25/5,/2005

ARCLIB, A CLIENT LIBRARY FOR ARC

Advanced Resource Connector (ARC) Client Library manual

Contents

1 Preface 5
2 Overview 7
2.1 Notifier e e e 7
2.2 DateTime o e e 7
2.3 URL . . o o e e e 8
2.4 Certificate e 9
2.5 LdapQuery e e 10
2.6 Resource-diSCOVETy L. e e 12
2.7 Resource-qUerying e e e e e e e 13
2.8 FTPControl e 16
2.9 Xrsl ..o e 17
2.9.1 XrslRelation-class e 17

2.9.2 Xrsl-class e 18

2.10 Brokering e e e 19
2.11 Job-submission e e e e e 20
2.12 JobControl e 20
2.13 Job-listingo e 21

3 ARCLib and python 23
3.1 Importing the ARCLib module L 23
3.2 Certificates e e 23
3.3 Resource-discovery Lo e e e e e 24
3.4 Resource-queryingo e e e e e e 24
3.5 FTPControl o e e 25
3.6 Job-submission 25

CONTENTS

Chapter 1

Preface

The NorduGrid’s [I] Advanced Resource Connector (ARC) is a light-weight Grid solution, designed to sup-
port a dynamic, heterogeneous Grid facility, spanning different computing resources and user communities.
It provides middleware to interface between user applications and distributed resources.

ARCLib is a client library for ARC written in C++ with a well-defined API. The library consists of a set of
C++-classes for

e handling proxy, user and host-certificates.

e performing resource-discovery and resource-querying.

handling xrsl’s.
e doing operations on gridftp-servers like up- and download.
e brokering with the possibility of adding user-defined brokers.

e jobsubmission.

The API is complete and simple enough to be able to perform most client operations.

ARCLib makes extensive use of exceptions. There is one exception-class for each class which allows for
detailed exception-throwing, catching and handling. Furthermore all exceptions in ARCLib derives from the
top-level exception, ARCLibError, defined in the error.h headerfile, so all ARCLib exceptions can be caught
by catching this exception.

In the following, we will describe the different classes in the library and supplement it with examples. All
the examples and be compiled with

g++ -0 example example.cpp -I$NORDUGRID_LOCATION/include -L$NORDUGRID_LOCATION/1ib
-larclib

CHAPTER 1. PREFACE

Chapter 2

Overview

2.1 Notifier

ARCLib comes with its own notifier-class that allows debug-messages to be dynamically printed according
to a user-specified output-level. The different output-levels are in order

FATAL ERROR WARNING INFO DEBUG VERBOSE

Only messages with a higher output-level than the user-specified level will be printed. This means that if
for example the user-defined output-level is WARNING, only the WARNING, ERROR and FATAL messages will be
printed. To use the notifier, add notify statements to your code like:

notify (WARNING) << "This is a warning message" << std::endl;
notify(DEBUG) << "This is a debug message" << std::endl;

and set the output-level with
SetNotifyLevel (INFO) ;

If no output-level is set by the user, the default output-level is WARNING.

The other classes of ARCLib uses the notifier internally and thus more debug output from ARCLib can be
obtained by adjusting the output-level.

2.2 DateTime

The class Time defined in the headerfile datetime.h is used for storing and manipulating times in the
different TimeFormat’s specified by the enum

enum TimeFormat { MDSTime, ASCTime, UserTime };

These formats are of the form given in table 2.2. Passing a string in one of the valid formats to the
constructor,

Time(std: :string);

the constructor parses the string and saves the time internally as a time_t variable. The time can be printed
out again in one of the TimeFormat’s using the str() method. The TimeFormat can be set and retrieved
using the static methods

8 CHAPTER 2. OVERVIEW

TimeFormat format-string
MDSTime YYYYMMDDHHMMSSZ
ASCTime Day Month DD HH:MM:SS YYYY
UserTime YYYY-MM-DD HH:MM:SS

static void SetFormat(const TimeFormat&) ;
static TimeFormat GetFormat();

Also in the datetime.h headerfile are methods for producing a timestamp. Calling the method

std::string TimeStamp(const TimeFormat& = UserTime)

produces a time-stamp of the current time in the passed TimeFormat. Calling

std: :string TimeStamp(Time, const TimeFormat& = UserTime)

produces a time-stamp of the given Time-object in the passed TimeFormat.
Finally two methods are available for converting a period of seconds to a textual representation and back

std: :string Period(unsigned long) ;
long Seconds(const std::string&) throw(TimeError);

A standard way of using the Time class is the following. One obtains MDSTime time-string’s from LdapQuery’s
and wants to convert it to a user-readable format. This can be done trivially with the Time-class like this

Time sometime("20041118221438Z");
cout << "sometime: " << Time.str() << endl;

2.3 URL

The URL-class parses general URL-strings and retrieves information like hostname, protocol, portnumber,
path etc. It supports explicitly the following protocols http, https, ftp, gsiftp, httpg, ldap, rc,
rls, file. To use, pass a URL-string to the constructor of the class and it parses it, retrieving the
information into different member-variables. If the URL-string is malformed, an URLError exception is
malformed.

For example

URL url("gsiftp://hathi.hep.lu.se:2811/public/test.dat");

parses the given string and places gsiftp in the protocol-variable, hathi.hep.lu.se in the host-variable,
2811 in the port-variable and /public/test.dat in the path-variable.

ARCLib uses the URL-class internally in most other classes — for resource-discovery, resource-querying,
gridftp-server-operations and jobsubmission.

With the http protocol, one can specify options after the path like
URL url("http://www.nordugrid.org/monitor.php?debug=2&sort=yes");

The URL-class takes care of parsing such options placing them in the httpoptions map-variable.

With the 1dap protocol, one can specifiy the path in two different ways. One is speciyfing it in the standard
basedn way

2.4. CERTIFICATE 9

URL url("ldap://grid.uio.no/mds-vo-name=local, o=grid");

with path equal to mds-vo-name=local, o=grid. The other is specifying the path as a standard path

URL url("ldap://grid.uio.no/o=grid/mds-vo-name=local");

The URL-class takes care of parsing both of these formats and provides methods, BaseDN2Path() and
Path2BaseDN (), for converting between the two.

#include <iostream>

#include <list>

#include <arc/certificate.h>
#include <arc/motify.h>
using namespace std;

int main() {
try {
Certificate mycert; // my user certificate
notify(INFO) << "My certificate:" << endl;
notify (INFO) << "Subject : " << mycert.GetSN() << endl;
notify(INFO) << "Issuer : " << mycert.GetIssuerSN() << endl;
notify(INFO) << "ExpiryTime: " << mycert.ExpiryTime() << endl << endl;

Certificate issuer = mycert.GetIssuerCert();

notify(INFO) << "My issuer’s certificate:’’ << endl;

notify (INFO) << "Subject : " << issuer.GetSN() << endl;
notify(INFO) << "Issuer : " << issuer.GetIssuerSN() << endl;
notify(INFO) << "ExpiryTime: " << issuer.ExpiryTime() << endl;

if (issuer.IsSelfSigned())
notify(INFO) << "The issuer’s certificate is self-signed" << endl;
notify (INFO) << endl;

list<Certificate> calist = GetCAList();
list<Certificate>::iterator it;
notify(INFO) << "List of CA certificates installed:" << endl;
for (it = calist.begin(); it != calist.end(); it++)
notify (INFO) << it->GetSN() << endl;
} catch (CertificateError e) {
notify(ERROR) << "Error: " << e.what() << std::endl;

Figure 2.1: An example of using the Certificate class for printing information about the user’s certificate,
the issuer and the list of CA-certificates installed on the machine.

2.4 Certificate

The Certificate class provides methods for handling and obtaining information from proxy-, user- and
hostcertificates. To use define a Certificate-object using the constructor:

Certificate cert(certtype type = USERCERT, std::string filename = "");

where certtype is an enum defined by

enum certtype { PROXY, USERCERT, HOSTCERT };

10 CHAPTER 2. OVERVIEW

specifying the certificate-type. If the filename is not given, the constructor looks for the certificate specified
in standard places like $HOME/ . globus/usercert.pem for user-certificates.

The constructor parses the certificate and stores information about it in the object. This can then be
accessed by the user. Useful methods are

std: :string GetSN(SNFormat format = PLAIN);

returning the subject-name of the certificate in the format specified. SNFormat is an enum with values

enum SNFormat { PLAIN, X509, LDAP1, LDAP2 };

Other useful methods include

std: :string GetIssuerSN(SNFormat format = PLAIN);

returning the subject-name of the issuer of the certificate,

std::string GetCertFilename() ;

returning the filename in which the certificate is stored,

std: :string ExpiryTime();

returning the expiry-time of the certificate,

std: :string ValidFor();

returning a text respresentation of the validity time of the certificate and

bool IsSelfSigned();

returning a boolean specifying whether the certificate is self-signed or not.

The full list of CA-certificates installed on the computer can be obtained through the

std::list<Certificate> GetCAList();

method. This can be used to check whether a given CA-certificate is already installed on the computer.

An example of using the Certificate-class is shown in figure 2.1.

2.5 LdapQuery

ARCLib provides an LdapQuery class for performing ldap-queries. It is basically a simple C++-wrapper around
the ldap API extended with a method to perform parallel ldap-queries to several servers at once and is defined
in the headerfile 1dapquery.h.

To perform an ldap-query, first construct an LdapQuery object using the LdapQuery constructor

LdapQuery(const std::string& ldaphost,
int ldapport,
bool anonymous = true,
const std::string& usersn =
int timeout = 20);

2.5. LDAPQUERY 11

where hostname is the hostname of the ldapserver, port is the corresponding port-number, anonymous spec-
ifies whether the query should be anonymous, usersn is the SN of the user querying the server and timeout
is the timeout. By default port is equal to the default ldapserver port, 389, while the rest corresponds to
an anonymous query with a timeout of 20 seconds.

Use this object to query the server using

Query(const std::string& basedn,
const std::string& filter,
const std::vector<std::string>& attrs,
Scope scope) ;

where basedn is the DN of the entry at which to start the search, filter is a string representation of the
filter to apply, attrs is a null-terminated array of attributes to return from search and scope is the scope of
the search with value one of base, one-level or subtree. filter, attrs and scope has sensible default
values for a full-scale search on all attributes.

To retrieve the results of the query, call Result

LdapQuery: :Result (1dap_callback callback, void* ref);

where 1dap_callback is a pointer to a callback-function with signature

void (*ldap-callback) (const std::string& attr, const std::string& value, void* ref);

and a user-defined void-pointer which is passed to the callback-function. The callback is called for each line
in the ldap-response with the corresponding attribute and its value. The void-pointer can then be used to
store information about the attributes and values.

A typical way of using the LdapQuery class is to first define a URL that holds the server, port and basedn of
the query like

URL url("ldap://quark.hep.lu.se/o=grid/mds-vo-name=local");

and use it like this

LdapQuery ldapq(url.Host(), url.Port());
ldap.Query(url.BaseDNQ));
ldap.Result(callback, this);

For an example of how to use the LdapQuery class, see figure 2.2. This piece of code queries the NorduGrid
VO ldapserver, parses the response in Callback-function pulling out the VO-members DN and puts them in
the passed pointer. After the call to 1dapq.Result (), the vosubjects vector contains all the DN’s of the
NorduGrid VO.

When performing ldap-queries to several clusters at once, it is too slow to query and gather results for every
cluster after the other. Therefore a method for performing parallel ldap-queries is provided. It works by
querying all the clusters first and then only gathering the results. This way of doing it can lead to a drastic
increase in performance of such a ldap-query. The parallel ldap-query method looks like this:

void PerformLdapQueries(std::1ist<URL> clusters,
std::string filter,
std::vector<std::string> attrs,
ldap_callback callback,
void* ref,
LdapQuery: :Scope scope = LdapQuery: :subtree,

12 CHAPTER 2. OVERVIEW

#include <string>

#include <iostream>
#include <vector>

#include <arc/url.h>
#include <arc/ldapquery.h>
#include <arc/motify.h>
using namespace std;

void Callback(const string& attr, const string& value, void *ref) {
if (attr!="description") return;
vector<string>* vo = (vector<string>*)ref;

string val(value.substr(8));
while (val[0]==’ ’) val = val.substr(1l);
vo->push_back(val) ;

}

int main() {
SetNotifyLevel (DEBUG) ;

URL NGVO("ldap://grid-vo.nordugrid.org/dc=org/dc=nordugrid/ou=people") ;

LdapQuery ldapq(NGVO.Host(), NGVO.Port());
notify (INFO) << "Querying " << NGVO.str() << " for the NorduGrid VO" << endl;

vector<string> vosubjects;

try {
ldapq.Query(NGV0.BaseDN());
ldapq.Result(Callback, (void#*)&vosubjects);

} catch (LdapQueryError e) {
notify(ERROR) << "Error: " << e.what() << endl;
return 1;

cout << "Members of the NorduGrid VO:" << endl;
for (int i=0; i<vosubjects.size(); i++)
cout << vosubjects[i] << endl;

Figure 2.2: Example of how to use the LdapQuery class to obtain the members of the NorduGrid VO by by
querying the NorduGrid VO Idapserver.

std::string usersn = ",

bool anonymous = true,
int timeout = 20);

where one specifies the list of clusters to query together with the standard set of ldap-variables. This method
is used extensively by the resource-discovery and resource-query methods below.

2.6 Resource-discovery

Resource-discovery is the process of finding resources be it clusters, storage-elements or the like. In Nordu-
Grid all resources register themselves to at least one GIIS — either a country-level GIIS or a VO-specific
GIIS. ARCLib supports querying one or several GIIS’es for the resources that register to these GIIS’es using
a standard LdapQuery.

Resource-discovery is done through methods defined in the mdsdiscovery.h header file.

2.7. RESOURCE-QUERYING 13

std: :1ist<URL> GetResources(std::1ist<URL> giis_urls = std::1ist<URL>(),
resource id = cluster,
bool anonymous = true,
std::string usersn = "",
int timeout = 20);

and a similar one taking only one GIIS-URL-string. These methods returns a list of contact ldap-urls for
the resources registering to the GIIS’es. By default, the methods finds clusters but setting the id-variable,
which is a resource-enum defined by

enum resource { cluster, storageelement, replicacatalog };

to either storageelement or replicacatalog the methods will find StorageElements or ReplicaCatalogs
instead.

Simple helper methods, GetClusters, GetSEs and GetRCs are also provided:

std::1ist<URL> GetClusters(std::1ist<URL> giis_urls = std::1list<URL>(Q),
bool anonymous = true,
std::string usersn = "",
int timeout = 20);

std: :1ist<URL> GetSEs(std::1ist<URL> giis_urls std::1ist<URL>(),
bool anonymous = true,
std::string usersn = "",

int timeout = 20);

std::1ist<URL> GetRCs(std::1ist<URL> giis_urls
bool anonymous = true,
std::string usersn = "",
int timeout = 20);

std::1ist<URL>(),

They work exactly like the GetResources method except that one does not have to explictly specify the
type of resource to query.

If during a GIIS-query, other GIIS’es are found, these GIIS’es are also queried for resources. In this way, a
whole tree of GIIS’es are queried.

If the list of URL’s passed to GetResources is empty, the following files are read in order for a GIIS-list:
$HOME/ .nggiistlist, $NORDUGRID_LOCATION/etc/giislist and /etc/giislist. If no GIIS-list is found,
a GIIS-exception is thrown.

Figure 2.3 shows an example of finding the clusters that registers to the ATLAS GIIS.

2.7 Resource-querying

Having obtained a list of resources through resource-discovery as described above, be it clusters or storageele-
ments, one can continue and query each of these resources for information. There are several methods defined
in mdsquery.h that can do this. All these methods fill in the Cluster, Queue, Job, User, StorageElement
or ReplicaCatalog structures defined in resource.h for later processing by the user.

The methods all take a list of ldap-contact URL’s for the resources, an mds-filter specially suited for the
particular query (see below for examples), a boolean specifying whether the query should be anonymous and
if not the user’s DN and finally a timeout variable.

14 CHAPTER 2. OVERVIEW

#include <list>

#include <iostream>

#include <arc/mdsdiscovery.h>
#include <arc/url.h>

using namespace std;

int main() {
URL atlasgiis("ldap://atlasgiis.nbi.dk:2135/0=grid/mds-vo-name=Atlas");

1ist<URL> clusters;

try {
clusters = GetClusters(atlasgiis);

} catch (MDSDiscoveryError e) {
cout << "Error: " << e.what() << endl;
return 1;

cout << "The following clusters are registering to the ATLAS GIIS:" << endl;
1list<URL>::iterator it;
for (it = clusters.begin(); it != clusters.end(); it++)

cout << it->Host() << endl;

Figure 2.3: Example of how to use the GetClusters call to obtain the list of clusters that register to the
ATLAS GIIS.

Technically all the methods use the PerformLdapQueries method from ldapquery.h for performing the
parallel 1dap-queries.

The Cluster-methods in mdsquery.h are

Cluster GetClusterInfo(const URL& cluster,
std::string filter = MDS_FILTER_CLUSTERINFO,
const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

and

std::1list<Cluster> GetClusterInfo(std::1ist<URL> clusters = std::1ist<URL>(),
std::string filter = MDS_FILTER_CLUSTERINFO,
const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

These methods returns a Cluster-object with information filled in for each cluster queried. The mdsfilter
MDS_FILTER_CLUSTERINFO is defined to be the ldapquery filter

"(| (objectclass=nordugrid-cluster) (objectclass=nordugrid-queue) (nordugrid-authuser-sn=Ys))"

with the user’s DN replaced at the end. Similar methods are

std::1list<Queue> GetQueueInfo(const URL& cluster,
std::string filter = MDS_FILTER_CLUSTERINFO,

2.7. RESOURCE-QUERYING 15

const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

and

std: :list<Queue> GetQueueInfo(std::1ist<URL> clusters = std::1ist<URL>(),
std::string filter = MDS_FILTER_CLUSTERINFO,
const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

These methods performs the same queries as above but rearranges the result before returning it to the
user. For each Cluster, all Queue’s are extracted and the cluster-information for these Queue’s are added
explicitly.

Completely similar methods as above for StorageElement’s and ReplicaCatalog’s exist e.g.

std::list<StorageElement> GetSEInfo(std::1ist<URL> urls = std::list<URL>(),
std::string filter = MDS_FILTER_SEINFO,
const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

std::list<ReplicaCatalog> GetRCInfo(const URL& url,
std::string filter = MDS_FILTER_RCINFO,
const bool& anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

There are also methods for obtaining job-information. The GetAllJobs methods finds all jobs running by
the user on a given set of clusters

std::1list<Job> GetAllJobs(std::1ist<URL> clusters = std::1ist<URL>(),
bool anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

std::1list<Job> GetAllJobs(const URL& cluster,
bool anonymous = true,
const std::string& usersn = "",
unsigned int timeout = 20);

while the GetJobInfo methods returns job-information about specific jobs

std::1list<Job> GetJobInfo(std::list<std::string> jobids,
std::string filter = MDS_FILTER_JOBINFO,
const bool& anonymous = true,
const std::string& usersn = ",
unsigned int timeout = 20);

16 CHAPTER 2. OVERVIEW

Job GetJobInfo(std::string jobid,
std::string filter = MDS_FILTER_JOBINFO,
const bool& anonymous = true,
const std::string& usersn = ",
unsigned int timeout = 20);

2.8 FTPControl

The FTPControl class provides methods for interacting with gridftp-servers. There are methods for down-
loading and uploading files, downloading a complete directory, listing directories and getting sizes of files
as well as sending general commands to the gridftp-server. All methods take a timeout-parameter and a
parameter specifying whether the operation should disconnect from the gridftp-server after the operation.
This makes nesting of operations on the same server easier without having to connect all the time.

void Upload(const std::string& localfile,
const URL& url,
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

uploading the local file localfile to the location pointed to by url,

void Download(const URL& url,
const std::string& localfile = "",
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

downloading the file specified by the url to the local file localfile,

unsigned long long Size(const URL& url,
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

returning the size of the file pointed to by the url. The ListDir and RecursiveListDir methods return
a list of FileInfo with information about files in the given directory and — for the RecursiveListDir
method — all subdirectories thereof. The FileInfo structure looks like this

struct FileInfo { std::string filename,
unsigned long long size,
bool isdir };

while the two listing methods looks like this

std::1list<FileInfo> ListDir(const URL& url,
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

2.9. XRSL 17

std::1list<FileInfo> RecursivelListDir(const URL& url,
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

The method DownloadDirectory downloads all files from a directory including all files in subdirectories
thereof. It uses the RecursivelListDir method for obtaining all files and downloads each in turn

void DownloadDirectory(const URL& url,
bool disconnectafteruse = true,
int timeout = 20) throw(FTPControlError);

2.9 Xrsl

A xrsl consists of a number of xrsl-relations with attributes and values. Manipulations of these using the
Globus RSL API is both cumbersome and non-intuitive. Therefore two wrapper-classes for xrsl-handling —
the Xrsl- and XrslRelation classes — have been constructed. These make xrsl-handling much easier.

2.9.1 XrslRelation-class

XrslRelation’s can be constructed using the XrslRelation constructors. The standard one is (as shown
above)

XrslRelation(const std::string&, const xrsl operator&, const std::string&);

where the first argument is the, the second the actual xrsl_operator to put in and the last is the value of
the relation. The xrsl_operator is an enum taking the values

enum xrsl_operator { operator_eq = GLOBUS_RSL_EQ,
operator_neq = GLOBUS_RSL_NEQ,
operator_gt = GLOBUS_RSL_GT,
operator_gteq = GLOBUS_RSL_GTEQ,
operator_lt = GLOBUS_RSL_LT,
operator_lteq = GLOBUS_RSL_LTEQ,
operator_and = GLOBUS_RSL_AND,
operator_or = GLOBUS_RSL_OR,
operator_multi = GLOBUS_RSL_MULTIREQ 1};

where the first six are applicable for XrslRelation’s. The following

XrslRelation rel("executable", operator_eq, "/bin/echo");

constructs the relation

(exectable=/bin/echo)

To construct a XrslRelation with a list-value use the constructor

18 CHAPTER 2. OVERVIEW

XrslRelation(const std: :string&, const xrsl_operator&, const std::list<std: :string>&);

which constructs a XrslRelation with a list of values — like

(arguments=1 2 3 4 5)

To construct a XrslRelation with a double list-value, use the constructor

XrslRelation(const std::string&, const xrsl_operator&, const std::list<std::list<
std: :string> >&);

which constructs a XrslRelation of the form

(inputfiles=("inputl" "fil.txt") ("input2" "fil2.txt"))

The values of a given XrslRelation can be retrieved again using one of the three methods
std: :string GetSingleValue() throw(XrslError);

std::list<std::string> GetListValue() throw(XrslError);
std::1list<std::list<std::string> > GetDoubleListValue() throw(XrslError);

2.9.2 Xrsl-class

The Xrsl-class provides several methods for manipulating XrslRelation-objects in the xrsl. One can
construct an Xrsl using either the string-constructor

Xrsl(const std::string& xrsl);

or

Xrsl(xrsl_operator = operator_and);

that constructs an empty Xrsl with a leading xrsl_operator — usually operator_and. For example

Xrsl xrsl("&(executable=/bin/echo) (arguments=hello,grid)");

constructs an Xrsl-object containing the given xrsl.

There are methods in the Xrsl-class for retrieving the different Xrs1Relation’s and their values, add extra
relations, remove relations and so on. First of all, one can check if the xrsl contains a given attribute —
with the IsRelation method

bool IsRelation(const std::string& attribute);

It returns true if a relation in the xrsl has the corresponding attribute. False if not.

Retrieving relations is done with the GetRelation or GetAllRelations methods. The first method

XrslRelation GetRelation(const std::string& attribute) throw(XrslError);

returns the first relation found with the specified attribute. It throws an exception if no relation with the
specified attribute exists. The second method

2.10. BROKERING 19
std::1list<XrslRelation> GetAllRelations(const std::string& attribute);

returns a list of all relations with the specified attribute. Adding extra relations is done with the AddRelation
and the AddSimpleRelation methods. The AddRelation method

void AddRelation(const XrslRelation&, bool force = true) throw(XrslError);

adds the given relation — forcing it (if force is set to true) if another relation with the same attribute
already exist. AddSimpleRelation

void AddSimpleRelation(const std::string& attr,
xrsl_operator op,
const std::string& value,
bool force = true) throw(XrslError);

works in the same way except that the user explicitly specifies attribute, operator and value. Finally the
user can remove relations with the RemoveRelation method

void RemoveRelation(const std::string& attr) throw(XrslError);

which removes the first relation with the specified attribute.

2.10 Brokering

ARCLib comes with its own extensible brokering-framework. Brokering is the process of choosing the right
target for jobsubmission from a list of available targets. In ARC a jobsubmission-target is basically a batch-
queue on some cluster. Information about such queues is obtained very easily with the GetQueueInfo()-
method described earlier. The Queue’s returned from this method are potential targets and brokering is
thus the process of choosing the right Queue for the job based on the user submitting the job and her
job-specification.

After having obtained a list of possible Queue’s through the GetQueueInfo ()-method, one should proceed
to construct the list of possible targets with

std::list<Target> ConstructTargets(std::list<Queue> queues,
Xrsl axrsl = Xrsl());

passing the list of Queue’s and the Xrsl. A Target is basically a Queue with the user-supplied Xrsl included.
This Xrsl is needed to be able to perform brokering on the Target’s.

The ConstructTargets method above performs a few simple checks on the Queue’s. It checks whether the
user is at all authorized to run jobs on the cluster in question, whether the Queue is active, has any CPU’s
at all and that the number of queued jobs is not larger than the maximum number of allowed queued jobs.
Finally it checks that the cluster’s CA-certificate is in fact installed locally on the user’s machine (this is
needed for authentication with the cluster). If any of these criteria is not met, the Queue is not included in
the list of Target’s.

Brokering can now be performed by calling PerformStandardBrokering from standardbrokers.h

void PerformStandardBrokering(std::list<Target>& targets);

20 CHAPTER 2. OVERVIEW

This method performs the standard brokering over a set of Xrsl-attributes including cluster, queue,
cputime, memory, count, nodeaccess, architecture plus the RuntimeEnvironment-attributes, middleware,
runtimeenvironment and opsys. Finally it sorts the remaining targets in a preferred order first checking
that the remaining targets has enough free CPU’s for the job. If several targets has enough free CPU’s for
the job, the list is sorted after the fastest CPU-speed.

The PerformStandardBrokering method returns the list of possible submission-targets sorted so that the
most suitable target (after the criteria mentioned above) is first and the least suitable last.

The user can also write her own broker and include it in the brokering. This requires writing a broker
inheriting from the virtual Broker-class in broker.h and pass the broker to the PerformBrokering-method

void PerformBrokering(std::list<Broker*> brokers,
std::list<Target>& targets);

This method performs brokering using the broker(s) passed. It can advantageously be used after a call to
PerformStandardBrokering since PerformStandardBrokering performs the necessary brokering that has
to be done anyway.

2.11 Job-submission

Job-submission is done quite simply: First call PrepareJobSubmission from jobsubmission.h:

std::list<Target> PrepareJobSubmission(Xrsl axrsl) throw(MDSQueryError, XrslError);

This method calls in turn the methods GetQueueInfo(), ConstructTargets(), PerformXrslValidation()
and PerformStandardBrokering() and returns the list of targets obtained from the brokering step. One
can of course also call the four methods oneself with the same result.

Now call SubmitJob with the Xrsl and the list of targets:

std::string SubmitJob(Xrsl axrsl,
std::list<Target> targetlist,
bool dryrun = false) throw(JobSubmissionError, XrslError);

This method submits the job specified by the Xrsl to the first target in the list of targets. If jobsubmission to
the first target fails for some reason, the next target in the list is tried and so on. If jobsubmission succeeds,
the jobid of the job is returned.

Note that before submitting the job and uploading the Xrsl, SubmitJob rewrites the Xrsl. It adds several
attributes and rewrites others. For example, it adds queue with the name of the chosen target, adds hostname
with the local hostname and rewrites the executables attribute to make sure that the executable is in
this list. Several other attributes are added and rewritten — all such that the grid-manager on the chosen
cluster can interpret the Xrsl correctly.

2.12 JobControl

Technically jobsubmission uses the JobFTPControl-class for submitting jobs. JobFTPControl derives from
FTPControl and extends it with several job-specific gridftp-methods. Those include methods for killing
jobs, cleaning jobs and renewing credentials for jobs. These methods are public and thus accessible but the
following helper methods can be used instead

2.13. JOB-LISTING 21
void CancelJob(const std::string& jobid) throw(JobFTPControlError, FTPControlError) ;

for cancelling jobs,

void CleanJob(const std::string& jobid) throw(JobFTPControlError, FTPControlError);

for cleaning jobs and

void RenewCreds(const std::string& jobid) throw(JobFTPControlError, FTPControlError);

for renewing credentials for jobs.

2.13 Job-listing

The ARC User-Interface writes the jobids and job-names of all submitted jobs to the file .ngjobs in the user’s
home-directory and it removes them again when the user cleans finished jobs. This functionality is provided
by three methods in the joblist.h header file. The method GetJobIDs,

std::list<std::string> GetJobIDs(bool all true,
const std::list<std::string>& jobs std::list<std::string>(),
const std::list<std::string>%& clusterselect = std::list<std::string>(),
const std::list<std::string>& clusterreject = std::list<std::string>());

extracts all the jobids in the .ngjobs file consistent with the search criteria specified by the user. If
all is true, all jobids are extracted. Otherwise jobids consistent with the jobs parameter, which can
contain a regular expression with wildcards and the clusterselection and clusterrejection parameters
are extracted.

The jobid and jobname of a new job is added with the AddJobID method

void AddJobID(const std::string& jobid, const std::string& jobname);

and a jobid is removed again with the RemoveJobID method

void RemoveJobID(const std::string& jobid);

22

CHAPTER 2. OVERVIEW

Chapter 3

ARCLib and python

ARCLib uses SWIG to wrap the ARCLib methods and classes in python. In that way the whole API is exposed
in a very simple way to python. In this chapter we will give several examples of how to import the ARCLib
python module and use it from within python.

3.1 Importing the ARCLib module

ARCLib can be imported by setting the PYTHONPATH environment variable to /opt/nordugrid/1ib or by

arc:”$ python

Python 2.3 (#2, Aug 31 2003, 17:27:29)

[GCC 3.3.1 (Mandrake Linux 9.2 3.3.1-1mdk)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import sys

>>> sys.path.append("/opt/nordugrid/1ib")

>>> from arclib import *

>>>

3.2 Certificates

Certificates are handled very easily. To get the user’s certificate, construct an object of the Certificate-class
and call methods on it

>>> ¢ = Certificate()

>>> c.GetSN()

’/0=Grid/0=NorduGrid/0U=nbi.dk/CN=Jakob Langgaard Nielsen’
>>> c.GetCertFilename ()

’ /home/langgard/.globus/usercert.pem’

>>> c¢.ValidFor ()

’9 weeks, 1 day, 13 hours, 21 minutes, 12 seconds’

>>>

Proxy-certificates are handled by including the specifier PROXY in the constructor:

>>> ¢ = Certificate (PROXY)

>>> ¢.GetSN(Q)

’ /0=Grid/0=NorduGrid/0U=nbi.dk/CN=Jakob Langgaard Nielsen/CN=proxy’
>>> c.GetCertFilename ()

? /tmp/x509up_u500’

>>> c.ValidFor ()

23

24 CHAPTER 3. ARCLIB AND PYTHON

’expired’

>>> c.IsExpired()
True

>>>

The full list of installed CA-certificates is retrieved using the GetCAList-method.

>>> cas = GetCAList()
>>> for i in cas:
print i

/0=Grid/0=NorduGrid/CN=NorduGrid Certification Authority
/C=DE/0=GermanGrid/CN=GridKa-CA
/C=CH/0=CERN/QU=GRID/CN=CERN CA

/C=IT/0=INFN/CN=INFN Certification Authority

>>>

3.3 Resource-discovery

Resource-discovery can be done through the GetClusterResources() and GetSEResources() methods.
These methods take a list of GIIS’es to query but if left out, the default list of top-level NorduGrid GIIS’es
(as specified in the file .nggiislist) are used. So to obtain the LDAP contact URL’s of all clusters
registering to these GIIS’es, use

>>> cls = GetClusterResources()

>>> len(cls)

49 (number of clusters registering to the NorduGrid top-level GIIS’es)
>>> print cls[0]

ldap://alice.grid.upjs.sk:2135

>>>

To obtain the LDAP contact URL’s of all storage elements registering to the ATLAS GIIS, use

>>> atlasgiis = URL(’ldap://atlasgiis.nbi.dk:2135/0=grid/mds-vo-name=Atlas’)
>>> ses = GetSEResources(atlasgiis)

>>> len(ses)

16

>>> print ses[0]

ldap://atlas.hpc.unimelb.edu.au:2135

>>>

3.4 Resource-querying

Having obtained a list of cluster- or storage-contact URL’s, one can proceed and query them. To do this,
use GetClusterInfo or GetSEInfo like this

>>> cinfo = GetClusterInfo(cls)
>>> totalcpus = 0
>>> for i in cinfo:
>>> totalcpus = 0
>>> for i in cls:
totalcpus += i.total_cpus

>>> print totalcpus
5473
>>>

3.5. FTPCONTROL 25

One can also call GetClusterInfo() with no arguments. In that case a list of contact URL’s is retrieved by
doing a standard resource-discovery first. This means that the single call

>>> cinfo = GetClusterInfo()

does full resource-discovery and resource-querying at the same time!

There are also methods for retrieving information about jobs. For example, GetAl11Jobs() retrieves infor-
mation about all jobs run by the user.

>>> jobinfo = GetAllJobs()
>>> for i in jobinfo:
print i.id, i.status

gsiftp://atlas.fzk.de:2811/jobs/3095311148934971167065950 FINISHED
gsiftp://atlas.fzk.de:2811/jobs/2855711148934451560148339 FINISHED
gsiftp://benedict.grid.aau.dk:2811/jobs/63611142436961760568961 DELETED
gsiftp://hagrid.it.uu.se:2811/jobs/861711148927331730484646 FINISHED
>>>

Finally GetQueueInfo() retrieves cluster information like GetClusterInfo() but reorganizes the result so
that the returned is a list of Queue’s.

3.5 FTPControl

ARCLib provides a set of methods for interacting with gridftp-servers. For example for listing directories and
up- and downloading files.

>>> ftpc = FTPControl()

>>> dir = "gsiftp://quark.hep.lu.se/demo"
>>> files = ftpc.ListDir(dir)

>>> print files[0]

/demo/test 80 dir

>>> print files[2]

/demo/figurel0.pnm 176200 file

>>> file = dir + "/figurelO.pnm"

>>> ftpc.Size(file)

176200

>>> ftpc.Download(file, "figurelO.pnm")
>>>

3.6 Job-submission

Job-submission is done in a series of steps, define a Xrsl, do resource-querying and brokering and then
perform the jobsubmission. The following is an example of how it is done

>>> xrsl = Xrsl("&(executable=/bin/echo) (arguments=\"hello, grid\")")
>>> qi = GetQueueInfo()

>>> targets = ConstructTargets(qi, xrsl)

>>> targetsleft = PerformStandardBrokering(targets)

>>> jobid = SubmitJob(xrsl, targetsleft)

>>> jobid

’gsiftp://atlas.fzk.de:2811/jobs/7281114978962272805613’

>>>

The GetQueueInfo(), ConstructTargets() and PerformStandardBrokering() steps can also be done with
the single call to PrepareJobSubmission() after having defined the Xrsl.

26 CHAPTER 3. ARCLIB AND PYTHON

>>> xrsl = Xrsl("\&(executable=/bin/echo) (arguments=\"hello, grid\")")
>>> targets = PrepareJobSubmission(xrsl)

>>> jobid = SubmitJob(xrsl, targets)

>>> jobid
’gsiftp://morpheus.dcgc.dk:2811/jobs/171041114979128617732991°

>>>

Bibliography

[1] The NorduGrid Project. [Online]. Available: http://www.nordugrid.org

27

http://www.nordugrid.org

	Preface
	Overview
	Notifier
	DateTime
	URL
	Certificate
	LdapQuery
	Resource-discovery
	Resource-querying
	FTPControl
	Xrsl
	XrslRelation-class
	Xrsl-class

	Brokering
	Job-submission
	JobControl
	Job-listing

	ARCLib and python
	Importing the ARCLib module
	Certificates
	Resource-discovery
	Resource-querying
	FTPControl
	Job-submission

