L Nordic Testbed for Wide Area Com-
/ i puting And Data Handling

NORDUGRID-TECH-2
12/12/2005

THE NORDUGRID GRID MANAGER AND GRIDFTP SERVER

Description and Administrator’s Manual

A.Konstantinov

*Comments to: aleks@fys.uio.no

Contents

1 Introduction 4

2 Main concepts 4

3 Input/output data 5

4 Job flow 5

5 URLs 6

6 Internals 7
6.1 Files 7
6.2 Library e 9

7 Cache 9
7.1 SHUCIUIE e e e e e 9
7.2 HOWItwWOrks e 10

8 Files and directories 10
8.1 Modules e e 10
8.2 Configurationofthe Grid Manager e 12
8.3 Configuration of the GridFTP Server e 17
8.4 Authorization e 19
8.5 DIreCtories e e 20
8.6 LRMS SUPPOIt e e e e e e 20
8.7 Runtimeenvironment e e 21

9 Installation 24
9.1 ReqUIrEMENtS e e e 24
9.2 ODbtaining 24
9.3 Compilation e 25
9.4 Installation e 25
9.5 Setup ofthe Grid Manager e 26
9.6 Setupofthe GridFTP Server 26
0.7 USAge o e e 27
9.8 UNIXacCCoUNtS 27

1 Introduction

One of the problems the user of widely distributed computing networks faces is different configuraGompfiting
ElementgCE) controlled by different administrators. This makes even initial preparation of a job non-trivial task. This is
especially important in case of NorduGrid [1], where some CEs are not dedicated to NorduGrid and can not be completely
reconfigured at low level. Thus some layer capable of performing most of site-dependent pre- and post-computation job
iS necessary.

The aim ofgrid-managerGM) is to take care of job pre- and post-processing. It provides an interface to stage-in files
containing input data and program modules and transfer or store output results.

The GM is part of the NorduGrid software (codename ARC - Advanced Resource Connector) and for it's connection
to other parts “An Overview of The NorduGrid Architecture Proposal” [2] should be studiedhdtgily using Globus
Toolkit™ as it's underlying software ancbmpletely dependn it.

Additionally part of the GM, the specialized GridFTP Server (GFS) is installed. This server supports rich enough
subset of gsiftp protocol and has network and local file access parts separated. It's main purpose is to provide access to
the user files based on the user subject and job owner.

All software described here is part of ARC software toolkit developed by NorduGrid ptdjpctwww.nordugrid.
org

You should use this manual for installation and configuration purposes only if You are installing the GM and
GFS separately from ARC NorduGrid Toolkit. Else treat it as document explaining internals of the aforementioned
tools and extended description of configuration options. And for instalaltion and configuration refer tohttp:
/Iwww.nordugrid.org/papers.html . And hence skip section 9.

2 Main concepts

A job is a set of input files (which may or may not include executables), a main executable and a set of output files. The
process of gathering input files, executing a job, and transferring/storing output files is cadiesian

Each job gets a directory on the CE called #ession directorfSD). Input files are gathered in the SD. The job
is supposed to produce new data files also in the SD. GM does not guarantee the availability of any other places ac-
cessible by the job other than SD (unless such place is part of requested Runtime Environement). The SD is also the
only place which is controlled by the GM. It is is accessible by the user from outside through GridFTP protocol. Any
file created outside the SD is not controlled by the GM. Any exchange of data between client and GM (including also
program modules) is done through GridFTP protocold8ly. A URL for accessing input/output files is constructed
from the base URL available through the NorduGrid Information System as pastafigrid-cluster under attribute
nordigrid-cluster-contactstring andjobid (jobid corresponds to a SD).

Each job gets an identifiejopid). This is a handle which identifies the job in the GM and the NorduGrid Information
System [4].

Each job is initiated and controlled through GFS. Initially job control through Globus GRAM [5] was supported.
Starting from Globus version 2.2 GRAM is not supported by GM anymore due to a changed internal interface of GRAM.
All job parameters (not data) are passed to the GM through GFS in RSL-coded [6] description (job description - JD). The
GM adds it's own attributes to Globus RSL [7].

3 Input/output data

The main task of the GM is to take care of processing input and output data (files) of the job. Input files are gathered i
SD. There are 2 ways to put file into the SD:

e Downloads initiated by the GM. Such files (hame and source) are defined in the JD. It is a sole responsibility of the
GM to make sure that a file will be available in the SD.
The supported sources are at the moment: GridFTP, FTP, HTTP, HTTPS (HTTP over SSLv3) and HTTPg (HTTF
over GSI). Also some nonstandard sources are supported. Those are described below.

e Upload initiated by the user directly or through the User Interface (Ul). Because the SD becomes available imme
diately at the time of submission of JD, Ul can (and should) use that to upload data files which are not otherwise
accessible by the GM. An example of such files can be the main executable of the job, files containing job’s op-
tions/parameters, etc. These files can (and should) also be specified in the JD.

There is no other reliable way for a job to obtain input data on the CE belonging to NorduGrid. Access to AFS, NFS,
FTP, HTTP and any other remote data transport during execution of the job is not guaranteed (at least not by GM).
Job stores output files in the SD. Those files also belong to 2 groups:

e Files which are supposed to be moved ®tarage Elemer(SE) and optionally registered in sormelexing Service
like Replica CatalodRC). The GM takes care of those files. They have to be specified in the JD. If job fails during
any stage of processing no attept is taken to transfer those files to their final destination, unless there is optio
preserve=yespecified in their URLSs.

e Files which are supposed to be fetched by the user. The user runs Ul to obtain those filesnuEheyso be
specified in the JD.

4 Job flow

From the point of view of the GM a job passes through various states. Picture 1 presents a diagram of the possible sta
of a job. A user can examine the state of a job by querying the NorduGrid Information System (IS) using the Ul or any
other tool. Please remember that IS can manipulate with state names to make them more user friendly and to combi
them with states introduced by other parts of whole setup. Below is description of all actions taken by the GM at ever)
state:

e Accepted- At this state the job has been submitted to a CE but not processed yet. The GM will analyze the JD anc
move to the next stage. If JD can not be processed the job will move to thé&steteing.

e Preparing - The input data is being gathered in the SD. The GM is downloading files specified in the JD and waiting
for files which are supposed to be downloaded by the Ul. If all files are successfully gathered the job moves to the
next state. Ifany file can't be downloaded or it takes Ul too long to upload a file - the job movEgiishing state.

e Submitting - This is a point of interaction withocal Resource Management Sys{&iRMS). At the moment PBS
is supported best and correspoding backends are provided with default installation. The job is being submitted fc
execution. If the local job submission is successful the job moves to the next state. Otherwise it nkanvishitag.

e INLRMS - The job is queued or being executed in the LRMS. The GM takes no actions except waiting until job
finishes.

[htb]

Failure or cancel request

ACCEPTED

—— PENDING

v

PREPARING Failure or cancel reque

>
PENDING
=

SUBMITTING Failure or cancel reques

Rerun l

INLRMS > CANCELING [—>

—— PENDING

[}

FINISHING [*

l

FINISHED

l

DELETED

Failure processing

Figure 1: Job states

e Cancelling - Necessary action to cancel job in the LRMS is being taken.

e Finishing - The output data is being processed. Specified data files are moved to the specified SEs and are optionally
registered at RC. The user can download data files from the SD by using Ul or any other tool. All the files not
specified as output files are removed from the SD.

e Finished- No more processing is performed by the GM. The user can continue to download data files from the SD.
The SD is kept available for some time (default is 1 week). After that it is moved to thebstbteed The 'deletion’
time can be queried at NorduGrid Information System as attribbit€ugrid-pbs-job-sessiondirerasetime
of nordugrid-pbs-job.

e Deleted- Job is moved to this state if user does not request job to be cleaned. Only minimal subset of information
about such job is kept.

In the case of the failure special processing is applied to output files. All specified output files are trelatedlaadable
by user. No files will be moved to the SE.
If the job is allowed to rerun it can go into a loop betwdehRMS andSubmitting if it's exit code was not equal 0.
However, the maximum number of times this can happen can be specified in the GM configuration or in the JD.
Configuration can put limits on amout of jobs at some states. If such limit is exceeded job stays in it's current state
waiting for free slot. This situation is presented by prepending current state nameENRING: status flag.

5 URLs

The GM and it's components support following data transfer protocols and corresponding fiiRIgsiftp, http, httpg,
https, se, rcandrls. For more information please see “Protocols, Uniform Resource Locators (URL) and extensions
supported in ARC” document.

6 Internals

6.1 Files

For each local UNIX user listed in the GM configuratiorcantrol directoryexists. In this directory the GM stores
information about jobs belonging to that user. Multiple users can share thecsantnel directory To make it easier to
recover in the case of failure, the GM stores most information in files rather than in memory. All files belonging to same
job have names starting wijdb.ID. here ID is the job identifier.

The files in the control directory and their formats are described below:

¢ job.ID.status current state of the job. It contains one word of text representing the current state of the job. Possible
values are :

— ACCEPTED
PREPARING
SUBMITTING
INLRMS
FINISHING
FINISHED
CANCELING
DELETED

See section 4 for a description of the various states. Additionally each value can be prepended with a prefix “PENDING:
(like PENDING:ACCEPTED, see section 4). That is used to show that the jaladly/to be moved to a next state and it
stays in a current statinly because some limits set in configuration are exceeded.

e job.ID.descriptiont contains the RSL description of the job.

e job.ID.local - information about job used by the GM. It consists of lines of forfimame = value” . Not all of
them are always available. The following names are defined:

subject- user subject also known as the distinguished name (DN)

starttime- the time when the job was accepted

lifetime - time to live for the SD after job finished

cleanuptime time when job will to removed from cluster and SD deleted

— notify - email addresses and flags to send mail to about job specified status changes

processtime when to start processing the job

exectime when to start job execution

expiretime- when delegation given to job expires

rerun - number of retries left to run the job
— jobname- name of the job as supplied by the user
— Irms- name of LRMS to run the job at

— gueue- name of the queue to run the job at

— localid - job id in LRMS (appears only then the job is at stateRMS)
— args- list of command-line arguments including the executable

— downloads number of files to download into SD before execution

uploads- number of files to upload from SD after execution

gmlog- directory name which holds files containing information about job when accessed through GridFTP
interface

clienthame name and ip address:port of client machine (name is provided by user interface)

clientsoftware version of software used to submit job

sessiondir SD of job

failedstate- state at which job failed (available only if it is possible to restart job)

— jobreport- URL of logger servicaused to keep track of executed jobs (one requested by user)
This file is filled partially during job submission and fully when the job moves fromAtteeptedto thePreparing state.

e job.ID.input- list of input files. Each line contains 2 values separated by a space. First value contains name of the
file relative to the SD. Second value is an URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

url - ordinary URL for gsiftp, ftp, http, https or httpg protocols with the additionreplica catalog url’ (RC URL)
and Treplica location service url (RLS URL).
Each URL can contain additional options.

file description- [size][.checksum].
size- size of the file in bytes.
checksum checksum of the file identical to the one producectksum(1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files whiubt are
required to exist.

This file is used by thedownloadet utility. Files with 'url’ will be downloaded to the SD and files with "file description’
will simply be checked to exist. Each time a newlid file appears in the SD it is removed from the list gobl.ID.input
is updated. Any external tool can thus track the process of collecting input files by ch@ukiliyinput.

e job.ID.output- list of output files. Each line contains 1 or 2 values separated by a space. First value is the name of
the file relative to the SD. The second value, if present, is a URL. Supported URLs are the same as those supported
by job.ID.input.

This file is used by theuploader utility. Files with url will be uploaded to SE and remaining files will be left in the SD.
Each time a file is uploaded it is removed from the list gtaID.outputis updated. Files not mentioned as output files
are removed from the SD at the the beginning offr@shing state.

¢ job.ID.failed - the existence of this file marks the failure of the job. It can also contain one or more lines of text
describing the reason of failure. Failure includes the return code different from zero of the job itself.

e job.ID.errors- this file contains the output produced by external utilities tikevnloader uploader, script for job
submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just useful information
about actions taken during the job processing. In case of problem include content of that file while asking for help.

e job.ID.diag- information about resources used during execution of job. It's format is similar to tfat.tdD.local.
The following names are at least defined:

— nodename name of computing node which was used to execute job,
— runtimeenvironmentsused runtime environments separated by ’;’,

— exitcode- numerical exit code of job,

and other information provided by GNtime utility. Note that some implementation tifne insert unrequested
information in their output. Hence some lines can have broken format.

e job.ID.proxy-delegated GSI proxy.

e job.ID.proxy.tmp- temporary GSI proxy with different unx ownership used by processes run with effestved
different form job owner’sd.

There are other files with names like job.ID.* which are created and used by different parts of the GM. Their presence ii
thecontrol directorycan not be guaranteed and can change depending on changes in the GM code.

6.2 Library

There are a librariebui andlibngdatadistributed as part of the GMibui provides functionality to submit job, retrieve
results and renew credentials and is used by the Ul. Interface is described in AppelitaingBata(available only if built
using autotools) provides support for moving data between different URLSs. It's interface can be found in Appendix C.

7 Cache

The GM can cache input files. Caching is enabled if corresponding command is present in configuration file. The GM
does not cache files marked as executable in job. Caching can also be explicitly turned off by user for each file by usin
cache=nooption in URL (for URL options look section 6). The disc space occupied by cache is controlled by removing
unused files. For more information look in section 8.2.

7.1 Structure

Cache directory contains plain files. Those are

e list - stores names of the files (8 digit numbers) and corresponding URLs delimited by blank space. Each pair i
delimited by some amount of \O codes. Also creation and expiration times are stored if available

e old - stores URLs which have been removed from cache Records are delimited by some amount of \O codes. Th
records are meant to be removed by some external routine.

e new- stores URLs which have been added to cache Records are delimited by some amount of \O codes. The recor
are removed when corresponding files are removed from cache. They can also be handled by some external routin
Every time record is added td it is removed frommew

e statistics- consists of strings containingame=value Following names are defined:

— hardsize-size of file system for storing cached data

hardfree- amount of disc space available on that file system

softsize if cache exceeds this size files are started being removed

softfree- space left till softsize (can be negative)

claimed- space used by files claimed by running jobs

unclaimed- space used by files not being currently used by any job

o HH#HHHHHHE . INfo stores state of filet##H###stands for 8 digits). State is represented by one character:
C - just created, content is empty.
f - failed to download (treated same as 'c’).
r - ready to be used, content is valid.
d - being downloaded. 'd’ is followed by identifier of application/job downloading that file. During content’s
download this file has write lock set.

o . claim stores list of identifiers of applications/jobs using this file. Identifiers are stored one per line.

o HitHHHHHHH files storing content of corresponding URL. These can be stored in separate directory.

Fileslist, old , newand##H#H#H#H#H#H .infdias to be stored on filesystem which has support for files’ locking.

7.2 How it works

If job requests input file, which can/allowed to be cached, it is stored in cache directory instead and soft-link is created
in the SD, pointing to that file. Or file can be stored in cache and then copied to the SD. Last option is more secure and
hence advised.

Before downloading file the GM tries to determine it's size and to preallocate space in cache directory, by writing file
of same size. If that fails (file system has no more space), it tries to remove oldest cache files, which are not being used by
any job. That meanisard limit of cache size is space available at file-systenin case cache gets full and it is impossible
to free any space, download fails and is retried without using cache.

Before giving access to already cached file the GM contacts initial file source to check if user is allowed to do that if
protocols allows to do that.

Also file creation or validity times are checked to make sure cached file is fresh enough. If it is impossible to obtain
creation and invalidation times for file it is invalidated 24 hours after downloaded.

Also the GM checks cache periodically. If used space exceeds high water-mark given in configuratsorfit§ilzg(it
tries to remove oldest unused files to reduce size to low water-mark. This sets soft limit of cache size.

There are 2 kinds of caches available. Fileptivate cache are owned by Unix user to which grid user is mapped.
Those files are readable only by that particular Unix user. Another kind of casharied Files are owned by Unix user
who started GM and are readable by everyone.

8 Files and directories

8.1 Modules

The GM consists of few separate executable modules. Those are:

e grid-manager- Main module. It is responsible for processing the job, moving it through states, running other
modules.

10

e downloader- This is a module responsible for gathering input files in the SD. It processgshth2.inputfile and
updates it.

e uploader- This module is responsible for delivering output files to the specified SEs and registration at the RC. It
processes and updates jbb.ID.outputfile.

e cache-register Utility to register cached data into Indexing Services like RC and RLS. It reads and modifies cache
informational filesold andnew?7. Configuration is read directly from the GM’s configuration file 8.2. It is run by
the GM every 5 minutes.

Following modules are always run under Unix account to which user is mapped.

e smtp-send.sAndsmtp-send These are the modules responsible for sending e-mail notifications to the user. The
format of the mail messages can be easily changed by editing the simple shekstpmend.sh

e submit-*-job - Here * stands for the name of the LRMS. The only supported LRMS is PBS (and the name is
submit-pbs-jol This module is responsible for the job submission to the LRMS. This is a shell script derived from
corresponding file of Globus ToolHitM.

e cancel-*-job- This one is for canceling the job, which was submitted to LRMS.

e scan-*-job-This shell script is responsible for notifying the GM about completion of the job. It's implementation
for PBS system uses server logs to extract information about jobs. If logs are not available it uses lesg|s&diible
command for that.

Also there are few administrator and user level utilities available.

e ngcopy- copy file fromurl to url. Accepts both ordinary and RC URLs. Syntax:
ngcopy [-h] [-V] [-c cache_path [-C cache_data_path]] [-d level] source destination
-C - use cache at 'cache_path’,
-C - store cached data at 'cache_data_path’,
-S - use secure data transfer (this eats a lot of CPU power).
Source URL can end with '/’ In that case whole fileset (directory) will be copied. Also if destinations end with '/
it is extended with part of source URL after last '/

e ngremove remove file at giverurl. Accepts both ordinary and RC URLs. In case if RC URL is given without
location, deletes also meta-information about file (alsp known as logical file name).
ngremove [-h] [-v] [-c] [-d level] url,
-C - continue with meta-data even if it failed to delete real file.

e ngls- list contents of directory or file attributes acorresponding to provided URL. Accepts both ordinary and RC
URLs. For RC URL currently LFN is ignored.
ngls [-h] [-v] [-d level] [-1] [-L] url
-l - print files’ attributes,
-L - print files’ attributtes and URLs which can be used to obtain that file.

¢ ngacl- manipulate ACL of file or directories on gridftp servers supplied with GACL access contorl. It either prints
contents of GACL ACL XML on stdout or reads it from stdin. If UR: end with '/’ directory ACL is read/written.
Otherwise ACL of file is processed.
ngacl [-h] [-V] [-d level] get|set url,
get|set - command to get or set file or directory ACL correspondingly.

11

e ngrequest request file to be copied/replicated between 2 sites (aka third-party transfer). Currently it supports only
SSE.
ngacl [-h] [-v] [-d level] [-s source] destination,
source - multiple attribute used to specify source URL,
destination - URL of destination.

And all utilities above support common options:
-h - print short reminder,
-V - print version,
-d - set debug level.

e gm-jobs- prints list of jobs available on cluster and amount of jobs in every state.
gm-jobs [-h] [-]] [-u uid] [-U name]
-I-1 - print more information about each job,
-I-u - pretend utility is run by user with idid,
-I-I - pretend utility is run by user with namsame

8.2 Configuration of the Grid Manager

The GM configuration is done through single configuration file. Historically GM supports 2 kinds of configuration files.
For old one it looks at following places:

e SNORDUGRID_LOCATION/etc/grid-manager.conf
e /etc/grid-manager.conf

And for new one in
e /etc/nordugrid.conf

The old configuration file consists of empty lines, lines containing comment (line starts from #) or configuration com-
mands. Blank spaces in arguments must be escaped using '\’ or arguments must be enclosed in ™. Command line starts
from command followed by arguments separated from command and between them by spaces.

The new configuration file can also contain empty lines and comments starting from #. It is separated into sections.
Each sections starts from string containing

¢ [section name/subsection name/subsubsection name]

Each section continues till next section of end of file. One configuration file can have commands for multiple ser-
vices/modules/programs. Each service get it's own section named after it. The GM uses|geictioranager] Some
services can make use of multiple subsections to reflect their internal modular structure. Commands ifceautiom]

apply to all services. Command lines have format

e name="arguments string”.

Names are same as in old configuration file. Argument stringconsists of same arguments as in old format. And they
must obey same rules.

Both files support almost same commands. Following commands are defined (examples are given for old format):
Global commads (those which affect global parameters of the GM and affect all serviced users):

12

e daemonyes|no- specifies whether the GM should go to background after started. Defayks to

o logfile [path] - specifies name of file for logging debug/informational output. Defaultslé®/nullfor daemon
mode andstderrfor foreground mode.

e user[uid[:gid]] - specifies user id (and optionally group id) to which the GM must switch after reading configura-
tion. Defaults tanot switch

o pidfile [path] - specifies file where id if GM process will be stored. Defaultadbwrite.

e debugnumber- specifies level of debug information. More information is printed for higher levels. Currently
highest effective number is 3 and lowest 0. Defaults to 2.

All commands above are generic for every daemon-enabled server in ARC NorduGrid toolkit (like GFS and HTTPSD).

e joblog[path] - specifies where to store log file containing information about started and finished jobs.

e jobreport[URL ... number]- specifies that GM has to report information about jobs being processed (started,
finished) to centralized service running at givdRL. Multiple entries and multiple URLs are allowedumber
specifies how long old records have to be kept if failed to be reported. That time is in days. Last specified value
becomes effective.

e securetransferyes|no- specifies whether to use encryption while transferring data. Currently works for GridFTP
only. Default is no. It is overridden by value specified in URL options.

¢ |localtransferyes|no- specifies whether to pass file downloading/uploading task to computing node. If set to yes
the GM won’t download/upload files. Instead it composes script submitted to LRMS in way to make it do that.
This requires installation of GM and Globus to be accessible from computing nodes and environment variables
GLOBUS_LOCATION and NORDUGRID_LOCATION to be set accordingly. Default is no.

e maxjobs[max_processed_jobs [max_running_jobsBpecifies maximum number of jobs being processed by the
GM at different stages:
max_processed_jobsnaximal amount of jobs being processed by GM. This does not limit amount of jobs, which
can be suNOTE:bmitted to cluster
max_running jobs maximal amount of jobs passed to Local Resource Management System
Missing value or -1 means no limit.

e maxlod[max_frontend_jobs [emergency_frontend_jobs [max_transferred_filesfigcifies maximum load caused
by jobs being processed on frontend:
max_frontend_jobs maximal amount of jobs heavily using resources of frontend (applied before moving job to
PREPARING and FINISHING states)
emergency_frontend_jobsf limit of max_frontend_jobgs used only by PREPARING or by FINISHING jobs
aforementioned number of jobs can be moved to another state .This is used to avoid case then jobs can't finish di
to big amount of recently submitted jobs.
max_transfered_filesmaximal number of files being transfered in parallel by every job. Used to decrease load on
not so powerful frontends.
Missing value or -1 means no limit.

o wakeupperiodime - specifies how often for external changes are performed (like new arrived job, job finished in
LRMS, etc.).timeis a minimal time period specified in seconds. Default is 3 minutes.

13

e cacheregistrationyes|no- enables or disables registration of cache data into Indexing Services like RC or RLS.
The default imno. Only files dowmloaded througieta-urlare registred. Registration is done to same service used
for obtaining information about file. For this opeartion credentials of the GM (host key and certificate) are used.
If required new files storage location is registered at Indexing Service with quasaalré://hostnamednd name
hostname:cache

e authplugin state options plugin specifiesplugin (external executable) to be run every time job is going to
switch tostate Following states are allowed: ACCEPTED, PREPARING, SUBMIT, FINISHING, FINISHED
and DELETED. If exit code is not 0 job is canceled by defaQlptionsconsist ofhame=valuepairs separated by a
comma. Followingnames are supported:
timeout- specifies how long in seconds execution of the plugin allowed to last (mandationgotit=" can be
skipped for backward compatibility).
onsucces®nfailureandontimeout defines action taken in each casagucceshappens if exit code is 0). Possi-
ble actions are:
pass- continue execution,
log - write information about result into logfile and continue execution,
fail - write information about result into logfile and cancel job.

¢ localcredtimeout plugin- specifiesplugin (external executable or function in shared library) to be run every time
job has to do something on behalf of local user. Executiopladin may not last longer thatimeoutseconds. If
pluginlooks likefunction@paththen functionint function(char*,char*,char*,...)from shared librarpathis called
(timeoutis not functional in that case). If exit code is not O current operation will fail.

e norootpoweryes/no- if set to yes all processes involved in job management will use local identity of a user to which
Grid identity is mapped in order to access filesystem at path specifsasgiorcommand (see below). Sometimes
this may involve running temporary external process.

e allowsubmit[group ...] - list of authorization groups of users allowed to submit new jobs while "allownew=no" is
active injobplugin.soconfiguration (see below in section 8.3). Multiple commands are allowed.

e speedcontroimin_speed min_time min_average_speed max_inactigpecifies how long/slow data fransfer is
allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lowenithapeedor at
leastmin_timeseconds, or if average rate is lower thain_average speedr no data is receved for longer than
max_inactivityseconds.

e copyurltemplate replacementspecifies that URLSs, starting from template should be accessed in a different way
(most probably Unix open). Themplatepart of the URL will be replaced witreplacement. replacemeoan be
either URL or local path starting from /. It is advisable to end template with '/".

e linkurl template replacement [node_pathinostly identical tacopyurlbut file won't be copied. Instead soft-link
will be createdreplacemenspecifies the way to access the file from the frontend, and is used to check permissions.
Thenode_pattspecifies how the file can be accessed from computing nodes, and will be used for soft-link creation.
If node_paths missing Hocal_pathwill be used instead. Bothode_pathrandreplacemenshould not be URLSs.

NOTE: URLs which fit intocopyurlor linkurl are treated as more easily accessible than other URLs. That means if
GM has to choose between few URLs from which should it download input file, these will be tried first.

Per UNIX user commands:

14

e mail e-mail_address specifies an email addreesm which the notification mails are sent.

o defaultttl ttl [ttr] - specifies the time in seconds for the SD to be available after job finisthedr(d after job was
deleted {tr) due tottl. Defaults are 7days fdtl and 30 days fottr.

o defaultirmsdefault_Irms_name default_queue_namspecifies names for the LRMS and queue. Queue name can
also be specified in the JD (currently it is not allowed to override used LRMS by using JD). In hew configuration
file this command is callebims.

e sessionpath - specifies path to the directory in which the SD is created. If the path is * the default one is used -
$HOME/.jobs. In new configuration file this command is callgessiondir

e cachepath [link_path]- specifies the directory to store cached data. Erpptiadisables caching. Default is not to
cache data. Optiondihk pathspecifies the path at which cache is accessible at computing nodigdk_[fathis
setto . files are not soft-linked, but copied to session directory. In new configuration file this command is called
cachedir

¢ privatecachepath [link_path]- same agachecommand, but cache belongs (owned) to user. For shared caches use
‘cache’.

e cachedatapath - allows to specify separate place to store cache files containing data itself. This can be useful in
case of big data storage available only on NSF server which does not support file locking. If comrpatidi®r
missing - default is to store data at place specifieckicheor privatecachecommand, together with control files.

e cachesizénigh_mark [low_mark} specifies high and low water-mark for space used by cache. Values are specified
in bytes. Bothhigh_markandlow_markcan be negative values. In that case corresponding positive value means
space left on filesystem. 16w_markis omitted it becomes equal tagh_mark By default this feature is turned
off. To turn it off explicitly cachesizavithout parameters should be specified. If turned off cache will grow up till
it fills whole file system.

e maxrerunnumber- specifies maximal number of times job will be allowed to rerun after it failed in LRMS. Default
value is 2. This only specifies a upper limit. Actual number is provided in job description and defaults to 0.

All per-user commands should be put befoomtrol command which initiates serviced user.

e control path username [username [...J]This option initiates UNIX user as being serviced by the GQistthrefers
to the control directory (see section 6 for the description of control directory). If the path is * the default one is used
- $HOME/ jobstatus usernamestands for UNIX name of the local user. Multiple names can be specified. If the
name is * it is substituted by all names found in file /etc/grid-security/grid-mapfile (for the format of this file one
should study the Globus project [8]).
Also the special name *’(dot) can be used. Corresponding control directory will be usaayfaser. This option
should be the last one in the configuration file. In new configuration file comww@mtdoldir pathis also available.
It uses special username ' and is always executed last independent of placement in file.

¢ helperusername command [argument [argument [...]Jassociates external program with the local UNIX user.
This program will be kept running under account of the specified ussmrnamestands for the name of the user.
Special names can be used: *' - all names from /etc/grid-security/grid-mapfile, . - root user. The user should
be already configured witbontrol option (except root, who is always configuredpmmands an executable and
argumens are passed as arguments to it.

15

Following are global commands supported only in new configuration file. Most of them are specific to underlying LRMS
(PBS in this case) and are passed in environment variables if old configuration file is used.

pbs_bin_pathpath- path to directory which contains PBS commands.
pbs_log_patipath- path to directory with PBS server’s log files.
gnu_timepath- path totime utility.

tmpdir path- path to directory for temporary files.

runtimedir path- path to directory which contairrsintimenvironmenscripts.

shared_filesysterges|no- if compiting nodes have an access to session directory through a shared filesystem like
NFS. Corresponds to an environement variable RUNTIME_NODE_SEES FRONTEND.

In the command arguments (paths, executables, ...) following substitutions can be used:

%R
%C
%U
%u
%9
%H
%Q
%L
%W
%G
%c
%l
%S

%0

- session root - see commaseksion

- control dir - see commarabntrol

- username

- userid - numerical

- groupid - numerical

- home dir - home specified in /etc/passwd

- default queue - look command 'defaultirms’

- default Irms - look command 'defaultlrms’

- installation path - ${NORDUGRID_LOCATION}
- globus path - ${GLOBUS_LOCATION}

- list of all control directories

- job’s ID (for plugins only, substituted in runtime)
- job’s state (foauthpluginplugins only, substituted in runtime)

- reason (folocalcredplugins only, substituted in runtime).
Possible reasons are:

new - new job, new credentials

renew - old job, new credentials

write - write/delete file, create/delete directory (through gridftp)
read - read file, directory, etc. (through gridftp)

extern - call external program (grid-manager)

16

Some configuration parameters can be specified from command line while starting the GM:

grid-manager [-h] [-C level] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-Cc - name od configuration file,

-C - remove old information before starting: 1- remove finished jobs, 2 - remove active jobs too, 3- also remove ev-
erything that looks like junk.

8.3

Configuration of the GridFTP Server

Default location of the GFS configuration file ®NORDUGRID_LOCATION/etc/gridftpd.cowir /etc/nordugrid.conf
Format of these configuration files is similar to that of the GM. It also supports generic commands described at th
beginning of previous section 8.2. In the new format sections [common] and [gridftpd] are used. Commands specific t
the GFS are described below.

port number- specifies TCP/IP port number. Default is 2811.

include path- include contents of another file. Generic commands can’t be specified there.
encryptionyes|no- specifies if server will allow data transfer to be encrypted. Default is yes.
pluginpath path- specifies the path where plugin libraries are installed

allowunknownyes|no- if set toyesclients are not checked agains grid-mapfile. Hence only access rules specified
in this configuration file will be applied.

group name- define the group containing the user with the specified subjects. Each line contains rule which defines
if connected user belongs to that group. For available rules and their description read below at 8.4. leegisrd

used to mark end of definition. In the new format insteadroup name ...endsection namedroupis used. That
section must contain commandme=name_of_groupThis command is not specific for the GFS and is supported

by other ARC services which support authorizaton.

unixmap unixname[:unixgroup] rule- define local Unix user and optionally group used to represent connected
client. rule is the same as faggroup command. If there is no suitable mapping for user, default is to take one from
grid-mapfile.

groupcfgname- select the group to which all following lines apply. Only unaffected optiograaipcfg If name
is empty (or no groupcfg is used at all) following lines apply to all users. In the new configuration fproogicfg
is put into subsections representnig plugin or [group] section and defines if that section is effective.

plugin path library_name make pluginibrary_nameto serve virtual patipath(similar mount command of Unix).
Following lines contain plugin specific options till keywoethd In the new format this construct is replaced by
subsection of gridftpd. Name of subsection is irrelevant. Inside that sqaltigm=library_namespecifies name
of library. And path=path - virtual path.

GFS comes with 3 plugingilepligin.so, gaclplugin.sandjobplugin.so

17

— jobplugin.sodoes not need any specific options, so the following line should contain onlyemardt reads
the configuration file of the GM located at the standard place as specified in the section 8.2. It still support
following options:
x configfile path- defines non-standard place for GM’s configuration file,

x allownewyes|no- specifies if new jobs can be submitted. Defaulfes
— filepligin.sosupports following options:

+x mount path- defines the place on local filesystem to which file access operations apply
x dir path options specifies access rules for accessing filegdth (relative to virtual and real path) and
all the files below.
optionsis the list of the following keywords:
- nouser- do not use local file system rights, only use those specifies in this line
- owner- check only file owner access rights
- group - check only group access rights
- other- check only "others" access rights
The options above are exclusive. If none of the above specified usual Unix access rights are applied.
- read- allow reading files
- delete- allow deleting files
- append- allow appending files (does not allow creation)
- overwrite - allow overwriting already existing files (does not allow creation, file attributes are not
changed)
- dirlist - allow obtaining list of the files
- cd- allow to make this directory current

- createowner:group permissions_or:permissions_arallow creating new files. File will be owned
by ownerand owning group will beyroup. If *' is used, the user/group to which connected user
is mapped will be used. The permissions will be sgtéomissions_o& permissions_an@second
number is reserved for the future usage).

- mkdir owner:group permissions_or:permissions_arallow creating new directories.

— gaclpligin.sodoes not have options in case of the old configuration. First line of it's configuration contains
local path (root directory) served by it. Rest till keywardd contains GACL [9] XML used to setup initial
access rules for every newly created file and directory. If GACL XML is empty then there will be no default
ACLs created for new files and directories. That means ACL of parent directory will be used.

For the new configurstion following options are supporgakcl=gacl- GACL XML, mount=path - local path
server by plugin.

XML can contain variables which are replaced with values taken from client’s credentials. Following variables
are supported:

$subject - subject of user’s certificate (DN),
$voms - subject of VOMS[10] server (DN),
$vo - name of VO (from VOMS certificate),
$role - role (from VOMS certificate),

$capability - capabilities (from VOMS certificate),

18

$group - name of group (from VOMS certificate) .

Additionally root directory must contaimgaclfile with initial ACL. Otherwise rule will be “deny all for everyone”.

Some configuration parameters can be specified from command line while starting the GFS:

gridftpd [-h] [-p number] [-n number] [-b number] [-B number] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P
path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-c - name od configuration file,

-p - TCP/IP port number,

-n - maximal number of simultaneously served connection,

-b - default size of buffer used for data transfer (default is 64kB),

-B - maximal size of buffer used for data transfer (default is 640kB).

8.4 Authorization

Authorization is performed by applying set of rules. Each rule takes one line igrthe configuration and can be
preceded by modifiers - [+|-][']

+ accept user if matches following rule (positive match, default action),
- reject user if matches following rule (negative match),

! invert matching. Match is treated as non-match. Non-match is treated as match, either positive (“+" or
nothing) or negative (*-”).

Processing of rules stops after first positive or negative match is reached.
Following rules are supported:

[subject subject[subject]...]]- accept user with one of specified subjects
o file [filenamd]...]] - read rules from specified files
e vo[ldap://host:port/dr...]] - accept users listen in one of specified LDAP directories

e vomsvo group role capabilities accept user with VOMS proxy belonging to specifigmlandgroup and having
specifiedrole andcapabilities ™' can be used to accept any value.

e group[groupnamg...]] - accept user already belonging to one of specified groups.

e all - accept any user

19

8.5 Directories

The GM is installed into a single installation point referred as $SNORDUGRID_LOCATION and following sub-directories
are used:

$NORDUGRID_LOCATION/bin - tools
$NORDUGRID_LOCATION/libexec - program modules used by GM
$NORDUGRID_LOCATION/etc - configuration file
$NORDUGRID_LOCATION/shin - daemons and SystemV start-up scripts
$NORDUGRID_LOCATION/Iib - gridftp server’s plugins and API libraries (
The GM also uses following directories:

e session root directory In this directory the SD is created. It can be multiple directories for the various users
specified in the configuration file.
There are 2 processes which need to have a permissions to create new files and directories in it. Those are GM and
GFS.
If any of those processes processes are run under dedicated user account, that account need full permissions in the
session root directory
If those processes are run undeot account make surgession root directorys not on filesystem which limits
capabilities ofroot user. For example NFS witloot_squastoption.
If there is need to run processes undmt account (to run jobs in LRMS under different users’ accounts) but there
is no way to provide suitablgession root directorysenorootpowercommand in configuration of the GM. In that
case GM and GFS will use identity of local user to which Grid identity is mapped to asess®n root directory
Hence those users will need full access there.
The GM creates SD with proper ownership and permissions for local identity used to run job. Some filesystems
requireexecutablepermissions orsession root directoryo be set for local identity in order to access any file or
subdirectory there.
This directory should also be shared among cluster nodes in order for job to access input files. Or internal means of
LRMS must be used to transfer files to executing node. For more see section 8.6.

e control directory- In this directory the SD stores an information about the accepted jobs. Both GM and GFS
processes must have full permissions there.
Also subdirectory calletbg is created there. It is used to accumulate inforamtion about started and finished jobs.
This information is periodically sent to thegger service

8.6 LRMS support

The GM comes with support for several LRMS. And this number is slowly growing. Features explained below are for
PBS backend. This support is provided througibmit-pbs-jobcancel-pbs-jobscan-pbs-jotscripts. submit-pbs-job
creates job’s script and submits it to PBS. Created job’s script is responsible for moving data between frontend machine
and cluster node (if required) and execution of actual job. Alternatively it can download input files and upload output if
“localtransfer no” is specified in the configuration file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified on
frontend in GM’s environment and overwritten on cluster’s node through PBS configuration.

PBS_BIN_PATH- path to PBS executables. Likasr/local/binfor example.

TMP_DIR - path to directory to store temporary files. Default valu&rigp

RUNTIME_CONFIG_DIR - path where runtime setup scripts can be found.

20

GNU_TIME - path to GNU time utility. It is important to path to utility compatible with GNU time. If such utility is
not available, modifysubmit-pbs-jolio either reset this variable or change usage of available utility.

NODENAME - command to obtain name of cluster’s node. Defaulbis/hostname -f

RUNTIME_LOCAL_SCRATCH_DIR- if defined should contain path to the directory on computing node, which
can be used to store job’s files during execution.

RUNTIME_FRONTEND_SEES NODE if defined should contain path correspondin@RtdNTIME_LOCAL_SCRATCH_
as seen ofrontend machine.

RUNTIME_NODE_SEES_FRONTEND- if set to “no” means computing node does not share filesystem with fron-
tend. In that case content of the SD is moved to computing node by using means provided by the LRMS. Results al
moved back after job’s execution in a same way.

Figures 2,3,4 present some possible combinations for RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTE
and explain how data movement is performed. Pictures a) correspond to situation right after all input files are gathered |
session directory and actions taken right after job’s script starts. Pictures b) show how it looks while job is running anc
actions which are taken right after it finished. Pictures c) stand for final situation, when job files are ready to be uploade
to external storage element or be downloaded by user.

[htb]

Frontend Cluster node

Session directory > Session directory

Figure 2: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE undefined. Job is
executed in session directory placed on frontend.

8.7 Runtime environment

The GM can run specially prepar8ASHscripts prior creation of job’s script and before executing job’s main executable.
Those scripts are requested by user througtiimeenvironmenattribute in RSL and are run with only argument equal

to '0’, "1’ or 2’ during creation of job’s script, before execution of main executable and after main executable finished
accordingly. They all are run through BASH’s 'source’ command, and hence can manipulate with shell variables. With
argument 'O’ scripts are run by the GM on frontend. Some environment variables are defined in that case and can t
changed to influence job’s execution later:

e joboption_directory - session directory.

e joboption_args - command to be executed as specified in RSL.

e joboption_env_# - array of 'NAME=VALUE’ environment variablesat bash array).
e joboption_runtime_# - array of requestedhtimeenvironmemames fiot bash array).

e joboption_num tuntimeenvironmenturrently beeing processed (number starting from 0).

21

[htbp]

Frontend Cluster node
Session directory > |_:_w on directory |
1 AT T
Jop file | WJOb files/l ! COPY bgfore execution
a) . s, /_/z'\
Scratch directory 1
Frontend Cluster node
Session directory » |Session directory I
limported from '
I 777777
stdout-v-stderﬂ Lfrontend Istdout+stdery; \MOVE |after execution
- SOFT-LINKS
Scratch directory \)
Copy of session dir.)'
Job file
Frontend Cluster node
Session directory > |_f~r_::;?L:y;_«'{_;,_*«:_t,«: ;_ T
1 T T AT T |
Job files/ | W/Iob fileAs?l |
c) .l Lol
Scratch directory

Figure 3: RUNTIME_LOCAL_SCRATCH_DIR is set to value representing sratch directory on computing node, RUN-
TIME_FRONTEND_SEES_NODE undefined.

a) After job script starts all input files are moved to 'scratch directory’ on computing node.

b) Job runs in separate directory in 'scratch directory’. Only files representingslwatandstderrare placed
in original 'session directory’ and soft-linked in 'scratch’. After execution all files from 'scratch’ are moved
back to original 'session directory’.

C) All output files are in 'session directory’ and are ready to be uploaded/downloaded.

22

[htbp]

Frontend Cluster node

Session directory | Sessi |

| V//F/F//‘/F//‘ I
Job file Job fil | i
a) :_ _/{O/Z/Ze /_A//I\:OPY bdfore execution

IHﬁLa*h directory | Scratch directory)

Frontend Cluster node

. . - T T T 1
Session link © | Session ,L,L\'l

MOVE after exeqution

SOFT-LINK

b)

Scratch directory

Session directory

/7/7/7/7
W//Iob flle / Job file
LALAL LS, ﬂ., -

Frontend Cluster node

Session directory >

| ,/ /7/7/7/7/“ !
| J ob fil e |
. /_//_z/z/_z/ |

c)

—_—— e e — o

Iscratch directory Scratch directory

Figure 4: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES NODE are set to valuea rep-
resenting sratch directory on computing node and way to access that scratch from frontend correspondingly.

a) After job script starts all input files are moved to 'scratch directory’ on computing node. Original 'session
directory’ is removed and replaced with soft-link to copy of session directory in 'scratch’ as seen on frontend.

b) Job runs in separate directory in 'scratch directory’. All files are also available on frontend through soft-link.
After execution soft-link is replaced with directory and all files from 'scratch’ are moved back to original
'session directory’.

C) All output files are in 'session directory’ and are ready to be uploaded/downloaded.

23

¢ joboption_stdin - name of file to be attached to stdin handle.

e joboption_stdout - same for stdout.

e joboption_stderr - same for stderr.

e joboption_maxcputime - amout of CPU time requested (minutes).

e joboption_maxmemory - amout of memory requested (megabytes).

e joboption_count - number of processors requested.

e joboption_Irms - LRMS to be used to run job.

e joboption_queue - name of a queue of LRMS to put job into.

e joboption_nodeproperty_# - array of properties of computing nodes (LRMS spedifibash array).
¢ joboption_jobname - name of the job as given by user.

e joboption_rsl - whole RSL for very clever submission scripts.

e joboption_rslname- RSL attributes and values (like joboption_rsl_xecutable="/bin/echo”)

For examplgoboption_argscould be changed to wrap main executable. j@option_runtimecould be expanded if
current one depends on others.

With argument "1’ scripts are run just before main executable is run. They are executed on computing node. Such
script can prepare environment for some third-party software package. A current directory in that case is one which would
be used for execution of job. Variable HOME also points to that directory.

With argument "2’ scripts are executed after main executable finished. Main purpose is to clean possible changes done
by scripts run with "1’ (like removing temporary files). Execution of scripts at that stage also happens on computing node
and is not reliable. If the job is killed by LRMS they most probably won't be executed.

9 Installation

9.1 Requirements

The GM is mostly written using C++. It was tested and should compile on recent ehdugksystems usingycc
compiler andGNU make(gcc versions 2.95, 2.96, 3.2 were tested). You will also r@kbus ToolkitM 2.x (x>=2)
installedhttp://www-unix.globus.org/toolkit/.

9.2 Obtaining

Get distribution of GM as part of NorduGrid Toolkitiettp: //www.nordugrid.org/download/. Pick the latest version.
Download and unpack it.

To compile GMonly go to a top directory of source trel@ead and editfile Make.inc . Make sure GLOBUS_LOCATION
points to the Globus installation directory and GLOBUS_FLAVOR is the one You lyme32dbgpthior gcc32pthrare
advised. The GM was tested only wiglsc32dgpththreaded version of Globus and it uses threads itself. So it most prob-
ably won't work properly with non-threaded version of Globus libraries. Variable NORDUGRID_LOCATION should
contain path where the GM is to be installed. Make sure linker can find Globus libraries (use LD_LIBRARY_PATH
environment variable for example).

24

Do not forget to edit variables which set the paths to the PBS installation: PBS_LOCATION and PBS_SPOOL .
Read comments to find out meaning of other variables.

9.3 Compilation

Run 'make’ in the top source directory to build whole ARC toolkit or in grid-manager directory for GM related things.
This will create few executables in various sub-directories. Those are:

e grid-manager/grid-manager
e grid-manager/downloader
e grid-manager/uploader
e grid-manager/rsl/ng-parse-rsi
e grid-manager/misc/smtp-send
e grid-manager/globus-script-ng-submit
e grid-manager/init/grid-manager.sh
e grid-manager/init/gridftpd.sh
e grid-manager/LRMS/pbs/submit-pbs-job
e grid-manager/LRMS/pbs/cancel-pbs-job
e grid-manager/LRMS/pbs/parse-pbs-log
e grid-manager/LRMS/pbs/scan-pbs-job
e grid-manager/gridftp/gridftpd
Few libraries will also be created:
e grid-manager/libui.a
¢ grid-manager/gridftp/fileplugin/fileplugin.so
e grid-manager/gridftp/jobplugin/jobplugin.so

¢ grid-manager/gridftp/gaclplugin/gaclplugin.so

9.4 Installation

Run 'make install’ in the main source directory. This will create directories
$NORDUGRID_LOCATION/bin
$NORDUGRID_LOCATION/sbin
$NORDUGRID_LOCATION/etc
$NORDUGRID_LOCATION/lib
$NORDUGRID_LOCATION/libexec
$NORDUGRID_LOCATION/include

and install few files there.

25

9.5 Setup of the Grid Manager

To make GM tanteroperate with other parts of the NorduGrid software it should exishly one session root directory
andonly onecontrol directory.

If You used autotools (configure, etc.) to compile and install the GM then there is SysV startup script installed. This
script uses central configuration file common for all ARC servers. It recreates separate configuration files. Description of
such configuration is not a target of this document.

To use separate configuration file directly simplified startup script SNORDUGRID_LOCATION/sbin/grid-manager.sh
can be used. It can also be used as SysV startup script. It is advisable to use the template configuration found in source
tree under grid-manager/config/grid-manager.conf. Copy it to SNORDUGRID_LOCATION/etc/grid-manager.conf. Then
read section 8.2 and comments inside configuration file and edit it if needed.

Simplified startup script supports usual options like start, restart, etc. and additional options:

lightcleanstart - after the GM starts it removes all jobs with states FINISHED,
cleanstart - all recognized jobs are removed,

distcleanstart- all files present in control and session directories are removed.

The GM is designed to be able to run both as root and as ordinary user. You can chose the name of the user by modifying
variable GM_USER in start-up script or corresponding command in configuration file. It is better to keep it empty and
run GM as root if You want to serve few users.

You may need to adjust few paths in files SNORDUGRID_LOCATION/libexec/submit-pbs-job, SNORDUGRID_LOCATION/libe
pbs-job and $SNORDUGRID_LOCATION/libexec/scan-pbs-job. You can edit variables described in 8.6 or set them in
environemnt before starting GM. You do not need to do that if You use central configuration file.

The GM writes debug information into a file /var/log/grid-manager.log by default. . Also file /var/log/gm-jobs.log
(default path in configuration template) contains information about all started and finished jobs, 2 lines per job (1 when
job is started and 1 after it finished).

Unless You want to use GFS for job submission (strongly advised) now it's time to configure Globus job-manager.
Please note, that the GM doest support submission through Globus GRAM (gatekeeper, job-manager) for version
newer than 2.0. So information below is mostly useless. Few files called

globus-script-ng-submit

globus-script-ng-queue

globus-script-ng-rm

globus-script-ng-poll

ng-parse-rsl
are installed in Your $GLOBUS_LOCATION/libexec . You have to to add new resource to Globus gatekeeper configura-
tion with ’-rdn ng’. You can choose any name for it, but it is advisable to cfdhkimanager-ngFor how to do that study
Globus distribution documentation. Look for itlattp: //www-unix.globus.org/toolkit/.

9.6 Setup of the GridFTP Server

Like the GM GFS can be also started by SysV startup script installed by autotools build or simplified script SNORDU-
GRID_LOCATION/sbin/gridftpd.sh . GFS startup scripts make GFS to write debug information into /var/log/gridftp-
server.log by default.

Local file access in the GFS is implemented through plugins (shared libraries). There are 3 plugins provided with
the GFSfileplugin.so, gaclplugin.sandjobplugin.so. Thefileplugin.sois intended to be uses for plain file access with

26

the configuration senitive to user subject and is not necessary for setting a NorduGrid compatible gjsellbgin.so

uses GACL fittp://www.gridpp.ac.uk/authz/gacl/) to control access to local file system. Tjhbplugin.sas using
information about jobs being controlled by GM and provides access to session directories of the jobs owned by user.
also provides an interface (virtual directory and virtual operations) to submit, cancel, clean, renew credentials and obta
information about the job.

To make GFS to interoperate with other parts of the NorduGrid software only one jobplugin.so is required to be config-
ured. ltis advisable to use the template configuration file SNORDUGRID_LOCATION/etc/gridftp-server.conf.templatefou
in source tree under grid-manager/config/gridftpd.conf. Copy it to SNORDUGRID_LOCATION/etc/grid-manager.conf.
Then read section 8.3 and comments inside configuration file and edit it if needed. You can leave only part which config
uresjobplugin.soplugin.

There is no additional configuration job required for the GFS.

9.7 Usage

Refer to the description of thdser Interfacepart [11] and extensions to RSL [7] for using the GM.

9.8 Unix accounts

Bot GM and GFS are designed to be runrbgt UNIX account and serve multiple local UNIX and global Grid identities.
Nevertheless it is possible to ugen-rootaccounts to run those services. Although this means some functionality loss
described below.

There are no implication on running GFS wilclpluginor filepluginas long as only Grid identity of user is used
and all served files and directories are owned by server’s account.

For combination of GM and GFS witlebpluginboth services must be run either by same account or one of services
must be run undenot account. That is needed because services communicate over local filesystem, hence must have fu
access to same set of files.

As long as GFS witljobpluginis run under non-root account there is no mapping from Grid identity to local UNIX
account taking place. All alowed Grid users are assigned server’s account and are then processes by GM using sa
account. Only way to overcome this limitation is to run one GFS per local account with proper access control configured

Because GM has to represent user’s local account while communication with LRMS, it can serve only account it is rur
under (unless it is run undevot account, of course). Like in case of GFS, multiple instances of GM may be run, one per
local account. That solution causes another implications. The GM looses possibility to share cached files among servic
users. Itis not also possible to control load on a frontend by limiting number of simultatenuosly rdomingpaderand
uploadermodules.

One has also take into account that private part of GSI infrastructure (private key of a host at least) has to be duplicate
for every used account.

Appendix A. Job control over jobplugin.so

Virtual tree

Under mount point of jobplugin gridftp client can see directories representing job belonging to user, who started client
Directory per job. Directories names are same as jobs’ identifiers. Those directories are directly connected to sessi
directories of jobs and contain same files and subdirectories. Except if jobs session directory is moved to computing nod
In that case directories only contains files with redirected stdout and strderr as specified in XRSL.

27

If job’s XRSL hasgmlog specified job’s directory also contains subdirectory with same name, which contains files
with information about job as created by GM. The most important are 'errors’ and 'status’. ’errors’ contains stderr of
separate modules run by GM in order to process job (downloader, uploader, job’s submission to LRMS). 'status’ contains
one word representing state of job.

Also under mount point there is one additional directory named "new" used to submit new jobs. And another directory
“info” with subdirectories named after job ids. Those subdirectories contain files with information about job identical to
those in subdirectory specified througimlog

Submission

Each xRSL put into directory "new" is accepted as job’s description. jobplugin parses it and client gets positive response
if there are no errors in request.

Job gets identifier and directory with corresponding name appears. If job’s description contains input files which
should be delivered from client’s machine, client must upload them to that directory under specified names.

Because each job gets identifier there should be a way for client to obtain it. For that prior to providing xRSL
client sends command CWD to change current directory to "new". In this way job’s identifier is reserved, new directory
corresponding to that identifier is created and client is redirected to it (as specified in FTP protocol). Job’s description put
into "new" will get reserved identifier.

Actions

Various actions to affect job’s processing are performed by uploading xRSL files into directory “new”. Content of xRSL
may consist of only 2 parameters - action é&ationto be performed, angbbid to identify job to be affected.
Currently supported actions are:

cancel to cancel job
clean to remove job from computing resource
renew to renew credentials delegated to job

restart to restart job after failure at some phases

It is also possible to perform actions by using shortcut FTP operations described below.

Cancellation

Job is canceled by performing DELE (delete file) command on directory representing job. It can take some time (few
minutes) before job is actually canceled. Nevertheless client gets response immediately.

Cleaning

Job’s content is cleaned by performing RMD (remove directory) command on directory representing job. If job is in
"FINISHED" state it will be cleaned immediately. Otherwise it will be cleaned after it reaches state "FINISHED".
Credentials renew

If client requests CWD to session directory credentials passed during authentication are compared to current credentials

of the job. If validity time of the new credentials is longer job’s credentials are replaced with new.

28

Appendix B. Library libui

libui is now part oflibngui library. Functions are declared in header filesdownloader.randui_uploader.h Following
interface is defined:

typedef enum {
RSL_ACTION_REQUEST=0,
RSL_ACTION_CANCEL =1,
RSL_ACTION_CLEAN =2,
RSL_ACTION_RENEW =3
} rsl_action;
int ui_downloader (const char* url,bool resursive,const char* path,const vector<string> &filenames

int ui_uploader (const char* resource,const char* rsl,char** job_id,const char* session_url,rsl_ac

ui_downloadelis used to retrieve result of job amndl uploaderto submit job and to control it depending on valueact
Arguments are:

url,session_url- URL used to access the job,

path - local path used to store downloaded files,

filenames - names of files available at GM or those to upload to GM,

download_files- if true download files, otherwise just fill list of available files

remove_files- if true remove all files and job from GM,

debug - debug level,

resource - URL of resource to submit job to (usually this is just gsiftp URL of the root of SDs),

rsl_action - action to be performed:

RSL_ACTION_REQUEST - submit the job,
RSL_ACTION_CANCEL - cancel job being processed,
RSL_ACTION_CLEAN - inform GM it can remove job,
RSL_ACTION_RENEW - renew job’s credentials.

Appendix C. Library libngdata

libngdatais now part oflibngui library. It's functions are declared in a header filgdata.h They correspond to ng*
utilities meant for data handlingngacl ngcp ngls, ngrm, ngtransfer It consists of following functions:

void arcacl (const std::string& file_url,const std::string& command,int verbosity_level = -1,int t
void arcregister (const std::string& source_url_,const std::string& destination_url_,bool secure
void arccp (const std::string& source_url_,const std::string& destination_url_,bool secure = fals
void arcls(const std::string& dir_url_,bool show_details = false,bool show_urls = false,int verbo
void arcrm(const std::string& file_url,bool errcont = false,int verbosity_level = -1,int timeout

void arctransfer (const std::string& destination,std::list<std::string>& sources,int verbosity_lev

29

Additionally this library contains C++ classes usedigy data management utilities. Those are described in “ARC::DataMove
Reference Manual”.

Appendix D. Error messages of GM

If job has not finished successfully the GM put one or more linegjatidD.failed Possible valuesinclude those generated
by the GM itself:

Internal error Error in internal algorithm

Internal error: can't read local file Error manipulating files in the control directory

Failed reading local job information -Il-

Failed reading status of the job -Il-

Failed writing job status -/l

Failed during processing failure -/l

Serious troubles (problems during process|ng/-

problems)

Failed initiating job submission to LRMS | Could not run backend executable to pass job to LRMS

Job submission to LRMS failed Backend executable supposed to pass job to LRMs returned non-zero exit
code

Failed extracting LRMS ID due to some in-Output of Backend executable supposed to contain local ID of passed job

ternal error could not be parsed

Failed in files upload (post-processing) Failed to upload some or all output files

Failed in files upload due to expired credenfailed to upload some or all output files most probably due to expired

tials - try to renew credentials (proxy certificate)

Failed to run uploader (post-processing) | Could not runuploaderexecutable

uploader failed (postprocessing) Generic error related taploadercomponent

Failed in files download (pre-processing) | Failed to upload some or all input files
Failed in files download due to expired crefailed to download some or all input files most probably due to expijred

dentials - try to renew credentials (proxy certificate)

Failed to run downloader (pre-processing)| Could not runrdownloaderexecutable

downloader failed (preprocessing) Generic error related tdownloadercomponent

User requested to cancel the job GM detected external request to cancel this job, most probably issued by
user

Could not process RSL Job description could not be processed to syntax errors or missing ele-
ments

User requested dryrun. Job skiped. Job description contains request not to process this job

LRMS error: (CODE) DESCRIPTION LRMS returned error. CODE is replaced with numeric code of LRMS,

and DESCRIPTION with textual description
Plugin at state STATE failed: OUTPUT External plugin specified in GM’s configuration returned non-zero exit

code. STATE is replcaced by name of state to which job was going to be
passed, OUTPUT by textual output generated by plugin.
Failed running plugin at state STATE External plugin specified in GM’s configuration could not be executed.

Provided by downloader component (URL is replcaced by source of input file, FILE by name of file):

30

Internal error in downloader

Generic error

Input file: URL - unknown error Generic error

Input file: URL - unexpected error Generic error

Input file: URL - bad source URL Source URL is either malformed or not supported
Input file: URL - bad destination URL Shouldn’t happen

Input file: URL - failed to resolve source Ig
cations

- File either not registred or other problems related to Data Indexing
vice.

SE

Input file: URL - failed to resolve destinatio

locations

n Shouldn’t happen

Input file: URL - failed to register new dest
nation file

- Shouldn’t happen

Input file: URL - can't start reading fron
source

Problems related to accessing instance of file at Data Storing servid

Input file: URL - can't read from source

-//-

Input file: URL - can'’t start writing to desti-
nation

Access problems in a session directory

Input file: URL - can’t write to destination

-//-

Input file: URL - data transfer was too slow

Timeouted while trying to download file

Input file: URL - failed while closing connec
tion to source

+ Shouldn’t happen

Input file: URL - failed while closing connec
tion to destination

+ Shouldn’t happen

Input file: URL - failed to register new loca
tion

- Shouldn’t happen

Input file: URL - can’t use local cache

Problems with GM cache

Input file: URL - system error

Operating System returned error code where unexpected

Input file: URL - delegated credentials ex-Access to source requires credententials and they are either outdate
pired missing (not delegated).

User file: FILENAME - Bad information| In job description there is a checksum provided for file uploadable b
about file: checksum can't be parsed. user interface and this record can’t be interpreted.

User file: FILENAME - Bad information| In job description there is a size provided for file uploadable by uyse
about file: size can't be parsed. interface and this record can't be interpreted.

User file: FILENAME - Expected file. Direct Instead of file uploadable by user interface GM found directory witt
tory found. same name in a session directory.

User file: FILENAME - Expected ordinary Instead of file uploadable by user interface GM found special object wit
file. Special object found. same name in a session directory.

User file: FILENAME - Delivered file is big-| The size of file uploadable by user interface is bigger than specified
ger than specified. job description.

User file: FILENAME - Delivered file is un{ GM can't check user uploadable file due to some internal error. Mo
readable. probably due to improperly configured local permissions.

User file: FILENAME - Could not read file GM can’t read user uploadable file due to some internal error. Mo

to compute checksum.

probably due to improperly configured local permissions.

User file: FILENAME - Timeout waiting

GM waited for user uploadable file too long.

31

Provided by uploader component (URL is re

plcaced by destination of output file) :

Internal error in uploader

Generic error

Output file: URL - unknown error

Generic error

Output file: URL - unexpected error

Generic error

User requested to store output locally URL|

Destination is URL of typdile.

Output file: URL - bad source URL

Shouldn’t happen

Output file: URL - bad destination URL

Destination URL is either malformed or not supported

Output file: URL - failed to resolve sourc
locations

e Shouldn’t happen

Output file: URL - failed to resolve desting
tion locations

- Problems related to Data Indexing service.

Output file: URL - failed to register new deg
tination file

5--//-

Output file
source

: URL - can't start reading fron

n User request to store output file, but there is no such file or there
problems accessing session directory

> are

Output file:
tination

URL - can't start writing to des

- Problems with Data Storing services

Output file: URL - can't read from source

Problems accessing session directory

Output file: URL - can't write to destination

Problems with Data Storing services

Output file: URL - data transfer was too slo

wTimeout during transfer

Output file: URL - failed while closing con
nection to source

Shouldn’t happen

Output file: URL - failed while closing con
nection to destination

Shouldn’t happen

Output file: URL - failed to register new lo
cation

+ Problems related to Data Indexing service.

Output file: URL - can't use local cache

Shouldn’t happen

Output file: URL - system error

Operating System returned error code where unexpected

Output file: URL - delegated credentials e
pired

X-Access to destination requires credententials and they are either ou
or missing (not delegated).

dated

Coming from LRMS (PBS) backend:

Submission: Configuration error.

Submission: System error.

Submission: Job description error.

Submission: Local submission client b
haved unexpectedly.

Submission: Local submission client failed

References

[1] NorduGrid projecthttp://www.nordugrid.org

32

[2] An Overview of The NorduGrid Architecture Proposattp://www.nordugrid.org/documents/nordarch.pdf

[3] GridFTP: Universal Data Transfer for the Gridhttp://www.globus.org/datagrid/deliverables/
C2WPdraft3.pdf

[4] The NorduGrid Information Systemttp://www.nordugrid.org/documents/ng-infosys.pdf

[5] Globus Resource Allocation Managet.tp://www.globus.org/gram/

[6] The Globus Resource Specification Language RSL \tE6p: //www-fp.globus.org/gram/rsl_specl.html
[7] Extended Resource Specification Languagep: //www.nordugrid.org/documents/xrsl.pdf

[8] The Globus Projectittp://www.globus.org/

[9] GACL - a Grid ACL manipulation librarynttp://www.gridpp.ac.uk/authz/gacl/

[10] VOMS Architecture (v1.1) (draft). http://grid-auth.infn.it/docs/VOMS-v1_1mdfp://grid-auth.infn.it/
docs/VOMS-v1_1.pdf, Authorization Working Groupttp: //grid-auth.infn.it/.

[11] The NorduGrid User Interfadectp://www.nordugrid.org/documents/NorduGrid-UI.pdf

33

