/decoding data
automatically.

size_t HTTPS_Connector::read(char* buf, size_t l)

Reads at mostl bytes into bufferbuf. Returns number of read bytes. Returned 0 means it could not read data. This most
probably happens due to closed connection.

4

int HTTPS_Connector::write(const char* buf, size_t l)

Sendsl bytes from bufferbuf to network. Returns either 0 if data is sent or 1 ortherwise.

size_t HTTPS_Connector::readline(char* buf, size_t l)

Reads line delimited by ’\n’ character. Characters ’\n’ and ’\r’ at end of line are stripped. Returns number of read
characters.

void HTTPS_Connector::loop(void)

Waits for a HTTP request coming from the open connection, initiates an instance of requested service and call corre-
sponding methods. Exits after connection is closed.

Useful functions

Following functions return 0 in case of success and 1 otherwise.
int skip_request(HTTPS_Connector &c,int &keep_alive)- reads and skips HTTP header and message body (if avail-

able). Variablekeep_alivewill be reset to 0 if information in header does not allow connection to continue.
int skip_header(HTTPS_Connector &c,iinstalaltionnt &keep_alive)- skips HTTP header. Support forkeep_alive

currently is not implemented.
int send_response_header(HTTPS_Connector &c,int keep_alive,int code,char* type,int size)- creates and sends re-

sponse HTTP header incuding first line with response code provided in variablecode. Variablestype(if not NULL) and
size(if not 0) are used to specify Content-Type and Content-Length accordingly.keep_aliveinforms client if server is
willing to keep connection open.

int send_file(const char* fname,HTTPS_Connector &c)- sends content of file namedfnameover open connection.
Currently it is used to send error responses which contain user-readable information. But together withsend_response_header
andstat_fileit can be used to implement minimalistic web server.

int stat_file(const char* fname,unsigned long long int &size)- checks for existence of filefnameand obtains it’s size.
int send_error_response(HTTPS_Connector &c,int keep_alive,int code,char* type,char* content)- sends response

header containing response codecodewith Content-Type set totypeand with body containing message incontent. If
contentis NULL then file with name $NORDUGRID_LOCATION/share/error{value ofcode}.html is used for message
body. Otherwise message is sent without body.

2.2 HTTP_Service

Defined in httpsd.h

class HTTP_Service {
public:
HTTP_Service(void);
virtual ~HTTP_Service(void);
virtual HTTP_Error get(const char* uri,int &keep_alive);
virtual HTTP_Error put(const char* uri,int &keep_alive);
virtual HTTP_Error post(const char* uri,int &keep_alive);

};
typedef enum {
HTTP_OK = 200,
HTTP_NOT_IMPLEMENTED = 501,
HTTP_NOT_ALLOWED = 403,
HTTP_NOT_FOUND = 404,
HTTP_ERROR = 500,
HTTP_FAILURE = -1

} HTTP_Error;

This is just a template for every serviceinstanceaccessible through the HTTP_Connector. All functions return HTTP_NOT_IMPLEMENTED.

5

Implemented services must return HTTP_OK on success. Service is supposed to process and skip whole request
(header and body) if it does not return HTTP_NOT_IMPLEMENTED or HTTP_NOT_FOUND. Otherwise calling HTTP_Connector
will do that. Also service is supposed to send response to client by itself if it returned HTTP_OK or HTTP_FAILURE.

Following are function prototypes which are called by server code to configure aerver and to create service instance.
Each service must have corresponding set of such functions.

typedef bool (*service_configurator)(istream& f,const char* uri, HTTP_Service_Properties &prop);
typedef HTTP_Service* (*service_creator)(HTTPS_Connector& c, const char* uri, void* arg);
class HTTP_Service_Properties {
public:
bool subtree;
void* arg;

};

service_configuratoris called during startup of server and is supposed to process configuration available through streamf
and create service specific data structures.uri is URL for this particular service specified in server’s configuration (can be
relative). It should fillpropwith information about service. Currently that issubtreewhich tells server code if this service
is going to server all URLs starting from one specified inuri, andarg which should point to service specific information
and is then passed to function responsible for creating service instances.

service_creatoris called to create service instance when client requests that server.c is the HTTP_Connector transport
class to be used for commnication with client,uri contains URL used to call service (absolute) andarg is the one filled by
service_configurator.

2.3 HTTP_ServiceAdv

Defined in service_soap.h

class HTTP_ServiceAdv:public HTTP_Service {
protected:
HTTPS_Connector *c;
// HTTP Header
uint64_t range_start[MAX_RANGES];
uint64_t range_end[MAX_RANGES];
uint64_t entity_range_start;
uint64_t entity_range_end;
uint64_t entity_size;
int nranges;
bool range_passed;
bool failure_parsing;
uint64_t length;
bool length_passed;
bool entity_range_passed;
bool entity_size_passed;
bool unsupported_option_passed;
// SOAP
bool ignore_soap_output;
struct soap sp;
char soap_fbuf[1024];
int soap_fbuf_n;
public:
HTTP_ServiceAdv(HTTPS_Connector *c_);
virtual ~HTTP_ServiceAdv(void);
HTTP_Error parse_header(int &keep_alive);
HTTP_Error send_header(int &keep_alive,int code = 200);
HTTP_Error send_header(int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t full_size);

6

static int soap_fsend(struct soap *sp, const char* buf, size_t l);
int soap_flush(void);
static size_t soap_frecv(struct soap* sp, char* buf, size_t l);
static int soap_fopen(struct soap*, const char*, const char*, int);
static int soap_fclose(struct soap*);
static int soap_parse(struct soap *sp);
void soap_init(void);
void soap_deinit(void);
HTTP_Error soap_post(const char* uri,int &keep_alive);
virtual void soap_methods(void);

};

This is an extension of HTTP_Service class which provides support for integrating gSOAP and few useful methods.
HTTP_ServiceAdv takes care of storing pointer to transport class (c) and gSOAP struct soap (sp).

HTTP_ServiceAdv SOAP capabilities

If You want Your service to use SOAP then it must:

• call soap_init in constructor and then set sp.namespaces to namespaces of Your SOAP methods and sp.user to
pointer to pointer to service (this will be changed in a future),

• call soap_deinitin destructor,

• call soap_postin postmethod after processing HTTP header (You can useparse_headerfor that),

• implementsoap_methodsin a way gSOAP uses to process SOAP requests

void HTTP_Your_Service::soap_methods(void) {
if((sp.error = soap_serve_YourNamespace__YourMethod1(&sp)) != SOAP_NO_METHOD) return;
if((sp.error = soap_serve_YourNamespace__YourMethod2(&sp)) != SOAP_NO_METHOD) return;

}

HTTP_Error HTTP_ServiceAdv::parse_header(int &keep_alive)

This method parses content of HTTP header and places results into following fields:

range_start[],range_end[],nranges,range_pinstalaltionassed - data ranges requested by client (Range),

entity_range_start,entity_range_end,entity_range_passed - ranges data presented in body (Content-Range),

entity_size,entity_size_passed - size of data presented in body (Content-Range),

length,length_passed - size of body (Content-Length),

failure_parsing - method failed to parse header,

unsupported_option_passed - there was an option which requires to be processed but method does not support it,

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,int code = 200)

Sends response header which requires no body.

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t
full_size)

Sends response header suitable for passing part of data set in body.

7

2.4 HTTP_Client

class HTTP_Client {
public:
typedef int (*get_callback_t)(unsigned long long offset,unsigned long long size,char* buf,void* arg);
typedef int (*put_callback_t)(unsigned long long offset,unsigned long long *size,char* buf);
HTTP_Client(const char* base);
~HTTP_Client(void);
operator bool(void);
int connect(void);
int disconnect(void);
int PUT(const char* path,unsigned long long int offset,unsigned long long int size,const unsigned char* buf,unsigned long long int fd_size);
int GET(const char* path,unsigned long long int offset,unsigned long long int size,get_callback_t callback,void* arg);
bool keep_alive(void);
unsigned long long int size(void);

};

This methods allows to connect to remote site using HTTP, HTTPS or HTTPG protocol. Base URL is specified as
constructor’s argumentbase.

Actuall connection is done by calling methodconnect. This method can be called even if connection is already
established. It returns 0 on success. To close connect usedisconnect.

MethodGET implements HTTP GET method. It takespath relative to base URL, sends GET request to server also
providing the range of required data starting atoffsetof sizelength. Each time chink of data arrives it callscallbackwith
offsetandsizeof data inbuf. callback can be called multiple times depending on requested and available size.

MethodPUT implements HTTP PUT method. It sends in body the content ofbuf of lengthsizeand presents it to
server as part of bigger dataset of sizefd_sizestarting atoffset.

2.5 HTTP_ClientSOAP

class HTTP_ClientSOAP: public HTTP_Client {
public:
HTTP_ClientSOAP(const char* base,struct soap *sp);
~HTTP_ClientSOAP(void);

};

This class takes care of initializing and configuring gSOAP structurespso it can communicate tp server through HTTP_Client.
Upon creation argumentbaseis passed to HTTP_Client’s constructor. Thenspcan be used with gSOAP calls to implement
SOAP client.

3 Server

3.1 Overview

Server is accessible from outside through 2 TCP/IP ports. Data is authenticated/wrapped/unwrapped using SSLv3 and
GSI (Fig.1).

3.2 Configuration

Like most ARC daemonsserveraccepts two kinds of configuration files described in [3]. Default location for old one is
$NORDUGRID_LOCATION/etc/httpds.conf. Name of section for new configuration format is [httpsd].

It accepts all generic commands described in above mentioned manual.
Additionally it accepts commands:

gsiport TCP/IP port for GSI connections,

sslport TCP/IP port for SSL connections (SSLv3 only),

8

g
l
o
b
u
s
_
i
o

GSI

SSL

H
T
T
P

GET

PUT

POST gSOAP

W
e
b

S
e
r
v
i
c
e
s

Figure 1: Server layout.

plugin defines path to a shared library which contains implementation of one or more services.

Authorization is based on specified groups. Actual configuration of allowed operations for every method is configured
using service-specific commands andHTTPS_Connector::authorizationsmethod.

Definition of service in old configuration format is done by block starting fromservicecommand and ending with
end. In between there are service-specific commands like

service name URL
command1
command2

end

Thenameis one under which service is registered inside the program.
TheURL can be either absolute or contain only a path or a port and a path. For example:
httpg://grid.uio.no:8000/logger
:8001/logger
/logger
In a new format each service is represented by subsection of main [httpsd] section withnamedefined by command

nameor by name of subsection. Thepath/URLis defined by commandpathand is mandatory.

[httpsd/name]
name=name
path=URL
command1=args1
command2=args2

Since 0.5.x all services which run inhttpsdare compiled as shared libraries. Path to every library is specified using
commandplugin in main section of httpsd configuration. Usually httpsd can find those libraries by names of services
without help ofplugin command. But this may fail if name of the library and name of the service do not match. Or
installation was done in non-usual way. So it is always better to supply path to libraries.

3.3 Building

Server with all services is part of NorduGrid toolkit. It is built together with all other components of toolkit if option
–enable-experimentalis supplied to./configurescript or if built without autotools for 0.4.x versions of ARC. For 0.5
branch it is always built so You can use binary distribution.

Following third-party software is required to build and use server and services:

• gSOAP - for SOAP protocol.

• MySQL - for Logger service (optional, described in corresponding manual).

• XML - for Smart Storage Element service (optional, described in corresponding manual).

9

If You have those components installed in non-standard places, use./configure –helpto find out how to pass that informa-
tion to script. Short instructions for building and installing ARC are:

./configure --enable-experimental
make
make install

For more detailed instructions please read documentation available at http://www.nordugrid.org/papers.html .
Alternatilvely if static Makefiles are used to build server editMake.incfile and runmakein grid-manager/httpsd

directory to build onlyhttpsdserver, related utilities and plugins. Note thatmake installwill not work in that case.

3.4 Starting

After building (optionally) and installing ARC there should be SysV startup scripts installed in proper place. So You can
start httpsd with command ’service httpsd start’ or something like ’/etc/rc.d/init.d/httpsd start’.

Do not forget to edit configuration file /etc/nordugrid.conf before starting service (if You do not have it yet, look for
template atsharedirectory of Your installation). You have to use this file even if You use 0.4.x version because startup
script preprocess /etc/nordugrid.conf into old format.

You can also run server directly. For supported options read [3].

References

[1] http://www.globus.org/toolkit/

[2] gSOAP: Generator Tools for Coding SOAP/XML Web Service and Client Applications in C and C++,
http://www.cs.fsu.edu/~engelen/soap.html

[3] Configuration and Authorisation of ARC (NorduGrid) Services.

10

