
NORDUGRID

NORDUGRID-TECH-2

17/6/2006

THE NORDUGRID GRID MANAGER AND GRIDFTP SERVER

Description and Administrator’s Manual

A.Konstantinov∗

∗aleks@fys.uio.no

Contents

1 Introduction 3

2 Main concepts 3

3 Input/output data 4

4 Job flow 4

5 URLs 6

6 Internals 6

6.1 Files .6

6.2 Library .8

7 Cache 8

7.1 Structure .9

7.2 How it works .9

8 Files and directories 10

8.1 Modules .10

8.2 Configuration of the Grid Manager .11

8.3 Configuration of the GridFTP Server .16

8.4 Authorization .19

8.5 Directories .19

8.6 LRMS support .20

8.7 Runtime environment .23

9 Installation 24

9.1 Requirements .24

9.2 Setup of the Grid Manager .24

9.3 Setup of the GridFTP Server .24

9.4 Usage .24

9.5 Unix accounts .25

2

1 Introduction

One of the problems the user of widely distributed computing networks faces is different configuration ofComputing

Elements(CE) controlled by different administrators. This makes even initial preparation of a job non-trivial task.

This is especially important in case of NorduGrid [1], where some CEs are not dedicated to NorduGrid and can not

be completely reconfigured at low level. Thus some layer capable of performing most of site-dependent pre- and

post-computation job is necessary.

The aim ofgrid-manager(GM) is to take care of job pre- and post-processing. It provides an interface to stage-in files

containing input data and program modules from wide range of sources and transfer or store output results.

The GM is part of the NorduGrid software (codename ARC - Advanced Resource Connector). For it’s connection

to other parts please read “An Overview of The NorduGrid Architecture Proposal” [2]. It isheavily using Globus

ToolkitTM 2 as it’s underlying software and currentlycompletely dependson it.

Essential additionally part of the GM is the specialized GridFTP Server (GFS). This server supports rich enough

subset of gsiftp protocol and has network and local file access parts separated. In context og GM it’s main purpose is

to provide control for job and access to the job files based on the user subject and job owner. Another option is Job

Control Web Service (JCS) interface implemented as part of HTTPSD framework [3].

All software described here is part of ARC software toolkit developed by NorduGrid projecthttp://www.nordugrid.

org

You should use this documment for advanced configuration purposes. It explains internals of the aforemen-

tioned tools and extended description of configuration options. For instalaltion and configuration refer to other

documents avaialble athttp://www.nordugrid.org/papers.html .

2 Main concepts

A job is a set of input files (which may or may not include executables), a main executable and a set of output files.

The process of gathering input files, executing a job, and transferring/storing output files is called asession.

Each job gets a directory on the CE called thesession directory(SD). Input files are gathered in the SD. The job is

supposed to produce new data files also in the SD. GM does not guarantee the availability of any other places accessible

by the job other than SD (unless such place is part of requested Runtime Environement). The SD is also the only place

which is controlled by the GM. It is is accessible by the user from outside through GridFTP protocol. Any file created

outside the SD is not controlled by the GM. Any exchange of data between client and GM (including also program

modules) is done through GridFTP protocol [4]only. A URL for accessing input/output files is constructed from

the base URL available through the NorduGrid Information System as part ofnordugrid-cluster under attribute

nordigrid-cluster-contactstring andjobid (jobid corresponds to a SD).

Each job gets an identifier (jobid). This is a handle which identifies the job in the GM and the NorduGrid Information

System [5].

Each job is initiated and controlled through GFS. All job parameters (not data) are passed to the GM through GFS in

RSL [6] or JSDL-coded [7] description (job description - JD). The GM adds it’s own attributes to Globus RSL [8].

3

http://www.nordugrid.org
http://www.nordugrid.org
http://www.nordugrid.org/papers.html

3 Input/output data

The main task of the GM is to take care of processing input and output data (files) of the job. Input files are gathered

in SD. There are 2 ways to put file into the SD:

• Downloads initiated by the GM. Such files (name and source) are defined in the JD. It is a sole responsibility of

the GM to make sure that a file will be available in the SD.

The supported sources are at the moment: GridFTP, FTP, HTTP, HTTPS (HTTP over SSLv3) and HTTPg

(HTTP over GSI). Also some nonstandard sources are supported. Those are described below.

• Upload initiated by the user directly or through the User Interface (UI). Because the SD becomes available

immediately at the time of submission of JD, UI can (and should) use that to upload data files which are not

otherwise accessible by the GM. An example of such files can be the main executable of the job, files containing

job’s options/parameters, etc. These files can (and should) also be specified in the JD.

There is noother reliable way for a job to obtain input data on the CE belonging to NorduGrid. Access to AFS, NFS,

FTP, HTTP and any other remote data transport during execution of the job is not guaranteed (at least not by GM).

Job stores output files in the SD. Those files also belong to 2 groups:

• Files which are supposed to be moved to aStorage Element(SE) and optionally registered in someIndexing

Servicelike Replica Catalog(RC). The GM takes care of those files. They have to be specified in the JD. If job

fails during any stage of processing no attept is taken to transfer those files to their final destination, unless there

is optionpreserve=yesspecified in their URLs.

• Files which are supposed to be fetched by the user. The user runs UI to obtain those files. Theymust also be

specified in the JD.

4 Job flow

From the point of view of the GM a job passes through various states. Picture 1 presents a diagram of the possible

states of a job. A user can examine the state of a job by querying the NorduGrid Information System (IS) using the

UI or any other tool. Please remember that IS can manipulate with state names to make them more user friendly and

to combine them with states introduced by other parts of whole setup. Another way is to access virtual informational

files through GridFTP interface or to use query metod of JCS.

Configuration can put limits on amout of simultaneous jobs at some states. If such limit is reached job stays in it’s

current state waiting for free slot. This situation is presented by prepending current state name withPENDING: status

mark.

Below is description of all actions taken by the GM at every state:

• Accepted- At this state the job has been submitted to a CE but not processed yet. The GM will analyze the JD

and move to the next stage. If JD can not be processed the job will be canceled and moved to the stateFinishing.

• Preparing - The input data is being gathered in the SD. The GM is downloading files specified in the JD and

waiting for files which are supposed to be downloaded by the UI. If all files are successfully gathered the job

moves to the next state. Ifany file can’t be downloaded or it takes UI too long to upload a file - the job moves

to Finishing state. It is possible to put limit on number of simultaneousPreparing jobs. Those jobs out of

limit will stay in previousAcceptedstate with PENDING mark. Exceptions are jobs which has no files to be

downloaded. Those are processed out of limits.

4

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

R
e
r
u
n

r
e
q
u
e
s
t

DELETED

PENDING

PENDING

PENDING

Figure 1: Job states

• Submitting - This is a point of interaction withLocal Resource Management System(LRMS). At the moment

PBS is supported best and correspoding backends are provided with default installation. The job is being

submitted for execution. If the local job submission is successful the job moves to the next state. Otherwise it

moves toFinishing. It is possible to limit number of jobs inSubmitting and followingInLRMS states.

• InLRMS - The job is queued or being executed in the LRMS. The GM takes no actions except waiting until job

finishes.

• Cancelling - Necessary action to cancel job in the LRMS is being taken.

• Finishing - The output data is being processed. Specified data files are moved to the specified SEs and are

optionally registered at RC. The user can download data files from the SD by using UI or any other tool. All the

files not specified as output files are removed from the SD at very beginning of this state. It is possible to limit

number of simultaneous jobs in this state.

• Finished - No more processing is performed by the GM. The user can continue to download data files from the

SD. The SD is kept available for some time (default is 1 week). After that it is moved to the stateDeleted. The

’deletion’ time can be queried at NorduGrid Information System as attributenordugrid-pbs-job-sessiondirerasetime

of nordugrid-pbs-job. If job was moved toFinished because of failure, it may be restarted on request of

client. Job is moved to a state previous to one which failed and is assigned mark PENDING. This is needed in

order to not break the configuration limits. Exception is a job failed inInLRMS state and lacking input files

specified in JD. Such job is treated like failed inPreparing state.

• Deleted- Job is moved to this state if user does not request job to be cleaned. Only minimal subset of information

about such job is kept.

In the case of the failure special processing is applied to output files. All specified output files are treated asdown-

loadable by user. No files will be moved to the SE.

5

5 URLs

The GM and it’s components support following data transfer protocols and corresponding URLs:ftp, gsiftp, http, httpg,

https, se, rcandrls. For more information please see “Protocols, Uniform Resource Locators (URL) and extensions

supported in ARC” document [9].

6 Internals

6.1 Files

For each local UNIX user listed in the GM configuration acontrol directoryexists. In this directory the GM stores

information about jobs belonging to that user. Multiple users can share the samecontrol directory. To make it easier

to recover in the case of failure, the GM stores most information in files rather than in memory. All files belonging to

same job have names starting withjob.ID. here ID is the job identifier.

The files in the control directory and their formats are described below:

• job.ID.status- current state of the job. It contains one word of text representing the current state of the job.

Possible values are :

– ACCEPTED

– PREPARING

– SUBMITTING

– INLRMS

– FINISHING

– FINISHED

– CANCELING

– DELETED

See section 4 for a description of the various states. Additionally each value can be prepended with a prefix “PEND-

ING:” (like PENDING:ACCEPTED, see section 4). That is used to show that the job isreadyto be moved to a next

state and it stays in a current stateonlybecause some limits set in configuration are exceeded.

• job.ID.description- contains the RSL description of the job.

• job.ID.local - information about job used by the GM. It consists of lines of format“name = value” . Not all of

them are always available. The following names are defined:

– subject- user subject also known as the distinguished name (DN)

– starttime- the time when the job was accepted

– lifetime- time to live for the SD after job finished

– cleanuptime- time when job will to removed from cluster and SD deleted

– notify - email addresses and flags to send mail to about job specified status changes

– processtime- when to start processing the job

– exectime- when to start job execution

6

– expiretime- when delegation given to job expires

– rerun - number of retries left to run the job

– jobname- name of the job as supplied by the user

– lrms - name of LRMS to run the job at

– queue- name of the queue to run the job at

– localid - job id in LRMS (appears only then the job is at stateInLRMS)

– args- list of command-line arguments including the executable

– downloads- number of files to download into SD before execution

– uploads- number of files to upload from SD after execution

– gmlog- directory name which holds files containing information about job when accessed through GridFTP

interface

– clientname- name and ip address:port of client machine (name is provided by user interface)

– clientsoftware- version of software used to submit job

– sessiondir- SD of job

– failedstate- state at which job failed (available only if it is possible to restart job)

– jobreport- URL of logger serviceused to keep track of executed jobs (one requested by user)

This file is filled partially during job submission and fully when the job moves from theAcceptedto thePreparing

state.

• job.ID.input - list of input files. Each line contains 2 values separated by a space. First value contains name of

the file relative to the SD. Second value is an URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

url - ordinary URL for gsiftp, ftp, http, https or httpg protocols with the addition of ’replica catalog url’ (RC

URL) and ’replica location service url’ (RLS URL).

Each URL can contain additional options.

file description- [size][.checksum].

size- size of the file in bytes.

checksum- checksum of the file identical to the one produced bycksum(1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files which arenot

required to exist.

This file is used by the ’downloader’ utility. Files with ’url’ will be downloaded to the SD and files with ’file descrip-

tion’ will simply be checked to exist. Each time a newvalid file appears in the SD it is removed from the list and

job.ID.input is updated. Any external tool can thus track the process of collecting input files by checkingjob.ID.input.

• job.ID.output- list of output files. Each line contains 1 or 2 values separated by a space. First value is the name

of the file relative to the SD. The second value, if present, is a URL. Supported URLs are the same as those

supported by job.ID.input.

This file is used by the ’uploader’ utility. Files with url will be uploaded to SE and remaining files will be left in the

SD. Each time a file is uploaded it is removed from the list andjob.ID.outputis updated. Files not mentioned as output

files are removed from the SD at the the beginning of theFinishing state.

7

• job.ID.failed - the existence of this file marks the failure of the job. It can also contain one or more lines of text

describing the reason of failure. Failure includes the return code different from zero of the job itself.

• job.ID.errors - this file contains the output produced by external utilities likedownloader, uploader, script for

job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just useful

information about actions taken during the job processing. In case of problem include content of that file while

asking for help.

• job.ID.diag- information about resources used during execution of job and other information suitable for diag-

nostics and statistics. It’s format is similar to that ofjob.ID.local. The following names are at least defined:

– nodename- name of computing node which was used to execute job,

– runtimeenvironments- used runtime environments separated by ’;’,

– exitcode- numerical exit code of job,

– frontend_distribution- name and version of operating system distribution on frontend computer,

– frontend_system- name of operating on frontend computer,

– frontend_subject- subject (DN) of certificate representing frontend computer,

– frontend_ca- subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNUtimeutility. Note that some implementation oftime insert unrequested

information in their output. Hence some lines can have broken format.

• job.ID.proxy-delegated GSI proxy.

• job.ID.proxy.tmp- temporary GSI proxy with different unx ownership used by processes run with effectiveuser

id different form job owner’sid.

There are other files with names like job.ID.* which are created and used by different parts of the GM. Their presence

in thecontrol directorycan not be guaranteed and can change depending on changes in the GM code.

6.2 Library

There is a librarylibarcdatadistributed as part of the GM.libarcdata(available only if built using autotools) provides

support for moving data between different URLs. It’s interface can be found in Appendix B.

7 Cache

The GM can cache input files. Caching is enabled if corresponding command is present in configuration file. The

GM does not cache files marked as executable in job. Caching can also be explicitly turned off by user for each

file by usingcache=nooption in URL (for URL options read “Protocols, Uniform Resource Locators (URL) and

extensions supported in ARC” [9]). The disc space occupied by cache is controlled by removing unused files. For

more information look in section 8.2.

8

7.1 Structure

Cache directory contains plain files. Those are

• list - stores names of the files (8 digit numbers) and corresponding URLs delimited by blank space. Each pair is

delimited by some amount of \0 codes. Also creation and expiration times are stored if available

• old - stores URLs which have been removed from cache. Records are delimited by some amount of \0 codes

and are meant to be removed by some external routine.

• new- stores URLs which have been added to cache. Records are delimited by some amount of \0 codes and

are removed when corresponding files are removed from cache. They can also be handled by some external

routines. Every time record is added toold it is removed fromnew.

• statistics- consists of strings containingname=value. Following names are defined:

– hardsize-size of file system for storing cached data

– hardfree- amount of disc space available on that file system

– softsize- if cache exceeds this size files are started being removed

– softfree- space left till softsize (can be negative)

– claimed- space used by files claimed by running jobs

– unclaimed- space used by files not being currently used by any job

• ########.info- stores state of file (########stands for 8 digits). State is represented by one character:

c - just created, content is empty.

f - failed to download (treated same as ’c’).

r - ready to be used, content is valid.

d - being downloaded. ’d’ is followed by identifier of application/job downloading that file. During content’s

download this file has write lock set.

• ########.claim- stores list of identifiers of applications/jobs using this file. Identifiers are stored one per line.

• ########- files storing content of corresponding URL. These can be stored in separate directory.

Files list, old , newand########.infohas to be stored on filesystem which has support for files’ locking.

7.2 How it works

If job requests input file, which can/allowed to be cached, it is stored in cache directory instead and soft-link is created

in the SD, pointing to that file. Or file can be stored in cache and then copied to the SD. Last option is more secure

and hence advised.

Before downloading file the GM tries to determine it’s size and to preallocate space in cache directory, by writing file

of same size. If that fails (file system has no more space), it tries to remove oldest cache files, which are not being

used by any job. That meanshard limit of cache size is space available at file-system. In case cache gets full and it

is impossible to free any space, download fails and is retried without using cache.

Before giving access to already cached file the GM contacts initial file source to check if user is allowed to do that if

protocols allows to do that.

9

Also file creation or validity times are checked to make sure cached file is fresh enough. If it is impossible to obtain

creation and invalidation times for file it is invalidated 24 hours after downloaded.

Also the GM checks cache periodically. If used space exceeds high water-mark given in configuration file (softsize) it

tries to remove oldest unused files to reduce size to low water-mark. This sets soft limit of cache size.

There are 2 kinds of caches available. Files inprivatecache are owned by Unix user to which grid user is mapped.

Those files are readable only by that particular Unix user. Another kind of cache isshared. Files are owned by Unix

user who started GM and are readable by everyone.

8 Files and directories

8.1 Modules

The GM consists of few separate executable modules. Those are:

• grid-manager- Main module. It is responsible for processing the job, moving it through states, running other

modules.

• downloader- This is a module responsible for gathering input files in the SD. It processes thejob.ID.inputfile

and updates it.

• uploader- This module is responsible for delivering output files to the specified SEs and registration at the RC.

It processes and updates thejob.ID.outputfile.

• cache-register- Utility to register cached data into Indexing Services like RC and RLS. It reads and modifies

cache informational filesold andnew7. Configuration is read directly from the GM’s configuration file 8.2. It

is run by the GM every 5 minutes.

• frontend-info-collector- Utility to gather information about frontend and to put it intojob.ID.diagfile.

• gm-kick- Sends signal to the GM though FIFO file to wake it up. It’s used to increase responsiveness of GM.

Following modules are always run under Unix account to which user is mapped.

• smtp-send.shandsmtp-send- These are the modules responsible for sending e-mail notifications to the user.

The format of the mail messages can be easily changed by editing the simple shell scriptsmtp-send.sh.

• submit-*-job- Here * stands for the name of the LRMS. Curently supported LRMS are PBS/Torque, Condor

and SGE. Alsofork pseudo-LRMS is supported for testing purposes. This module is responsible for the job

submission to the LRMS.

• cancel-*-job- This one is for canceling the job, which was submitted to LRMS.

• scan-*-job-This shell script is responsible for notifying the GM about completion of the job. It’s implementation

for PBS system uses server logs to extract information about jobs. If logs are not available it uses less reliable

qstatcommand for that. other backends use different techniques.

Also there is administrator utility:

10

• gm-jobs- prints list of jobs available on cluster and amount of jobs in every state.

gm-jobs [-h] [-l] [-u uid] [-U name]

-l-l - print more information about each job,

-l-u - pretend utility is run by user with iduid,

-l-l - pretend utility is run by user with namename.

GM comes with plugins useable for various authorization purposes (see for example description ofauthplugincom-

mand below):

• inputcheck- checks if all input files specified in job description are downloadable.

inputcheck [-h] [-d debug_level] RSL_fle [proxy_file]

-lRSL_file -file with job description,

-lproxy_file - credentials proxy.

• lcas- executes LCAS plugins on credentials and returns 0 if authorization passed.

lcas credentials description [library [db [directory]]]

-lcredentials - path to file with credentials to authorize,

-ldescription - path to file with job description,

-llibrary - path to LCAS library (full or relative to LCAS directory),

-ldb - path to LCAS DB file (full or relative to LCAS directory),

-ldirectory - LCAS directory.

8.2 Configuration of the Grid Manager

The GM configuration is done through single configuration file. Historically GM supports 2 kinds of configuration

files. For old one it looks at following places:

• $NORDUGRID_LOCATION/etc/grid-manager.conf

• /etc/grid-manager.conf

And for new one in

• /etc/arc.conf

The old configuration file consists of empty lines, lines containing comment (line starts from #) or configuration

commands. Blank spaces in arguments must be escaped using ’\’ or arguments must be enclosed in ’"’. Command

line starts from command followed by arguments separated from command and between them by spaces.

The new configuration file can also contain empty lines and comments starting from #. It is separated into sections.

Each sections starts from string containing

• [section name/subsection name/subsubsection name].

Each section continues till next section of end of file. One configuration file can have commands for multiple ser-

vices/modules/programs. Each service get it’s own section named after it. The GM uses section[grid-manager].

Some services can make use of multiple subsections to reflect their internal modular structure. Commands in section

[common]apply to all services. Command lines have format

11

• name=”arguments string”.

Names are same as in old configuration file. Theargument stringconsists of same arguments as in old format. And

they must obey same rules.

Both files support almost same commands. Following commands are defined (examples are given for new format):

Global commads (those which affect global parameters of the GM and affect all serviced users, also described in [10]):

• daemon=yes|no- specifies whether the GM should go to background after started. Defaults toyes.

• logfile=[path] - specifies name of file for logging debug/informational output. Defaults to/dev/nullfor daemon

mode andstderr for foreground mode.

• user=[uid[:gid]] - specifies user id (and optionally group id) to which the GM must switch after reading con-

figuration. Defaults tonot switch.

• pidfile=[path] - specifies file where id if GM process will be stored. Defaults tonot write.

• debug=number- specifies level of debug information. More information is printed for higher levels. Currently

highest effective number is 3 and lowest 0. Defaults to 2.

All commands above are generic for every daemon-enabled server in ARC NorduGrid toolkit (like GFS and HTTPSD).

• joblog=[path] - specifies where to store log file containing information about started and finished jobs.

• jobreport=[URL ... number]- specifies that GM has to report information about jobs being processed (started,

finished) to centralized service running at givenURL. Multiple entries and multiple URLs are allowed.number

specifies how long old records have to be kept if failed to be reported. That time is in days. Last specified value

becomes effective.

• securetransfer=yes|no - specifies whether to use encryption while transferring data. Currently works for

GridFTP only. Default is no. It is overridden by value specified in URL options.

• localtransfer=yes|no- specifies whether to pass file downloading/uploading task to computing node. If set to

yes the GM won’t download/upload files. Instead it composes script submitted to LRMS in way to make it

do that. This requires installation of GM and Globus to be accessible from computing nodes and environment

variables GLOBUS_LOCATION and NORDUGRID_LOCATION to be set accordingly. Default is no.

• maxjobs=[max_processed_jobs [max_running_jobs]]- specifies maximum number of jobs being processed by

the GM at different stages:

max_processed_jobs- maximal amount of jobs being processed by GM. This does not limit amount of jobs,

which can be suNOTE:bmitted to cluster

max_running jobs- maximal amount of jobs passed to Local Resource Management System

Missing value or -1 means no limit.

• maxlod=[max_frontend_jobs [emergency_frontend_jobs [max_transferred_files]]]- specifies maximum load

caused by jobs being processed on frontend:

max_frontend_jobs- maximal amount of jobs heavily using resources of frontend (applied before moving job

to PREPARING and FINISHING states)

emergency_frontend_jobs- if limit of max_frontend_jobsis used only by PREPARING or by FINISHING jobs

aforementioned number of jobs can be moved to another state .This is used to avoid case then jobs can’t finish

due to big amount of recently submitted jobs.

12

max_transfered_files- maximal number of files being transfered in parallel by every job. Used to decrease load

on not so powerful frontends.

Missing value or -1 means no limit.

• wakeupperiod=time - specifies how often for external changes are performed (like new arrived job, job finished

in LRMS, etc.).time is a minimal time period specified in seconds. Default is 3 minutes.

• cacheregistration=yes|no- enables or disables registration of cache data into Indexing Services like RC or RLS.

The default isno. Only files dowmloaded throughmeta-urlare registred. Registration is done to same service

used for obtaining information about file. For this opeartion credentials of the GM (host key and certificate) are

used. If required new files storage location is registered at Indexing Service with quasi-urlcache://hostname/

and namehostname:cache.

• authplugin=state options plugin- specifiesplugin (external executable) to be run every time job is going to

switch tostate. Following states are allowed: ACCEPTED, PREPARING, SUBMIT, FINISHING, FINISHED

and DELETED. If exit code is not 0 job is canceled by default.Optionsconsist ofname=valuepairs separated

by a comma. Followingnames are supported:

timeout- specifies how long in seconds execution of the plugin allowed to last (mandatory, “timeout=“ can be

skipped for backward compatibility).

onsuccess, onfailure andontimeout- defines action taken in each case (onsuccesshappens if exit code is 0).

Possible actions are:

pass- continue execution,

log - write information about result into logfile and continue execution,

fail - write information about result into logfile and cancel job.

• localcred=timeout plugin- specifiesplugin (external executable or function in shared library) to be run every

time job has to do something on behalf of local user. Execution ofplugin may not last longer thantimeout

seconds. Ifplugin looks like function@paththen functionint function(char*,char*,char*,...) from shared

library path is called (timeoutis not functional in that case). If exit code is not 0 current operation will fail.

• norootpower=yes/no- if set to yes all processes involved in job management will use local identity of a user to

which Grid identity is mapped in order to access filesystem at path specified insessioncommand (see below).

Sometimes this may involve running temporary external process.

• allowsubmit=[group ...] - list of authorization groups of users allowed to submit new jobs while "allownew=no"

is active injobplugin.soconfiguration (see below in section 8.3). Multiple commands are allowed.

• speedcontrol=min_speed min_time min_average_speed max_inactivity- specifies how long/slow data fransfer

is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lower thanmin_speedfor at

leastmin_timeseconds, or if average rate is lower thanmin_average_speed, or no data is receved for longer

thanmax_inactivityseconds.

• copyurl=template replacement- specifies that URLs, starting from template should be accessed in a different

way (most probably Unix open). Thetemplatepart of the URL will be replaced withreplacement. replacement

can be either URL or local path starting from ’/’. It is advisable to end template with ’/’.

• linkurl =template replacement [node_path]- mostly identical tocopyurlbut file won’t be copied. Instead soft-

link will be created. replacementspecifies the way to access the file from the frontend, and is used to check

permissions. Thenode_pathspecifies how the file can be accessed from computing nodes, and will be used for

soft-link creation. Ifnode_pathis missing -local_pathwill be used instead. Bothnode_pathandreplacement

should not be URLs.

13

NOTE: URLs which fit intocopyurl or linkurl are treated as more easily accessible than other URLs. That

means if GM has to choose between few URLs from which should it download input file, these will be tried

first.

Per UNIX user commands:

• mail=e-mail_address- specifies an email addressfrom which the notification mails are sent.

• defaultttl=ttl [ttr] - specifies the time in seconds for the SD to be available after job finished (ttl) and after job

was deleted (ttr) due tottl. Defaults are 7days forttl and 30 days forttr.

• defaultlrms=default_lrms_name default_queue_name- specifies names for the LRMS and queue. Queue name

can also be specified in the JD (currently it is not allowed to override used LRMS by using JD). In new config-

uration file this command is calledlrms.

• session=path - specifies path to the directory in which the SD is created. If the path is * the default one is used

- $HOME/.jobs. In new configuration file this command is calledsessiondir.

• cachedir=path [link_path] - specifies the directory to store cached data. Emptypathdisables caching. Default

is not to cache data. Optionallink_pathspecifies the path at which cache is accessible at computing nodes.

If link_path is set to ’.’ files are not soft-linked, but copied to session directory. In old configuration file this

command is calledcache.

• privatecache=path [link_path] - same ascachecommand, but cache belongs (owned) to user. For shared caches

use ’cache’.

• cachedata=path - allows to specify separate place to store cache files containing data itself. This can be useful

in case of big data storage available only on NSF server which does not support file locking. If command orpath

is missing - default is to store data at place specified incacheor privatecachecommand, together with control

files.

• cachesize=high_mark [low_mark]- specifies high and low water-mark for space used by cache. Values are

specified in bytes. Bothhigh_markand low_markcan be negative values. In that case corresponding positive

value means space left on filesystem. Iflow_markis omitted it becomes equal tohigh_mark. By default this

feature is turned off. To turn it off explicitlycachesizewithout parameters should be specified. If turned off

cache will grow up till it fills whole file system.

• maxrerun=number- specifies maximal number of times job will be allowed to rerun after it failed in LRMS.

Default value is 2. This only specifies a upper limit. Actual number is provided in job description and defaults

to 0.

All per-user commands should be put beforecontrolcommand which initiates serviced user.

• control=path username [username [...]]- This option initiates UNIX user as being serviced by the GM.path

refers to the control directory (see section 6 for the description of control directory). If the path is * the default

one is used - $HOME/.jobstatus .usernamestands for UNIX name of the local user. Multiple names can be

specified. If the name is * it is substituted by all names found in file /etc/grid-security/grid-mapfile (for the

format of this file one should study the Globus project [11]).

Also the special name ’.’(dot) can be used. Corresponding control directory will be used forany user. This

option should be the last one in the configuration file. In new configuration file commandcontroldir=path is

also available. It uses special username ’.’ and is always executed last independent of placement in file.

14

• helper=username command [argument [argument [...]]]- associates external program with the local UNIX

user. This program will be kept running under account of the specified user.usernamestands for the name of

the user. Special names can be used: ’*’ - all names from /etc/grid-security/grid-mapfile, ’.’ - root user. The

user should be already configured withcontrol option (except root, who is always configured).commandis an

executable andarguments are passed as arguments to it.

Following are global commands supported only in new configuration file. Most of them are specific to underlying

LRMS (PBS in this case) and are passed in environment variables if old configuration file is used.

• pbs_bin_path=path - path to directory which contains PBS commands.

• pbs_log_path=path - path to directory with PBS server’s log files.

• gnu_time=path - path totimeutility.

• tmpdir=path - path to directory for temporary files.

• runtimedir=path - path to directory which containsruntimenvironmentscripts.

• shared_filesystem=yes|no- if compiting nodes have an access to session directory through a shared filesystem

like NFS. Corresponds to an environement variable RUNTIME_NODE_SEES_FRONTEND.

• nodename=command- command to obtain hostname of computing node.

• scratchdir=path - path on computing node where to move session directory before execution.

• shared_scratch=path - path on frontend wherescratchdircan be found.

• nodename=command- command to obtain hostname of computing node.

In the command arguments (paths, executables, ...) following substitutions can be used:

%R - session root - see commandsession

%C - control dir - see commandcontrol

%U - username

%u - userid - numerical

%g - groupid - numerical

%H - home dir - home specified in /etc/passwd

%Q - default queue - look command ’defaultlrms’

%L - default lrms - look command ’defaultlrms’

%W - installation path - ${NORDUGRID_LOCATION}

%G - globus path - ${GLOBUS_LOCATION}

%c - list of all control directories

%I - job’s ID (for plugins only, substituted in runtime)

%S - job’s state (forauthpluginplugins only, substituted in runtime)

15

%O - reason (forlocalcredplugins only, substituted in runtime).

Possible reasons are:

new - new job, new credentials

renew - old job, new credentials

write - write/delete file, create/delete directory (through gridftp)

read - read file, directory, etc. (through gridftp)

extern - call external program (grid-manager)

Some configuration parameters can be specified from command line while starting the GM:

grid-manager [-h] [-C level] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-c - name od configuration file,

-C - remove old information before starting: 1- remove finished jobs, 2 - remove active jobs too, 3- also remove

everything that looks like junk.

8.3 Configuration of the GridFTP Server

Default location of the GFS configuration file is/etc/arc.confor $NORDUGRID_LOCATION/etc/gridftpd.conf. For-

mat of these configuration files is similar to that of the GM. It also supports generic commands described at the

beginning of previous section 8.2. In the new format sections [common] and [gridftpd] are used. Commands specific

to the GFS are described below.

• port=number- specifies TCP/IP port number. Default is 2811.

• include=path - include contents of another file. Generic commands can’t be specified there.

• encryption=yes|no- specifies if server will allow data transfer to be encrypted. Default is yes.

• pluginpath=path - specifies the path where plugin libraries are installed

• allowunknown=yes|no- if set to yesclients are not checked agains grid-mapfile. Hence only access rules

specified in this configuration file will be applied.

• unixgroup=group rule- define local UNIX user and optionally UNIX group to which user belonging to specified

authorizationgroupis mapped (see Section 8.4 for definition of group). Local names are obtained from specified

rule. If specified rule could not produce any mapping, next command is used. Mapping stops at first matched

rule. Following rules are supported:

– mapfilefile - user’s subject is matched against list of subjects stored inspecified file, one per line followed

by local UNIX name.

16

– simplepooldirectory - user is assigned one of local UNIX names stored in a filedirectory/pool, one per

line. Used names are stored in other files placed in the samedirectory. If UNIX name was not used for 10

days, it may be reassigned to another user.

– lcmapslibrary directory database- call LCMAPS functions to do mapping. Herelibrary is path to shared

library of LCMAPS, either absolute or relative todirectory; directory is path to LCMAPS installation

directory, equivalent of LCMAPS_DIR variable;databaseis path to LCMAPS database, equivalent to

LCMAPS_DB_FILE variable. Each arguments exceptlibrary is optional and may be either skiped or

replaced with ’*’.

– mapplugin timeout plugin[arg1 [arg2 [...]]] - run externalplugin executable with specified arguments.

Execution ofplugin may not last longer thantimeoutseconds. Rule matches if exit code is 0 and there

is UNIX name printed onstdout. Name may be optionaly followed by UNIX group separated by ’:’. In

arguments following substitions are applied before plugin is started:

* %D - subject of users’s cerificate,

* %P - name of credentials’ proxy file.

• unixvo=vo rule - same asunixgroup for users belonging to Virtual Organization (VO)vo.

• unixmap=[unixname][:unixgroup] rule - define local UNIX user and optionally group used to represent con-

nected client.rule is one of those allowed forauthorization groups(see Section 8.4) and forunixgroup/unixvo.

In case of mapping rule username is one, provided by rule. Otherwise specifiedunixname:unixgroupis taken.

Bothunixnameandunixgroupmay be either omited or set to ’*’ to specify missing value.

• groupcfg=name- is put into subsections representnig plugin or [group] section and defines if that section is

effective. In old format it selects the group to which all following lines apply. Only unaffected option is

groupcfg. If name is empty (or no groupcfg is used at all) following lines apply to all users.

Subsections ofgridftpd section specifies plugins which serve virtual FTP path (similar to mount command of UNIX).

Name of subsection is irrelevant. In old format this section starts with commandplugin path library_nameand ends

with keywordend. Inside subsection following commands are supported

• plugin=library_name- use pluginlibrary_nameto serve virtual path.

• path=path - virtual path to serve.

GFS comes with 3 plugins:filepligin.so, gaclplugin.soandjobplugin.so.

– jobplugin.sodoes not require any specific options in case of old configuration format. It reads the config-

uration file of the GM located at the standard place as specified in the section 8.2. Following options are

supported:

* configfile=path - defines non-standard place for GM’s configuration file,

* allownew=yes|no- specifies if new jobs can be submitted. Default isyes.

* unixgroup/unixvo/unixmap - same options like in top-level GFS configuration. If mapping succeeds

obtained local user will be used to run submitted job.

– filepligin.sosupports following options:

* mount=path - defines the place on local filesystem to which file access operations apply

* dir=path options- specifies access rules for accessing files inpath (relative to virtual and real path)

and all the files below.

optionsis the list of the following keywords:

17

· nouser- do not use local file system rights, only use those specifies in this line

· owner- check only file owner access rights

· group - check only group access rights

· other - check only "others" access rights

The options above are exclusive. If none of the above specified usual Unix access rights are applied.

· read- allow reading files

· delete- allow deleting files

· append- allow appending files (does not allow creation)

· overwrite- allow overwriting already existing files (does not allow creation, file attributes are not

changed)

· dirlist - allow obtaining list of the files

· cd - allow to make this directory current

· createowner:group permissions_or:permissions_and- allow creating new files. File will be

owned byownerand owning group will begroup. If ’*’ is used, the user/group to which con-

nected user is mapped will be used. The permissions will be set topermissions_or& permis-

sions_and(second number is reserved for the future usage).

· mkdir owner:group permissions_or:permissions_and- allow creating new directories.

– gaclpligin.sodoes not have options in case of the old configuration. First line of it’s configuration contains

local path (root directory) served by it. Rest till keywordend contains GACL [12] XML used to setup

initial access rules for every newly created file and directory. If GACL XML is empty then there will be

no default ACLs created for new files and directories. That means ACL of parent directory will be used.

For the new configuration format following options are supported:gacl=gacl - GACL XML, mount=path

- local path server by plugin.

XML may contain variables which are replaced with values taken from client’s credentials. Following

variables are supported:

$subject - subject of user’s certificate (DN),

$voms - subject of VOMS[13] server (DN),

$vo - name of VO (from VOMS certificate),

$role - role (from VOMS certificate),

$capability - capabilities (from VOMS certificate),

$group - name of group (from VOMS certificate) .

Additionally root directory must contain.gacl file with initial ACL. Otherwise rule will be “deny all for

everyone”.

Some configuration parameters can be specified from command line while starting the GFS:

gridftpd [-h] [-p number] [-n number] [-b number] [-B number] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P

path]

-h - short help,

-d - debug level,

-L - name log file (overwrites value in configuration file),

-P - name for file containing process id (overwrites value in configuration file),

-U - user and gropu id to use for running daemon,

-F - do not make process daemon,

-c - name od configuration file,

18

-p - TCP/IP port number,

-n - maximal number of simultaneously served connection,

-b - default size of buffer used for data transfer (default is 64kB),

-B - maximal size of buffer used for data transfer (default is 640kB).

8.4 Authorization

Authorization is performed at GFS by applying set of rules. Each rule takes one line in thegroup section. For

information about supported rules please read “Configuration and authorisation of ARC (NorduGrid) Services” [10].

8.5 Directories

The GM is installed into a single installation point referred as $NORDUGRID_LOCATION and following sub-

directories are used:

$NORDUGRID_LOCATION/bin - tools

$NORDUGRID_LOCATION/libexec - program modules used by GM

$NORDUGRID_LOCATION/etc - configuration files, deprecated, central configuration file is used by

deault

$NORDUGRID_LOCATION/sbin - daemons

$NORDUGRID_LOCATION/lib - gridftp server’s plugins and API libraries

The GM also uses following directories:

• session root directory- In this directory the SD is created. It can be multiple directories for the various users

specified in the configuration file.

There are 2 processes which need to have a permissions to create new files and directories in it. Those are GM

and GFS.

If any of those processes processes are run under dedicated user account, that account need full permissions in

thesession root directory.

If those processes are run underroot account make suresession root directoryis not on filesystem which limits

capabilities ofroot user. For example NFS withroot_squashoption.

If there is need to run processes underroot account (to run jobs in LRMS under different users’ accounts) but

there is no way to provide suitablesession root directoryusenorootpowercommand in configuration of the

GM. In that case GM and GFS will use identity of local user to which Grid identity is mapped to accesssession

root directory. Hence those users will need full access there.

The GM creates SD with proper ownership and permissions for local identity used to run job. Some filesystems

requireexecutablepermissions onsession root directoryto be set for local identity in order to access any file or

subdirectory there.

This directory should also be shared among cluster nodes in order for job to access input files. Or internal means

of LRMS must be used to transfer files to executing node. For more see section 8.6.

• control directory- In this directory the SD stores an information about the accepted jobs. Both GM and GFS

processes must have full permissions there.

Also subdirectory calledlog is created there. It is used to accumulate information about started and finished

jobs. This information is periodically sent to thelogger service.

19

8.6 LRMS support

The GM comes with support for several LRMS. And this number is slowly growing. Features explained below are

for PBSbackend. This support is provided throughsubmit-pbs-job, cancel-pbs-job, scan-pbs-jobscripts.submit-pbs-

job creates job’s script and submits it to PBS. Created job’s script is responsible for moving data between frontend

machine and cluster node (if required) and execution of actual job. Alternatively it can download input files and upload

output if “localtransfer no” is specified in the configuration file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified on

frontend in GM’s environment and overwritten on cluster’s node through PBS configuration. Some of them may be

set in configuration file too.

PBS_BIN_PATH - path to PBS executables. Like/usr/local/binfor example.pbs_bin_pathconfiguration command.

PBS_LOG_PATH- path to PBS server logs.pbs_log_pathconfiguration command.

TMP_DIR - path to directory to store temporary files. Default value is/tmp. tmpdir configuration command.

RUNTIME_CONFIG_DIR - path where runtime setup scripts can be found.runtimedirconfiguration command.

GNU_TIME - path to GNU time utility. It is important to path to utility compatible with GNU time. If such utility

is not available, modifysubmit-pbs-jobto either reset this variable or change usage of available utility.gnu_time

configuration command.

NODENAME - command to obtain name of cluster’s node. Default is/bin/hostname -f. nodenameconfiguration

command.

RUNTIME_LOCAL_SCRATCH_DIR- if defined should contain path to the directory on computing node, which can

be used to store job’s files during execution.scratchdirconfiguration command.

RUNTIME_FRONTEND_SEES_NODE- if defined should contain path corresponding toRUNTIME_LOCAL_SCRATCH_DIR

as seen onfrontend machine.shared_scratchconfiguration command.

RUNTIME_NODE_SEES_FRONTEND- if set to “no” means computing node does not share filesystem with fron-

tend. In that case content of the SD is moved to computing node by using means provided by the LRMS. Results are

moved back after job’s execution in a same way.shared_filesystemconfiguration command.

Figures 2,3,4 present some possible combinations for RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE

and explain how data movement is performed. Pictures a) correspond to situation right after all input files are gathered

in session directory and actions taken right after job’s script starts. Pictures b) show how it looks while job is running

and actions which are taken right after it finished. Pictures c) stand for final situation, when job files are ready to be

uploaded to external storage element or be downloaded by user.

Frontend Cluster node

Session directory Session directory

Figure 2: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE undefined. Job is
executed in session directory placed on frontend.

20

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session directory Session directory
imported from
frontend

Job files

Scratch directory
Copy of session dir.

stdout+stderr stdout+stderr

COPY before execution

SOFT-LINKS

MOVE after execution

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

a)

b)

c)

Figure 3: RUNTIME_LOCAL_SCRATCH_DIR is set to value representing sratch directory on computing node,
RUNTIME_FRONTEND_SEES_NODE undefined.

a) After job script starts all input files are moved to ’scratch directory’ on computing node.

b) Job runs in separate directory in ’scratch directory’. Only files representing job’sstdoutandstderr are
placed in original ’session directory’ and soft-linked in ’scratch’. After execution all files from ’scratch’
are moved back to original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

21

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session link

Job files

Scratch directory
Session directory

COPY before execution

MOVE after execution

a)

b)

Scratch directory

Job files

Session directory

Scratch directory

Frontend Cluster node

Scratch directory
c)

Scratch directory

SOFT-LINK

Session directory

Session link

Job files

Session directory

Figure 4: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE are set to valuea
representing sratch directory on computing node and way to access that scratch from frontend correspondingly.

a) After job script starts all input files are moved to ’scratch directory’ on computing node. Original ’session
directory’ is removed and replaced with soft-link to copy of session directory in ’scratch’ as seen on
frontend.

b) Job runs in separate directory in ’scratch directory’. All files are also available on frontend through soft-
link. After execution soft-link is replaced with directory and all files from ’scratch’ are moved back to
original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

22

8.7 Runtime environment

The GM can run specially preparedBASHscripts prior creation of job’s script, before and after executing job’s main

executable. Those scripts are requested by user throughruntimeenvironmentattribute in RSL and are run with only

argument set equal to ’0’, ’1’ or ’2’ during creation of job’s script, before execution of main executable and after main

executable finished accordingly. They all are run through BASH’s ’source’ command, and hence can manipulate with

shell variables. With argument ’0’ scripts are run by the GM on frontend. Some environment variables are defined in

that case and can be changed to influence job’s execution later:

• joboption_directory - session directory.

• joboption_args - command to be executed as specified in RSL.

• joboption_env_# - array of ’NAME=VALUE’ environment variables (not bash array).

• joboption_runtime_# - array of requestedruntimeenvironmentnames (not bash array).

• joboption_num -runtimeenvironmentcurrently beeing processed (number starting from 0).

• joboption_stdin - name of file to be attached to stdin handle.

• joboption_stdout - same for stdout.

• joboption_stderr - same for stderr.

• joboption_maxcputime - amout of CPU time requested (minutes).

• joboption_maxmemory - amout of memory requested (megabytes).

• joboption_count - number of processors requested.

• joboption_lrms - LRMS to be used to run job.

• joboption_queue - name of a queue of LRMS to put job into.

• joboption_nodeproperty_# - array of properties of computing nodes (LRMS specific,not bash array).

• joboption_jobname - name of the job as given by user.

• joboption_rsl - whole RSL for very clever submission scripts.

• joboption_rsl_name- RSL attributes and values (like joboption_rsl_executable=”/bin/echo”)

For examplejoboption_argscould be changed to wrap main executable. Orjoboption_runtimecould be expanded if

current one depends on others.

With argument ’1’ scripts are run just before main executable is run. They are executed on computing node. Such

script can prepare environment for some third-party software package. A current directory in that case is one which

would be used for execution of job. Variable HOME also points to that directory.

With argument ’2’ scripts are executed after main executable finished. Main purpose is to clean possible changes done

by scripts run with ’1’ (like removing temporary files). Execution of scripts at that stage also happens on computing

node and is not reliable. If the job is killed by LRMS they most probably won’t be executed.

23

9 Installation

To install GM as part of ARC-enabled site please read “NorduGrid ARC server installation instructions” athttp:

//www.nordugrid.org/documents/ng-server-install.html.

9.1 Requirements

The GM is mostly written using C++. It was tested and should compile on recent enoughLinux systems usinggcc

compiler andGNU make(gcc versions 2.95, 2.96, 3.2, 3.4 were tested). You will also needGlobus ToolkitTM of

version higher than 2.2 installedhttp://www-unix.globus.org/toolkit/.

9.2 Setup of the Grid Manager

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC

server installation instructions” athttp://www.nordugrid.org/documents/ng-server-install.html. Follow

that manual to install GM, configure and run it. Additional tips are described here.

The GM is designed to be able to run both as root and as ordinary user. You can chose the name of the user by using

corresponding command in configuration file. It is better run GM as root if You want to serve few users.

The GM writes debug information into a file /var/log/grid-manager.log by default. . Also file /var/log/gm-jobs.log

(default path in configuration template, turned off by default) contains information about all started and finished jobs,

2 lines per job (1 when job is started and 1 after it finished).

9.3 Setup of the GridFTP Server

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC

server installation instructions” athttp://www.nordugrid.org/documents/ng-server-install.html. Follow

that manual to install GM, configure and run it. Additional tips are described here.

Local file access in the GFS is implemented through plugins (shared libraries). There are 3 plugins provided with

the GFS:fileplugin.so, gaclplugin.soand jobplugin.so. Thefileplugin.sois intended to be uses for plain file access

with the configuration senitive to user subject and is not necessary for setting a NorduGrid compatible site. The

gaclplugin.souses GACL (http://www.gridpp.ac.uk/authz/gacl/) to control access to local file system. The

jobplugin.sois using information about jobs being controlled by GM and provides access to session directories of the

jobs owned by user. It also provides an interface (virtual directory and virtual operations) to submit, cancel, clean,

renew credentials and obtain information about the job.

To make GFS to interoperate with other parts of the ARC only onejobplugin.soneeds to be configured. It is advisable

to use the template configuration file. You can leave only part which configuresjobplugin.soplugin.

9.4 Usage

Refer to the description of theUser Interfacepart [14] and extensions to RSL [8] for using the GM.

24

http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html
http://www-unix.globus.org/toolkit/
http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html
http://www.gridpp.ac.uk/authz/gacl/

9.5 Unix accounts

Bot GM and GFS are designed to be run byroot UNIX account and serve multiple local UNIX and global Grid

identities. Nevertheless it is possible to usenon-root accounts to run those services. Although this means some

functionality loss described below.

There are no implication on running GFS withgaclpluginor filepluginundernon-rootaccount as long as only Grid

identity of user is used and all served files and directories are owned by server’s account.

For combination of GM and GFS withjobpluginboth services must be run either by same account or one of services

must be run underroot account. That is needed because services communicate over local filesystem, hence must have

full access to same set of files.

As long as GFS withjobplugin is run under non-root account there is no mapping from Grid identity to local UNIX

account taking place. All alowed Grid users are assigned server’s account and are then processes by GM using

same account. Only way to overcome this limitation is to run one GFS per local account with proper access control

configured.

Because GM has to represent user’s local account while communication with LRMS, it can serve only account it is run

under (unless it is run underroot account, of course). Like in case of GFS, multiple instances of GM may be run, one

per local account. That solution causes another implications. The GM looses possibility to share cached files among

serviced users. It is not also possible to control load on a frontend by limiting number of simultatenuosly running

downloaderanduploadermodules.

One has also take into account that private part of GSI infrastructure (private key of a host at least) has to be duplicated

for every account used to run GFS.

Appendix A. Job control over jobplugin.so

Virtual tree

Under mount point of jobplugin gridftp client can see directories representing job belonging to user, who started client.

Directory per job. Directory names are same as jobs’ identifiers. Those directories are directly connected to session

directories of jobs and contain same files and subdirectories. Except if jobs session directory is moved to computing

node. In that case directories only contain files with redirected stdout and strderr as specified in xRSL.

If job’s xRSL hasgmlogspecified job’s directory also contains virtual subdirectory with same name, which contains

files with information about job as created by GM. The most important are ’errors’ and ’status’. ’errors’ contains stderr

of separate modules run by GM in order to process job (downloader, uploader, job’s submission to LRMS). ’status’

contains one word representing state of job.

Also under mount point there is additional directory named "new" used to submit new jobs. And another directory

“info” with subdirectories named after job ids. Those subdirectories contain files with information about job identical

to those in subdirectory specified throughgmlog.

Submission

Each xRSL put into directory "new" is accepted as job’s description. jobplugin parses it and client gets positive

response if there are no errors in request.

25

Job gets identifier and directory with corresponding name appears. If job’s description contains input files which

should be delivered from client’s machine, client must upload them to that directory under specified names.

Because each job gets identifier there should be a way for client to obtain it. For that prior to providing xRSL client

sends command CWD to change current directory to "new". In this way job’s identifier is reserved, new directory

corresponding to that identifier is created and client is redirected to it (as specified in FTP protocol). Job’s description

put into "new" will get reserved identifier.

Actions

Various actions to affect processing of existing job are performed by uploading xRSL files into directory “new”.

Content of xRSL may consist of only 2 parameters - action foraction to be performed, andjobid to identify job to be

affected. Rest of parameters are ignored.

Currently supported actions are:

cancel to cancel job

clean to remove job from computing resource

renew to renew credentials delegated to job

restart to restart job after failure at some phases

It is also possible to perform some actions by using shortcut FTP operations described below.

Cancel

Job is canceled by performing DELE (delete file) command on directory representing job. It can take some time (few

minutes) before job is actually canceled. Nevertheless client gets response immediately.

Clean

Job’s content is cleaned by performing RMD (remove directory) command on directory representing job. If job is in

"FINISHED" state it will be cleaned immediately. Otherwise it will be cleaned after it reaches state "FINISHED".

Renew

If client requests CWD to session directory credentials passed during authentication are compared to current creden-

tials of the job. If validity time of the new credentials is longer job’s credentials are replaced with new.

Appendix B. Library libarcdata

libarcdata is now part oflibngui library. It’s functions are declared in a header filearcdata.h. They correspond to ng*

utilities meant for data handling -arcacl, arccp, arcls, arcrm, arctransfer. It consists of following functions:

void arcacl(const std::string& file_url, const std::string& command, int timeout = 0);

26

void arcregister (const std::string& source_url, const std::string& destination_url, bool secure = false, bool passive = true, bool force_meta = false, int timeout = 0);

void arccp (const std::string& source_url, const std::string& destination_url, bool secure = false, bool passive = true, bool force_meta = false, int recursion = 0, bool verbose = false, int timeout = 0);

void arcls(const std::string& dir_url, bool show_details = false, bool show_urls = false, int recursion = 0, int timeout = 0);

void arcrm(const std::string& file_url, bool errcont = false, int timeout = 0);

void arctransfer(const std::string& destination, std::list<std::string>& sources, int timeout = 0);

Additionally this library contains C++ classes used byng* data management utilities. Those are described in “ARC::DataMove

Reference Manual”.

Appendix C. Error messages of GM

If job has not finished successfully the GM put one or more lines intojob.ID.failed. Possible valuesinclude those

generated by the GM itself:

27

Error string Reason/description

Internal error Error in internal algorithm

Internal error: can’t read local file Error manipulating files in the control directory

Failed reading local job information -//-

Failed reading status of the job -//-

Failed writing job status -//-

Failed during processing failure -//-

Serious troubles (problems during processing

problems)

-//-

Failed initiating job submission to LRMS Could not run backend executable to pass job to LRMS

Job submission to LRMS failed Backend executable supposed to pass job to LRMs returned non-zero exit

code

Failed extracting LRMS ID due to some in-

ternal error

Output of Backend executable supposed to contain local ID of passed job

could not be parsed

Failed in files upload (post-processing) Failed to upload some or all output files

Failed in files upload due to expired creden-

tials - try to renew

Failed to upload some or all output files most probably due to expired

credentials (proxy certificate)

Failed to run uploader (post-processing) Could not runuploaderexecutable

uploader failed (postprocessing) Generic error related touploadercomponent

Failed in files download (pre-processing) Failed to upload some or all input files

Failed in files download due to expired cre-

dentials - try to renew

Failed to download some or all input files most probably due to expired

credentials (proxy certificate)

Failed to run downloader (pre-processing) Could not rundownloaderexecutable

downloader failed (preprocessing) Generic error related todownloadercomponent

User requested to cancel the job GM detected external request to cancel this job, most probably issued by

user

Could not process RSL Job description could not be processed to syntax errors or missing ele-

ments

User requested dryrun. Job skiped. Job description contains request not to process this job

LRMS error: (CODE) DESCRIPTION LRMS returned error. CODE is replaced with numeric code of LRMS,

and DESCRIPTION with textual description

Plugin at state STATE failed: OUTPUT External plugin specified in GM’s configuration returned non-zero exit

code. STATE is replcaced by name of state to which job was going to be

passed, OUTPUT by textual output generated by plugin.

Failed running plugin at state STATE External plugin specified in GM’s configuration could not be executed.

Provided by downloader component (URL is replcaced by source of input file, FILE by name of file):

28

Error string Reason/description

Internal error in downloader Generic error

Input file: URL - unknown error Generic error

Input file: URL - unexpected error Generic error

Input file: URL - bad source URL Source URL is either malformed or not supported

Input file: URL - bad destination URL Shouldn’t happen

Input file: URL - failed to resolve source lo-

cations

File either not registred or other problems related to Data Indexing ser-

vice.

Input file: URL - failed to resolve destination

locations

Shouldn’t happen

Input file: URL - failed to register new desti-

nation file

Shouldn’t happen

Input file: URL - can’t start reading from

source

Problems related to accessing instance of file at Data Storing service.

Input file: URL - can’t read from source -//-

Input file: URL - can’t start writing to desti-

nation

Access problems in a session directory

Input file: URL - can’t write to destination -//-

Input file: URL - data transfer was too slow Timeouted while trying to download file

Input file: URL - failed while closing connec-

tion to source

Shouldn’t happen

Input file: URL - failed while closing connec-

tion to destination

Shouldn’t happen

Input file: URL - failed to register new loca-

tion

Shouldn’t happen

Input file: URL - can’t use local cache Problems with GM cache

Input file: URL - system error Operating System returned error code where unexpected

Input file: URL - delegated credentials ex-

pired

Access to source requires credententials and they are either outdated or

missing (not delegated).

User file: FILENAME - Bad information

about file: checksum can’t be parsed.

In job description there is a checksum provided for file uploadable by

user interface and this record can’t be interpreted.

User file: FILENAME - Bad information

about file: size can’t be parsed.

In job description there is a size provided for file uploadable by user

interface and this record can’t be interpreted.

User file: FILENAME - Expected file. Direc-

tory found.

Instead of file uploadable by user interface GM found directory with

same name in a session directory.

User file: FILENAME - Expected ordinary

file. Special object found.

Instead of file uploadable by user interface GM found special object with

same name in a session directory.

User file: FILENAME - Delivered file is big-

ger than specified.

The size of file uploadable by user interface is bigger than specified in

job description.

User file: FILENAME - Delivered file is un-

readable.

GM can’t check user uploadable file due to some internal error. Most

probably due to improperly configured local permissions.

User file: FILENAME - Could not read file

to compute checksum.

GM can’t read user uploadable file due to some internal error. Most

probably due to improperly configured local permissions.

User file: FILENAME - Timeout waiting GM waited for user uploadable file too long.

29

Provided by uploader component (URL is replcaced by destination of output file) :

Error string Reason/description

Internal error in uploader Generic error

Output file: URL - unknown error Generic error

Output file: URL - unexpected error Generic error

User requested to store output locally URL Destination is URL of typefile.

Output file: URL - bad source URL Shouldn’t happen

Output file: URL - bad destination URL Destination URL is either malformed or not supported

Output file: URL - failed to resolve source

locations

Shouldn’t happen

Output file: URL - failed to resolve destina-

tion locations

Problems related to Data Indexing service.

Output file: URL - failed to register new des-

tination file

-//-

Output file: URL - can’t start reading from

source

User request to store output file, but there is no such file or there are

problems accessing session directory

Output file: URL - can’t start writing to des-

tination

Problems with Data Storing services

Output file: URL - can’t read from source Problems accessing session directory

Output file: URL - can’t write to destination Problems with Data Storing services

Output file: URL - data transfer was too slowTimeout during transfer

Output file: URL - failed while closing con-

nection to source

Shouldn’t happen

Output file: URL - failed while closing con-

nection to destination

Shouldn’t happen

Output file: URL - failed to register new lo-

cation

Problems related to Data Indexing service.

Output file: URL - can’t use local cache Shouldn’t happen

Output file: URL - system error Operating System returned error code where unexpected

Output file: URL - delegated credentials ex-

pired

Access to destination requires credententials and they are either outdated

or missing (not delegated).

Coming from LRMS (PBS) backend:

30

Error string Reason/description

Submission: Configuration error.

Submission: System error.

Submission: Job description error.

Submission: Local submission client be-

haved unexpectedly.

Submission: Local submission client failed.

References

[1] The NorduGrid Collaboration. [Online]. Available: http://www.nordugrid.org

[2] A. Wäänanen, “An Overview of an Architecture Proposal for a High Energy

Physics Grid,” in Proc. of PARA 2002, LNCS 2367, p. 76 , J. Fagerholm,

Ed. Springer-Verlag Berlin Heidelberg, 2002.

[3] A. Konstantinov, The HTTP(s,g) And SOAP Framework , The NorduGrid

Collaboration, NORDUGRID-TECH-9.

[4] W. Allcock et al. , “Data management and transfer in high-performance

computational grid environments,” Parallel Comput. , vol. 28, no. 5, pp.

749-771, 2002.

[5] B. Kónya, The NorduGrid/ARC Information System , The NorduGrid

Collaboration, NORDUGRID-TECH-4.

[6] The Globus Resource Specification Language RSL v1.0. [Online]. Available:

http://www-fp.globus.org/gram/rsl\protect\T1\textunderscorespec1.html

[7] A. Anjomshoaa et al. (2005, December) Job submission description language

(jsdl) specification v1.0. GFD-R-P.056. [Online]. Available:

http://www.ggf.org/ggf_docs_final.htm

[8] O. Smirnova, Extended Resource Specification Language , The NorduGrid

Collaboration, NORDUGRID-MANUAL-4.

[9] A. Konstantinov, Protocols, Uniform Resource Locators (URL) and

Extensions Supported in ARC , The NorduGrid Collaboration,

NORDUGRID-TECH-7.

[10] ----, Configuration and Authorisation of ARC (NorduGrid) Services ,

The NorduGrid Collaboration, NORDUGRID-TECH-6.

[11] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit,” International Journal of Supercomputer Applications ,

vol. 11, no. 2, pp. 115-128, 1997.

[12] A. McNab, “The GridSite Web/Grid security system: Research Articles,”

Softw. Pract. Exper. , vol. 35, no. 9, pp. 827-834, 2005.

[13] R. Alfieri et al. , “From gridmap-file to VOMS: managing authorization in a

Grid environment,” Future Gener. Comput. Syst. , vol. 21, no. 4, pp.

549-558, 2005.

31

http://www.nordugrid.org
http://www-fp.globus.org/gram/rslprotect T1	extunderscore spec1.html
http://www.ggf.org/ggf_docs_final.htm

[14] M. Ellert, The NorduGrid toolkit user interface , The NorduGrid

Collaboration, NORDUGRID-MANUAL-1.

32

	Introduction
	Main concepts
	Input/output data
	Job flow
	URLs
	Internals
	Files
	Library

	Cache
	Structure
	How it works

	Files and directories
	Modules
	Configuration of the Grid Manager
	Configuration of the GridFTP Server
	Authorization
	Directories
	LRMS support
	Runtime environment

	Installation
	Requirements
	Setup of the Grid Manager
	Setup of the GridFTP Server
	Usage
	Unix accounts

