A
——
///" NORDUGRID

NORDUGRID-TECH-9
28/2/2006

THEHTTP(S,G)AND SOAP SRVER/FRAMEWORK

Code and Usage Description

A.Konstantinoy

*aleks@fys.uio.no

Contents

1 Introduction 3
2 Classes 3
2.1 HTTPS CONNECIOr o e e e e e e e e e e e e e e 3
2.2 HTTP ServiCe e e e e 4
2.3 HTTP ServiceAoVv e e 5
24 HTTP Client e e e e e e 7
25 HTTP ClientSOAP e e e e e e e e e e e e e
3 Server 7
3.1 OVEIVIEW . . . o o o e e e 7
3.2 Configuration e e e e 8
3.3 BuUilding e 9
3.4 Starting . . . e 9

1 Introduction

The HTTP SOAP framework (httpsd) is a set of C++ classes and code to make it easier to write SOAP over HTTP
over GSI or SSL services. Pure HTTP is also possible. As result it includes HTTP(S,G) server.

The code is provided as part of NorduGrid ARC software and uses some shared pieces of code, including third-party
software. It can be obtained fromtp: //ftp.nordugrid.org/download/ by downloading any source package cur-

rently available. Required third-party software include Globus Td®jki(for globus_io), gSOAR[2], VOMS(optional).

One of included services uses GACL (included in sources).

The code builds into standalone server which listens on 2 TCP/IP ports for incoming connections and understands
subset of HTTP wrapped with GSI or SSL. There are plans to add support for plain HTTP.

There are following C++ classes availble:

* Server side:

— HTTPS_Connector,
— HTTP_Service,
— HTTP_ServiceAdv.

* Client side

— HTTP_Client
— HTTP_ClientSOAP

2 Classes

2.1 HTTPS_Connector

Defined in httpsd.h

class HTTPS_Connector ({
public:
unsigned int pid;
HTTPS_Connector (globus_io_handle_t *s,const char* url,HTITP_Services& serv,list
<AuthEvaluator*>& auths);
~HTTPS_Connector (void);
operator bool (void);
size_t read(char* buf, size_t 1);
int write(const char* buf, size_t 1);
size_t readline(char* buf, size_t 1);
void loop (void);
static void identity(globus_io_handle_t* handle,const char* subject,gss_cred_id_t cred);
const char* identity_subject (void) const;
const char* identity_proxy(void) const;
AuthUser& identity(void);
list<AuthEvaluator*>& authorizations(void);
const char* url(void);
bi

It's purpose is to serve as a socket for accepting data from a client and to send a response from a server. It is imple-
mented as a wrapper over globus_io functions from Globus Tddkkitoraries and takes care of encoding/decoding
data automatically.

http://ftp.nordugrid.org/download/

size_t HTTPS_Connector::read(char* buf, size_t 1)

Reads at modtbytes into buffetbuf. Returns number of read bytes. Returned 0 means it could not read data. This
most probably happens due to closed connection.

int HTTPS_Connector::write(const char* buf, size tl)

Sendd bytes from buffebuf to network. Returns either 0 if data is sent or 1 ortherwise.

size_t HTTPS_Connector::readline(char* buf, size tl)

Reads line delimited by '\n’ character. Characters '\n’ and "\r’ at end of line are stripped. Returns number of read
characters.

void HTTPS_Connector::loop(void)

Waits for a HTTP request coming from the open connection, initiates an instance of requested service and call corre-
sponding methods. Exits after connection is closed.

Useful functions

Following functions return O in case of success and 1 otherwise.

int skip_request(HTTPS_Connector &c,int &keep_alivedads and skips HTTP header and message body (if avail-
able). Variablekeep_alivewill be reset to O if information in header does not allow connection to continue.

int skip_header(HTTPS_Connector &c,iinstalaltionnt &keep_alivekips HTTP header. Support fkeep_alive
currently is not implemented.

int send_response_header(HTTPS_Connector &c,int keep_alive,int code,char* type,intcseaes and sends re-
sponse HTTP header incuding first line with response code provided in vatiadide Variablestype (if not NULL)
andsize(if not 0) are used to specify Content-Type and Content-Length accordikglp_aliveinforms client if
server is willing to keep connection open.

int send_file(const char* fname,HTTPS_Connector &sgnds content of file namddameover open connection.
Currently itis used to send error responses which contain user-readable information. But toge#serdvittsponse_header
andstat_fileit can be used to implement minimalistic web server.

int stat_file(const char* fname,unsigned long long int &sizefiecks for existence of filmameand obtains it’s size.

int send_error_response(HTTPS_Connector &c,int keep_alive,int code,char* type,char* consent)s response
header containing response cadelewith Content-Type set ttype and with body containing messagedantent

If contentis NULL then file with name $SNORDUGRID_LOCATION/share/error{value addg.html is used for
message body. Otherwise message is sent without body.

2.2 HTTP_Service

Defined in httpsd.h

class HTTP_Service {
public:
HTTP_Service (void);
virtual ~HTTP_Service (void);
virtual HTTP_Error get (const char* uri,int &keep_alive);
virtual HTTP_Error put (const char* uri,int &keep_alive)
virtual HTTP_Error post (const char* uri,int &keep_alive
i
typedef enum {

)i

HTTP_OK = 200,
HTTP_NOT_IMPLEMENTED = 501,
HTTP_NOT_ALLOWED = 403,
HTTP_NOT_FOUND = 404,
HTTP_ERROR = 500,
HTTP_FAILURE = -1

} HTTP_Error;

This is just a template for every servidestanceaccessible through the HTTP_Connector. All functions return
HTTP_NOT_IMPLEMENTED.

Implemented services must return HTTP_OK on success. Service is supposed to process and skip whole request
(header and body) if it does not return HTTP_NOT IMPLEMENTED or HTTP_NOT_FOUND. Otherwise calling
HTTP_Connector will do that. Also service is supposed to send response to client by itself if it returned HTTP_OK

or HTTP_FAILURE.

Following are function prototypes which are called by server code to configure aerver and to create service instance.
Each service must have corresponding set of such functions.

typedef bool (*service_configurator) (istream& f,const char* uri, HITP_Service_Properties &prop);
typedef HTTP_Service* (*service_creator) (HTTPS_Connector& c, const char* uri, void* arg);
class HTTP_Service_Properties ({
public:
bool subtree;
void* arg;

i

service_configuratois called during startup of server and is supposed to process configuration available through
streant and create service specific data structuuesis URL for this particular service specified in server’s configu-
ration (can be relative). It should fiirop with information about service. Currently thatsgbtreewhich tells server

code if this service is going to server all URLSs starting from one specifiad jandarg which should point to service
specific information and is then passed to function responsible for creating service instances.

service_creatoris called to create service instance when client requests that seivéne HTTP_Connector transport
class to be used for commnication with cliemt, contains URL used to call service (absolute) amglis the one filled
by service_configurator

2.3 HTTP_ServiceAdv

Defined in service_soap.h

class HTTP_ServiceAdv:public HTTP_Service {
protected:
HTTPS_Connector *c;
// HTTP Header
uint64_t range_start [MAX_RANGES];
uint64_t range_end[MAX_RANGES];
uint64_t entity_range_start;
uint64_t entity_range_end;
uint64_t entity_size;
int nranges;
bool range_passed;
bool failure_parsing;
uint64_t length;
bool length_passed;
bool entity_range_passed;
bool entity_size_passed;
bool unsupported_option_passed;

// SOAP
bool ignore_soap_output;
struct soap sp;
char soap_fbuf[1024];
int soap_fbuf_n;
public:
HTTP_ServiceAdv (HTTPS_Connector *c_);
virtual ~HTTP_ServiceAdv (void);
HTTP_Error parse_header (int &keep_alive);
HTTP_Error send_header (int &keep_alive,int code = 200);
HTTP_Error send_header (int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t full_size)
static int soap_fsend(struct soap *sp, const char* buf, size_t 1);
int soap_flush(void);
static size_t soap_frecv(struct soap* sp, char* buf, size_t 1);
static int soap_fopen(struct soap*, const char*, const char*, int);
static int soap_fclose (struct soap*);
static int soap_parse(struct soap *sp);
void soap_init (void);
void soap_deinit (void);
HITP_Error soap_post (const char* uri,int &keep_alive);
virtual void soap_methods (void);
bi

This is an extension of HTTP_Service class which provides support for integrating gSOAP and few useful methods.
HTTP_ServiceAdv takes care of storing pointer to transport clsnd gSOAP struct soapy).

HTTP_ServiceAdv SOAP capabilities
If You want Your service to use SOAP then it must:

« call soap_initin constructor and then set sp.namespaces to nhamespaces of Your SOAP methods and sp.user to
pointer to pointer to service (this will be changed in a future),

call soap_deiniin destructor,
« call soap_posin postmethod after processing HTTP header (You canpssse_headefor that),

« implementsoap_methodm a way gSOAP uses to process SOAP requests

void HTTP_Your_Service::soap_methods (void) {
if ((sp.error = soap_serve_YourNamespace__YourMethodl (&sp)) != SOAP_NO_METHOD) return;
if ((sp.error = soap_serve_YourNamespace__YourMethod2 (&sp)) != SOAP_NO_METHOD) return;
}

HTTP_Error HTTP_ServiceAdv::parse_header(int &keep_alive)

This method parses content of HTTP header and places results into following fields:

range_start[],range_end[],nranges,range_pinstalaltionasdath ranges requested by client (Range),
entity_range_start,entity_range_end,entity_range_passmthes data presented in body (Content-Range),
entity_size,entity_size passedize of data presented in body (Content-Range),
length,length_passesésize of body (Content-Length),

failure_parsing- method failed to parse header,

unsupported_option_passedhere was an option which requires to be processed but method does not support it,

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,int code = 200)

Sends response header which requires no body.

HTTP_Error HTTP_ServiceAdv::send_header(int &keep_alive,uint64_t start,uint64_t end,bool partial,uint64_t
full_size)

Sends response header suitable for passing part of data set in body.

2.4 HTTP_Client

class HTTP_Client {

public:
typedef int (*get_callback_t) (unsigned long long offset,unsigned long long size,char* buf,void*
typedef int (*put_callback_t) (unsigned long long offset,unsigned long long *size,char* buf);
HTTP_Client (const char* base);
~HTTP_Client (void);
operator bool (void);
int connect (void);
int disconnect (void);
int PUT (const char* path,unsigned long long int offset,unsigned long long int size,const unsigne
int GET (const char* path,unsigned long long int offset,unsigned long long int size,get_callback_
bool keep_alive(void);
unsigned long long int size(void);

i

This methods allows to connect to remote site using HTTP, HTTPS or HTTPG protocol. Base URL is specified as
constructor's argumerase

Actuall connection is done by calling meth@dnnect This method can be called even if connection is already
established. It returns 0 on success. To close connediss@nnect

MethodGET implements HTTP GET method. It takpathrelative to base URL, sends GET request to server also
providing the range of required data startingpfisetof sizelength. Each time chink of data arrives it cadisllback
with offsetandsizeof data inbuf. callback can be called multiple times depending on requested and available size.

Method PUT implements HTTP PUT method. It sends in body the contertubfof lengthsizeand presents it to
server as part of bigger dataset of didesizestarting abffset

2.5 HTTP_ClientSOAP

class HTTP_ClientSOAP: public HTTP_Client {

public:
HTTP_ClientSOAP (const char* base,struct soap *sp);
~HTTP_ClientSOAP (void);

i

This class takes care of initializing and configuring gSOAP strucsépreo it can communicate tp server through
HTTP_Client. Upon creation argumehaseis passed to HTTP_Client’s constructor. Thgmcan be used with
gSOAP calls to implement SOAP client.

3 Server

3.1 Overview

Server is accessible from outside through 2 TCP/IP ports. Data is authenticated/wrapped/unwrapped using SSLv3 and
GSI (Fig.1.).

GSI E GET

0 G

I I

9 & ! PUT
R B

] |

i

o R R

SSL ' POST gSOAP

Figure 1: Server layout.

3.2 Configuration

Like most ARC daemonserveraccepts two kinds of configuration files described in [3]. Default location for old one
is SNORDUGRID_LOCATION/etc/httpds.conf. Name of section for new configuration formattissgd.

It accepts all generic commands described in above mentioned manual.

Additi

onally it accepts commands:

gsiport TCP/IP port for GSI connections,

sslport TCP/IP port for SSL connections (SSLv3 only),

plugin defines path to a shared library which contains implementation of one or more services.

Authorization is based on specified groups. Actual configuration of allowed operations for every method is configured

using
Defini

service-specific commands aA@iTPS_Connector::authorizatiomsethod.

tion of service in old configuration format is done by block starting fearvicecommand and ending wignd

In between there are service-specific commands like

service name URL
commandl
command2

end

Thenameis one under which service is registered inside the program.

TheU

RL can be either absolute or contain only a path or a port and a path. For example:

httpg://grid.uio.no:8000/logger
:8001/logger

/lo

gger

In a new format each service is represented by subsection of mi#isd section withnamedefined by command
nameor by name of subsection. Tipath/URLis defined by commanpathand is mandatory.

Since

[httpsd/name]
name=name
path=URL
commandl=argsl
command2=args2

0.5.x all services which run hittpsdare compiled as shared libraries. Path to every library is specified using

commandpluginin main section of httpsd configuration. Usually httpsd can find those libraries by names of services
without help ofplugin command. But this may fail if name of the library and name of the service do not match. Or
installation was done in non-usual way. So it is always better to supply path to libraries.

3.3 Building

Server with all services is part of NorduGrid toolkit. It is built together with all other components of toolkit if option
—enable-experimentad supplied to/configurescript or if built without autotools for 0.4.x versions of ARC. For 0.5
branch it is always built so You can use binary distribution.

Following third-party software is required to build and use server and services:

¢ gSOAP - for SOAP protocol.
* MySQL - for Logger service (optional, described in corresponding manual).

* XML - for Smart Storage Element service (optional, described in corresponding manual).

If You have those components installed in non-standard places/amsdigure —helgo find out how to pass that
information to script. Short instructions for building and installing ARC are:

./configure --enable-experimental
make
make install

For more detailed instructions please read documentation available at http://www.nordugrid.org/papers.html .

Alternatilvely if static Makefiles are used to build server ddiake.incfile and runmakein grid-manager/httpsd
directory to build onlyhttpsdserver, related utilities and plugins. Note thaike instalwill not work in that case.

3.4 Starting
After building (optionally) and installing ARC there should be SysV startup scripts installed in proper place. So You
can start httpsd with commanservice httpsd starbr something like /etc/rc.d/init.d/httpsd statt

Do not forget to edit configuration file /etc/nordugrid.conf before starting service (if You do not have it yet, look for
template asharedirectory of Your installation). You have to use this file even if You use 0.4.x version because startup
script preprocess /etc/nordugrid.conf into old format.

You can also run server directly. For supported options fiead [3].

References

[1] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toollkigtnational Journal of Super-
computer Applicationsvol. 11, no. 2, pp. 115-128, 1997.
[2] R.A.van Engelen and others, “gSOAP.” [Online]. Available: http://www.cs.fsu.edu/~engelen/soap.htmi

[3] A. Konstantinov,Configuration and Authorisation of ARC (NorduGrid) ServicEse NorduGrid Collaboration,
NORDUGRID-TECH-6.

http://www.cs.fsu.edu/~engelen/soap.html

	Introduction
	Classes
	HTTPS_Connector
	HTTP_Service
	HTTP_ServiceAdv
	HTTP_Client
	HTTP_ClientSOAP

	Server
	Overview
	Configuration
	Building
	Starting

