
NORDUGRID

NORDUGRID-TECH-2

1/10/2008

THE NORDUGRID GRID MANAGER AND GRIDFTP SERVER

Description and Administrator’s Manual

A.Konstantinov∗

∗aleks@fys.uio.no

Contents

1 Introduction 3

2 Main concepts 3

3 Input/output data 4

4 Job flow 4

5 URLs 6

6 Internals 6

6.1 Files . 6

6.2 Library . 8

7 Cache 8

7.1 Structure . 9

7.2 How it works . 9

7.3 Administration tools . 10

8 Files and directories 10

8.1 Modules . 10

8.2 Configuration of the Grid Manager . 11

8.3 Configuration of the GridFTP Server . 16

8.4 Authorization . 19

8.5 Directories . 19

8.6 LRMS support . 20

8.7 Runtime environment . 21

9 Installation 24

9.1 Requirements . 24

9.2 Setup of the Grid Manager . 24

9.3 Setup of the GridFTP Server . 24

9.4 Usage . 25

9.5 Unix accounts . 25

2

1 Introduction

One of the problems the user of widely distributed computing networks faces is different configuration of Computing

Elements (CE) controlled by different administrators. This makes even initial preparation of a job non-trivial task.
This is especially important in case of NorduGrid [1], where some CEs are not dedicated to NorduGrid and can not
be completely reconfigured at low level. Thus some layer capable of performing most of site-dependent pre- and
post-computation job is necessary.

The aim of grid-manager (GM) is to take care of job pre- and post-processing. It provides an interface to stage-in files
containing input data and program modules from wide range of sources and transfer or store output results.

The GM is part of the NorduGrid software (codename ARC - Advanced Resource Connector). For it’s connection
to other parts please read “An Overview of The NorduGrid Architecture Proposal” [2]. It is heavily using Globus
ToolkitT M 2 as it’s underlying software and currently completely depends on it.

Essential additionally part of the GM is the specialized GridFTP Server (GFS). This server supports rich enough
subset of gsiftp protocol and has network and local file access parts separated. In context og GM it’s main purpose is
to provide control for job and access to the job files based on the user subject and job owner. Another option is Job
Control Web Service (JCS) interface implemented as part of HTTPSD framework [3].

All software described here is part of ARC software toolkit developed by NorduGrid project http://www.nordugrid.
org

You should use this documment for advanced configuration purposes. It explains internals of the aforemen-
tioned tools and extended description of configuration options. For instalaltion and configuration refer to other
documents avaialble at http://www.nordugrid.org/papers.html.

2 Main concepts

A job is a set of input files (which may or may not include executables), a main executable and a set of output files.
The process of gathering input files, executing a job, and transferring/storing output files is called a session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The job
is supposed to produce new data files also in the SD. GM does not guarantee the availability of any other places
accessible by the job other than SD (unless such place is part of requested Runtime Environement). The SD is also the
only place which is controlled by the GM. It is is accessible by the user from outside through GridFTP protocol. Any
file created outside the SD is not controlled by the GM. Any exchange of data between client and GM (including also
program modules) is done through GridFTP protocol [4] only. A URL for accessing input/output files is constructed
from the base URL available through the NorduGrid Information System as part of nordugrid-cluster under
attribute nordigrid-cluster-contactstring and jobid (jobid corresponds to a SD).

Each job gets an identifier (jobid). This is a handle which identifies the job in the GM and the NorduGrid Information
System [5].

Each job is initiated and controlled through GFS. All job parameters (not data) are passed to the GM through GFS in
RSL [6] or JSDL-coded [7] description (job description - JD). The GM adds it’s own attributes to Globus RSL [8].

3

http://www.nordugrid.org
http://www.nordugrid.org
http://www.nordugrid.org/papers.html

3 Input/output data

The main task of the GM is to take care of processing input and output data (files) of the job. Input files are gathered
in SD. There are 2 ways to put file into the SD:

• Downloads initiated by the GM. Such files (name and source) are defined in the JD. It is a sole responsibility of
the GM to make sure that a file will be available in the SD.
The supported sources are at the moment: GridFTP, FTP, HTTP, HTTPS (HTTP over SSLv3), HTTPg (HTTP
over GSI) and SRM. Also some indexing service sources are supported: LFC, RC and RLS.

• Upload initiated by the user directly or through the User Interface (UI). Because the SD becomes available
immediately at the time of submission of JD, UI can (and should) use that to upload data files which are not
otherwise accessible by the GM. An example of such files can be the main executable of the job, files containing
job’s options/parameters, etc. These files can (and should) also be specified in the JD.

There is no other reliable way for a job to obtain input data on the CE belonging to NorduGrid. Access to AFS, NFS,
FTP, HTTP and any other remote data transport during execution of the job is not guaranteed (at least not by GM).

Job stores output files in the SD. Those files also belong to 2 groups:

• Files which are supposed to be moved to a Storage Element (SE) and optionally registered in some Indexing

Service like Replica Catalog (RC). The GM takes care of those files. They have to be specified in the JD. If job
fails during any stage of processing no attept is taken to transfer those files to their final destination, unless there
is option preserve=yes specified in their URLs.

• Files which are supposed to be fetched by the user. The user runs UI to obtain those files. They must also be
specified in the JD.

4 Job flow

From the point of view of the GM a job passes through various states. Picture 1 presents a diagram of the possible
states of a job. A user can examine the state of a job by querying the NorduGrid Information System (IS) using the
UI or any other tool. Please remember that IS can manipulate with state names to make them more user friendly and
to combine them with states introduced by other parts of whole setup. Another way is to access virtual informational
files through GridFTP interface or to use query metod of JCS.

Configuration can put limits on amout of simultaneous jobs at some states. If such limit is reached job stays in it’s
current state waiting for free slot. This situation is presented by prepending current state name with PENDING: status
mark.

Below is description of all actions taken by the GM at every state:

• Accepted - At this state the job has been submitted to a CE but not processed yet. The GM will analyze the JD
and move to the next stage. If JD can not be processed the job will be canceled and moved to the state Finishing.

• Preparing - The input data is being gathered in the SD. The GM is downloading files specified in the JD and
waiting for files which are supposed to be downloaded by the UI. If all files are successfully gathered the job
moves to the next state. If any file can’t be downloaded or it takes UI too long to upload a file - the job moves
to Finishing state. It is possible to put limit on number of simultaneous Preparing jobs. Those jobs out of
limit will stay in previous Accepted state with PENDING mark. Exceptions are jobs which has no files to be
downloaded. Those are processed out of limits.

4

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

R
e
r
u
n

r
e
q
u
e
s
t

DELETED

PENDING

PENDING

PENDING

Figure 1: Job states

• Submitting - This is a point of interaction with Local Resource Management System (LRMS). At the moment
PBS is supported best and correspoding backends are provided with default installation. The job is being
submitted for execution. If the local job submission is successful the job moves to the next state. Otherwise it
moves to Finishing. It is possible to limit number of jobs in Submitting and following InLRMS states.

• InLRMS - The job is queued or being executed in the LRMS. The GM takes no actions except waiting until job
finishes.

• Cancelling - Necessary action to cancel job in the LRMS is being taken.

• Finishing - The output data is being processed. Specified data files are moved to the specified SEs and are
optionally registered at RC. The user can download data files from the SD by using UI or any other tool. All the
files not specified as output files are removed from the SD at very beginning of this state. It is possible to limit
number of simultaneous jobs in this state.

• Finished - No more processing is performed by the GM. The user can continue to download data files from the
SD. The SD is kept available for some time (default is 1 week). After that it is moved to the state Deleted. The
’deletion’ time can be queried at NorduGrid Information System as attribute nordugrid-pbs-job-sessiondirerasetime
of nordugrid-pbs-job. If job was moved to Finished because of failure, it may be restarted on request of
client. Job is moved to a state previous to one which failed and is assigned mark PENDING. This is needed in
order to not break the configuration limits. Exception is a job failed in InLRMS state and lacking input files
specified in JD. Such job is treated like failed in Preparing state.

• Deleted - Job is moved to this state if user does not request job to be cleaned. Only minimal subset of information
about such job is kept.

In the case of the failure special processing is applied to output files. All specified output files are treated as down-
loadable by user. No files will be moved to the SE.

5

5 URLs

The GM and it’s components support following data transfer protocols and corresponding URLs: ftp, gsiftp, http,

httpg, https, lfc, se, srm (v1 and 2.2), rc and rls. For more information please see “Protocols, Uniform Resource
Locators (URL) and extensions supported in ARC” document [9].

6 Internals

6.1 Files

For each local UNIX user listed in the GM configuration a control directory exists. In this directory the GM stores
information about jobs belonging to that user. Multiple users can share the same control directory. To make it easier
to recover in the case of failure, the GM stores most information in files rather than in memory. All files belonging to
same job have names starting with job.ID. here ID is the job identifier.

The files in the control directory and their formats are described below:

• job.ID.status - current state of the job. It contains one word of text representing the current state of the job.
Possible values are :

– ACCEPTED

– PREPARING

– SUBMITTING

– INLRMS

– FINISHING

– FINISHED

– CANCELING

– DELETED

See section 4 for a description of the various states. Additionally each value can be prepended with a prefix “PEND-
ING:” (like PENDING:ACCEPTED, see section 4). That is used to show that the job is ready to be moved to a next
state and it stays in a current state only because some limits set in configuration are exceeded.

• job.ID.description - contains the RSL description of the job.

• job.ID.local - information about job used by the GM. It consists of lines of format “name = value” . Not all of
them are always available. The following names are defined:

– subject - user subject also known as the distinguished name (DN)

– starttime - the GMT time when the job was accepted represented in Generalized Time format of LDAP

– lifetime - time period to live for the SD after job finished in seconds

– cleanuptime - the GMT time when job to be removed from cluster and SD deleted in Generalized Time
format

– notify - email addresses and flags to send mail to about job specified status changes

– processtime - the GMT time when to start processing the job in Generalized Time format

6

– exectime - the GMT time when to start job execution in Generalized Time format

– expiretime - the GMT time when credentials delegated to job expire in Generalized Time format

– rerun - number of retries left to run the job

– jobname - name of the job as supplied by the user

– lrms - name of LRMS to run the job at

– queue - name of the queue to run the job at

– localid - job id in LRMS (appears only then the job is at state InLRMS)

– args - list of command-line arguments including the executable

– downloads - number of files to download into SD before execution

– uploads - number of files to upload from SD after execution

– gmlog - directory name which holds files containing information about job when accessed through GridFTP
interface

– clientname - name and ip address:port of client machine (name is provided by user interface)

– clientsoftware - version of software used to submit job

– sessiondir - SD of job

– failedstate - state at which job failed (available only if it is possible to restart job)

– jobreport - URL of logger service used to keep track of executed jobs (one requested by user)

This file is filled partially during job submission and fully when the job moves from the Accepted to the Preparing
state.

• job.ID.input - list of input files. Each line contains 2 values separated by a space. First value contains name of
the file relative to the SD. Second value is an URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

url - ordinary URL for gsiftp, ftp, http, https or httpg protocols with the addition of ’replica catalog url’ (RC
URL) and ’replica location service url’ (RLS URL).
Each URL can contain additional options.

file description - [size][.checksum].

size - size of the file in bytes.

checksum - checksum of the file identical to the one produced by cksum (1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files which are not
required to exist.

This file is used by the ’downloader’ utility. Files with ’url’ will be downloaded to the SD and files with ’file descrip-
tion’ will simply be checked to exist. Each time a new valid file appears in the SD it is removed from the list and
job.ID.input is updated. Any external tool can thus track the process of collecting input files by checking job.ID.input.

• job.ID.output - list of output files. Each line contains 1 or 2 values separated by a space. First value is the name
of the file relative to the SD. The second value, if present, is a URL. Supported URLs are the same as those
supported by job.ID.input.

7

This file is used by the ’uploader’ utility. Files with url will be uploaded to SE and remaining files will be left in the
SD. Each time a file is uploaded it is removed from the list and job.ID.output is updated. Files not mentioned as output
files are removed from the SD at the the beginning of the Finishing state.

• job.ID.failed - the existence of this file marks the failure of the job. It can also contain one or more lines of text
describing the reason of failure. Failure includes the return code different from zero of the job itself.

• job.ID.errors - this file contains the output produced by external utilities like downloader, uploader, script for
job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just useful
information about actions taken during the job processing. In case of problem include content of that file while
asking for help.

• job.ID.diag - information about resources used during execution of job and other information suitable for diag-
nostics and statistics. It’s format is similar to that of job.ID.local. The following names are at least defined:

– nodename - name of computing node which was used to execute job,

– runtimeenvironments - used runtime environments separated by ’;’,

– exitcode - numerical exit code of job,

– frontend_distribution - name and version of operating system distribution on frontend computer,

– frontend_system - name of operating on frontend computer,

– frontend_subject - subject (DN) of certificate representing frontend computer,

– frontend_ca - subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNU time utility. Note that some implementation of time insert unrequested
information in their output. Hence some lines can have broken format.

• job.ID.proxy -delegated GSI proxy.

• job.ID.proxy.tmp - temporary GSI proxy with different unx ownership used by processes run with effective user

id different form job owner’s id.

There are other files with names like job.ID.* which are created and used by different parts of the GM. Their presence
in the control directory can not be guaranteed and can change depending on changes in the GM code.

6.2 Library

There is a library libarcdata distributed as part of the GM. libarcdata (available only if built using autotools) provides
support for moving data between different URLs. It’s interface can be found in Appendix B.

7 Cache

The GM can cache input files. Caching is enabled if one or more cache directories are specified in the configuration
file. The GM does not cache files marked as executable in a job. Caching can also be explicitly turned off by the user
for each file by using the cache=no option in the URL (for URL options read “Protocols, Uniform Resource Locators
(URL) and extensions supported in ARC” [9]). The disk space occupied by the cache is controlled by removing old
files. For more information look in section 8.2.

8

7.1 Structure

Cached files are stored in sub-direcories under the data directory in each main cache directory. Filenames are con-
structed from an SHA-1 hash of the URL of the file, and split into subdirectories based on the two initial characters
of the hash. This enables the cached files to be evenly split over a number of subdirectories. If more than one cache
directory is used the initial letter of the hash also determines which cache is to be used. The algorithm is simply to
use the cache directory at index i in the list of directories, where i is found from the initial letter of the hash mod the
number of caches. This limits the maximum number of cache directories to 16, as SHA-1 hashes use the character set
[0-9,a-f]. In the extremely unlikely event of a collision between two URLs having the same SHA-1 hash, caching will
not be used for the second file.

There is no indexing system for the cache, and any cache filename can be easily determined from a URL by using the
same hashing algorithm as the GM, e.g. the standard command line tool sha1sum. The cache directory used by a file
can be determined from the initial letter of the hash and the order of cache directories in the configuration file. Some
associated metadata (the corresponding URL and an expiry time, if available) are stored in a file with the same name
as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

lfc://atlaslfc.nordugrid.org//grid/atlas/file1 is mapped to /cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3

and the file /cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3.meta contains the original URL and an expiry
time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another download process
cannot write the same file simultaneously. This done by creating a file with the same name as the cache filename but
with a .lock suffix. This file contains the process ID of the process and the hostname of the host holding the lock. If
this file is present, another process cannot do anything with the cache file and must wait until the cache file is unlocked
(i.e. the .lock file no longer exists). The lock has a timeout of one day, so that stale locks left behind by a download
process exiting abnormally will eventually be cleaned up. Also, if the process corresponding to the process ID stored
inside the lock is no longer running on the host specified in the lock, it is safe to assume that the lock file can be
deleted.

7.2 How it works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected cache directory,
and depending on the configuration, either the file is copied to the SD or a hard link is created in a per-job directory
and a soft link is created in the SD to there. The per-job directories are in the joblinks subdirectory of the main cache
directory. The former option is advised if the cache is on a file system which will suffer poor performance from a
large number of jobs reading files on it, or the file system containing the cache is not accessible from worker nodes.
The latter option is the default option. The per-job directory is only readable by the local user running the job, and the
cache directory is readable only by the GM user (usually root). This means that the local user cannot access any other
users’ cache files. It also means that cache files can be removed without needing to know whether they are in use by a
currently running job. IMPORTANT: If a cache is mounted from an NFS server and the GM is run by the root user,
the server must have the no_root_squash option set for the GM host in the /etc/exports file, otherwise the GM will not
be able to create the required directories.

If the file system containing the cache is full and it is impossible to free any space, the download fails and is retried
without using cacheing.

9

Before giving access to a file already in the cache, the GM contacts the initial file source to check if the user has read
permission on the file. Also file creation or validity times from the original source are checked to make sure the cached
file is fresh enough. If it is impossible to obtain creation and invalidation times for the file, it is invalidated 24 hours
after download.

The GM checks the cache periodically. If the used space on the file system containing the cache exceeds the high
water-mark given in the configuration file it tries to remove the least-recently accessed files to reduce size to the low
water-mark.

7.3 Administration tools

The following tools (installed in $NORDUGRID_LOCATION/libexec) exist to help with administration of the cache:

• cache-clean - This tool is used periodically (every 2 minutes) by the GM to keep the size of each cache within
the configurated limits. It removes files from the cache if the total size of the cache is greater than the configured
limit. It will attempt to remove files which are not locked in order of access time, starting with the earliest, until
the size is lower than the configured lower limit. If the lower limit cannot be reached (because too many files
are locked, or other files outside the cache are taking up space on the file system), the tool will exit before the
lower limit is reached.
cache-clean -h gives a list of options. The most useful option for administrators is -s, which does not delete
anything, but gives summary information on the files in the cache, including information on the ages of the files
in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to temporarily
clean up the cache with different size limits to those specified in the configuration.

• cache-list - This tool is used to list all files present in each cache. It simply reads through all the .meta files and
prints to stdout a list of all URLs stored in each cache and their corresponding cache filename, one per line.

8 Files and directories

8.1 Modules

The GM consists of few separate executable modules. Those are:

• grid-manager - Main module. It is responsible for processing the job, moving it through states, running other
modules.

• downloader - This is a module responsible for gathering input files in the SD. It processes the job.ID.input file
and updates it.

• uploader - This module is responsible for delivering output files to the specified SEs and registration at the RC.
It processes and updates the job.ID.output file.

• frontend-info-collector - Utility to gather information about frontend and to put it into job.ID.diag file.

• gm-kick - Sends signal to the GM though FIFO file to wake it up. It’s used to increase responsiveness of GM.

Following modules are always run under Unix account to which user is mapped.

10

• smtp-send.sh and smtp-send - These are the modules responsible for sending e-mail notifications to the user.
The format of the mail messages can be easily changed by editing the simple shell script smtp-send.sh.

• submit-*-job - Here * stands for the name of the LRMS. Curently supported LRMS are PBS/Torque, Condor,
SGE, LoadLeveler and SLURM. Also fork pseudo-LRMS is supported for testing purposes. This module is
responsible for the job submission to the LRMS.

• cancel-*-job - This one is for canceling the job, which was submitted to LRMS.

• scan-*-job -This shell script is responsible for notifying the GM about completion of the job. It’s implementation
for PBS system uses server logs to extract information about jobs. If logs are not available it uses less reliable
qstat command for that. other backends use different techniques.

Also there is administrator utility:

• gm-jobs - prints list of jobs available on cluster and amount of jobs in every state.
gm-jobs [-h] [-l] [-u uid] [-U name]
-l-l - print more information about each job,
-l-u - pretend utility is run by user with id uid,
-l-l - pretend utility is run by user with name name.

GM comes with plugins useable for various authorization purposes (see for example description of authplugin com-
mand below):

• inputcheck - checks if all input files specified in job description are downloadable.
inputcheck [-h] [-d debug_level] RSL_fle [proxy_file]
-lRSL_file -file with job description,
-lproxy_file - credentials proxy.

• lcas - executes LCAS plugins on credentials and returns 0 if authorization passed.
lcas credentials description [library [db [directory]]]

-lcredentials - path to file with credentials to authorize,
-ldescription - path to file with job description,
-llibrary - path to LCAS library (full or relative to LCAS directory),
-ldb - path to LCAS DB file (full or relative to LCAS directory),
-ldirectory - LCAS directory.

8.2 Configuration of the Grid Manager

The GM configuration is done through single configuration file. Historically GM supports 2 kinds of configuration
files. For old one it looks at following places:

• $NORDUGRID_LOCATION/etc/grid-manager.conf

• /etc/grid-manager.conf

And for new one in

• /etc/arc.conf

11

The old configuration file consists of empty lines, lines containing comment (line starts from #) or configuration
commands. Blank spaces in arguments must be escaped using ’\’ or arguments must be enclosed in ’"’. Command
line starts from command followed by arguments separated from command and between them by spaces.

The new configuration file can also contain empty lines and comments starting from #. It is separated into sections.
Each sections starts from string containing

• [section name/subsection name/subsubsection name].

Each section continues till next section of end of file. One configuration file can have commands for multiple ser-
vices/modules/programs. Each service get it’s own section named after it. The GM uses section [grid-manager].
Some services can make use of multiple subsections to reflect their internal modular structure. Commands in section
[common] apply to all services. Command lines have format

• name=”arguments string”.

Names are same as in old configuration file. The argument string consists of same arguments as in old format. And
they must obey same rules.

Both files support almost same commands. Following commands are defined (examples are given for new format):

Global commads (those which affect global parameters of the GM and affect all serviced users, also described in [10]):

• daemon=yes|no - specifies whether the GM should go to background after started. Defaults to yes.

• logfile=[path] - specifies name of file for logging debug/informational output. Defaults to /dev/null for daemon
mode and stderr for foreground mode.

• user=[uid[:gid]] - specifies user id (and optionally group id) to which the GM must switch after reading con-
figuration. Defaults to not switch.

• pidfile=[path] - specifies file where id if GM process will be stored. Defaults to not write.

• debug=number - specifies level of debug information. More information is printed for higher levels. Currently
highest effective number is 3 and lowest 0. Defaults to 2.

All commands above are generic for every daemon-enabled server in ARC NorduGrid toolkit (like GFS and HTTPSD).

• joblog=[path] - specifies where to store log file containing information about started and finished jobs.

• jobreport=[URL ... number] - specifies that GM has to report information about jobs being processed (started,
finished) to centralized service running at given URL. Multiple entries and multiple URLs are allowed. number

specifies how long old records have to be kept if failed to be reported. That time is in days. Last specified value
becomes effective.

• securetransfer=yes|no - specifies whether to use encryption while transferring data. Currently works for
GridFTP only. Default is no. It is overridden by value specified in URL options.

• passivetransfer=yes|no - specifies whether GridFTP transfers are passive. Setting this option to yes can solve
transfer problems caused by firewalls. Default is no.

• localtransfer=yes|no - specifies whether to pass file downloading/uploading task to computing node. If set to
yes the GM won’t download/upload files. Instead it composes script submitted to LRMS in way to make it
do that. This requires installation of GM and Globus to be accessible from computing nodes and environment
variables GLOBUS_LOCATION and NORDUGRID_LOCATION to be set accordingly. Default is no.

12

• maxjobs=[max_processed_jobs [max_running_jobs]] - specifies maximum number of jobs being processed by
the GM at different stages:
max_processed_jobs - maximal amount of jobs being processed by GM. This does not limit amount of jobs,
which can be suNOTE:bmitted to cluster
max_running jobs - maximal amount of jobs passed to Local Resource Management System
Missing value or -1 means no limit.

• maxlod=[max_frontend_jobs [emergency_frontend_jobs [max_transferred_files]]] - specifies maximum load
caused by jobs being processed on frontend:
max_frontend_jobs - maximal amount of jobs heavily using resources of frontend (applied before moving job
to PREPARING and FINISHING states)
emergency_frontend_jobs - if limit of max_frontend_jobs is used only by PREPARING or by FINISHING jobs
aforementioned number of jobs can be moved to another state .This is used to avoid case then jobs can’t finish
due to big amount of recently submitted jobs.
max_transfered_files - maximal number of files being transfered in parallel by every job. Used to decrease load
on not so powerful frontends.
Missing value or -1 means no limit.

• wakeupperiod=time - specifies how often for external changes are performed (like new arrived job, job finished
in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3 minutes.

• authplugin=state options plugin - specifies plugin (external executable) to be run every time job is going to
switch to state. Following states are allowed: ACCEPTED, PREPARING, SUBMIT, FINISHING, FINISHED
and DELETED. If exit code is not 0 job is canceled by default. Options consist of name=value pairs separated
by a comma. Following names are supported:
timeout - specifies how long in seconds execution of the plugin allowed to last (mandatory, “timeout=“ can be
skipped for backward compatibility).
onsuccess, onfailure and ontimeout - defines action taken in each case (onsuccess happens if exit code is 0).
Possible actions are:
pass - continue execution,
log - write information about result into logfile and continue execution,
fail - write information about result into logfile and cancel job.

• localcred=timeout plugin - specifies plugin (external executable or function in shared library) to be run every
time job has to do something on behalf of local user. Execution of plugin may not last longer than timeout

seconds. If plugin looks like function@path then function int function(char*,char*,char*,...) from shared
library path is called (timeout is not functional in that case). If exit code is not 0 current operation will fail.

• norootpower=yes/no - if set to yes all processes involved in job management will use local identity of a user to
which Grid identity is mapped in order to access filesystem at path specified in session command (see below).
Sometimes this may involve running temporary external process.

• allowsubmit=[group ...] - list of authorization groups of users allowed to submit new jobs while "allownew=no"
is active in jobplugin.so configuration (see below in section 8.3). Multiple commands are allowed.

• speedcontrol=min_speed min_time min_average_speed max_inactivity - specifies how long/slow data fransfer
is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lower than min_speed for at
least min_time seconds, or if average rate is lower than min_average_speed, or no data is receved for longer
than max_inactivity seconds.

13

• copyurl=template replacement - specifies that URLs, starting from template should be accessed in a different
way (most probably Unix open). The template part of the URL will be replaced with replacement. replacement

can be either URL or local path starting from ’/’. It is advisable to end template with ’/’.

• linkurl=template replacement [node_path] - mostly identical to copyurl but file won’t be copied. Instead soft-
link will be created. replacement specifies the way to access the file from the frontend, and is used to check
permissions. The node_path specifies how the file can be accessed from computing nodes, and will be used for
soft-link creation. If node_path is missing - local_path will be used instead. Both node_path and replacement

should not be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other URLs. That
means if GM has to choose between few URLs from which should it download input file, these will be tried
first.

Per UNIX user commands:

• mail=e-mail_address - specifies an email address from which the notification mails are sent.

• defaultttl=ttl [ttr] - specifies the time in seconds for the SD to be available after job finished (ttl) and after job
was deleted (ttr) due to ttl. Defaults are 7days for ttl and 30 days for ttr.

• defaultlrms=default_lrms_name default_queue_name - specifies names for the LRMS and queue. Queue name
can also be specified in the JD (currently it is not allowed to override used LRMS by using JD). In new config-
uration file this command is called lrms.

• session=path - specifies path to the directory in which the SD is created. If the path is * the default one is used
- $HOME/.jobs . In new configuration file this command is called sessiondir.

• cachedir=path [link_path] - specifies a directory to store cached data (see 7). Multiple cache directories may
be specified by specifying multiple cachedir commands. Cached data will be distributed evenly over the caches.
Specifying no cachedir command or commands with an empty path disables caching. Optional link_path spec-
ifies the path at which path is accessible on computing nodes, if it is different from the path on the GM host. If
link_path is set to ’.’ files are not soft-linked, nor are per-job links created, but files are copied to the session
directory. In old configuration file this command is called cache.

• cachesize=high_mark [low_mark] - specifies high and low watermarks for space used by each cache, as a
percentage of the space on the file system on which the cache directory is located. When the max is exceeded,
files will be deleted to bring the used space down to the min level. It is a good idea to have each cache on its
own separate file system. To turn off this feature, "cachesize" without parameters can be specified. These cache
settings apply to all caches specified by cachedir commands.

• maxrerun=number - specifies maximal number of times job will be allowed to rerun after it failed in LRMS.
Default value is 2. This only specifies a upper limit. Actual number is provided in job description and defaults
to 0.

All per-user commands should be put before control command which initiates serviced user.

• control=path username [username [...]] - This option initiates UNIX user as being serviced by the GM. path

refers to the control directory (see section 6 for the description of control directory). If the path is * the default
one is used - $HOME/.jobstatus . username stands for UNIX name of the local user. Multiple names can be
specified. If the name is * it is substituted by all names found in file /etc/grid-security/grid-mapfile (for the

14

format of this file one should study the Globus project [11]).
Also the special name ’.’(dot) can be used. Corresponding control directory will be used for any user. This
option should be the last one in the configuration file. In new configuration file command controldir=path is
also available. It uses special username ’.’ and is always executed last independent of placement in file.

• helper=username command [argument [argument [...]]] - associates external program with the local UNIX
user. This program will be kept running under account of the specified user. username stands for the name of
the user. Special names can be used: ’*’ - all names from /etc/grid-security/grid-mapfile, ’.’ - root user. The
user should be already configured with control option (except root, who is always configured). command is an
executable and arguments are passed as arguments to it.

Following are global commands supported only in new configuration file. Most of them are specific to underlying
LRMS (PBS in this case) and are passed in environment variables if old configuration file is used.

• pbs_bin_path=path - path to directory which contains PBS commands.

• pbs_log_path=path - path to directory with PBS server’s log files.

• gnu_time=path - path to time utility.

• tmpdir=path - path to directory for temporary files.

• runtimedir=path - path to directory which contains runtimenvironment scripts.

• shared_filesystem=yes|no - if compiting nodes have an access to session directory through a shared filesystem
like NFS. Corresponds to an environement variable RUNTIME_NODE_SEES_FRONTEND.

• nodename=command - command to obtain hostname of computing node.

• scratchdir=path - path on computing node where to move session directory before execution.

• shared_scratch=path - path on frontend where scratchdir can be found.

• nodename=command - command to obtain hostname of computing node.

In the command arguments (paths, executables, ...) following substitutions can be used:

%R - session root - see command session

%C - control dir - see command control

%U - username

%u - userid - numerical

%g - groupid - numerical

%H - home dir - home specified in /etc/passwd

%Q - default queue - look command ’defaultlrms’

%L - default lrms - look command ’defaultlrms’

%W - installation path - ${NORDUGRID_LOCATION}

%G - globus path - ${GLOBUS_LOCATION}

15

%c - list of all control directories

%I - job’s ID (for plugins only, substituted in runtime)

%S - job’s state (for authplugin plugins only, substituted in runtime)

%O - reason (for localcred plugins only, substituted in runtime).
Possible reasons are:

new - new job, new credentials

renew - old job, new credentials

write - write/delete file, create/delete directory (through gridftp)

read - read file, directory, etc. (through gridftp)

extern - call external program (grid-manager)

Some configuration parameters can be specified from command line while starting the GM:

grid-manager [-h] [-C level] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P path]

-h - short help,
-d - debug level,
-L - name log file (overwrites value in configuration file),
-P - name for file containing process id (overwrites value in configuration file),
-U - user and gropu id to use for running daemon,
-F - do not make process daemon,
-c - name of configuration file,
-C - remove old information before starting: 1- remove finished jobs, 2 - remove active jobs too, 3- also remove

everything that looks like junk.

8.3 Configuration of the GridFTP Server

Default location of the GFS configuration file is /etc/arc.conf or $NORDUGRID_LOCATION/etc/gridftpd.conf. For-
mat of these configuration files is similar to that of the GM. It also supports generic commands described at the
beginning of previous section 8.2. In the new format sections [common] and [gridftpd] are used. Commands specific
to the GFS are described below.

• port=number - specifies TCP/IP port number. Default is 2811.

• include=path - include contents of another file. Generic commands can’t be specified there.

• encryption=yes|no - specifies if server will allow data transfer to be encrypted. Default is yes.

• pluginpath=path - specifies the path where plugin libraries are installed

• allowunknown=yes|no - if set to yes clients are not checked agains grid-mapfile. Hence only access rules
specified in this configuration file will be applied.

• firewall=hostname - use IP address of the hostname in response to PASV command instead of IP address of a
network interface of computer. You can write IP address directly instead of hostname. This command may be if
server is situated behind NAT.

16

• unixgroup=group rule - define local UNIX user and optionally UNIX group to which user belonging to specified
authorization group is mapped (see Section 8.4 for definition of group). Local names are obtained from specified
rule. If specified rule could not produce any mapping, next command is used. Mapping stops at first matched
rule. Following rules are supported:

– mapfile file - user’s subject is matched against list of subjects stored inspecified file, one per line followed
by local UNIX name.

– simplepool directory - user is assigned one of local UNIX names stored in a file directory/pool, one per
line. Used names are stored in other files placed in the same directory. If UNIX name was not used for 10
days, it may be reassigned to another user.

– lcmaps library directory database - call LCMAPS functions to do mapping. Here library is path to shared
library of LCMAPS, either absolute or relative to directory; directory is path to LCMAPS installation
directory, equivalent of LCMAPS_DIR variable; database is path to LCMAPS database, equivalent to
LCMAPS_DB_FILE variable. Each arguments except library is optional and may be either skiped or
replaced with ’*’.

– mapplugin timeout plugin [arg1 [arg2 [...]]] - run external plugin executable with specified arguments.
Execution of plugin may not last longer than timeout seconds. Rule matches if exit code is 0 and there
is UNIX name printed on stdout. Name may be optionaly followed by UNIX group separated by ’:’. In
arguments following substitions are applied before plugin is started:

* %D - subject of users’s cerificate,

* %P - name of credentials’ proxy file.

• unixvo=vo rule - same as unixgroup for users belonging to Virtual Organization (VO) vo.

• unixmap=[unixname][:unixgroup] rule - define local UNIX user and optionally group used to represent con-
nected client. rule is one of those allowed for authorization groups (see Section 8.4) and for unixgroup/unixvo.
In case of mapping rule username is one, provided by rule. Otherwise specified unixname:unixgroup is taken.
Both unixname and unixgroup may be either omited or set to ’*’ to specify missing value.

• groupcfg=name - is put into subsections representnig plugin or [group] section and defines if that section is
effective. In old format it selects the group to which all following lines apply. Only unaffected option is
groupcfg. If name is empty (or no groupcfg is used at all) following lines apply to all users.

Subsections of gridftpd section specifies plugins which serve virtual FTP path (similar to mount command of UNIX).
Name of subsection is irrelevant. In old format this section starts with command plugin path library_name and ends
with keyword end. Inside subsection following commands are supported

• plugin=library_name - use plugin library_name to serve virtual path.

• path=path - virtual path to serve.

GFS comes with 3 plugins: filepligin.so, gaclplugin.so and jobplugin.so.

– jobplugin.so does not require any specific options in case of old configuration format. It reads the config-
uration file of the GM located at the standard place as specified in the section 8.2. Following options are
supported:

* configfile=path - defines non-standard place for GM’s configuration file,

* allownew=yes|no - specifies if new jobs can be submitted. Default is yes.

17

* unixgroup/unixvo/unixmap - same options like in top-level GFS configuration. If mapping succeeds
obtained local user will be used to run submitted job.

– filepligin.so supports following options:

* mount=path - defines the place on local filesystem to which file access operations apply

* dir=path options - specifies access rules for accessing files in path (relative to virtual and real path)
and all the files below.
options is the list of the following keywords:

· nouser - do not use local file system rights, only use those specifies in this line

· owner - check only file owner access rights

· group - check only group access rights

· other - check only "others" access rights

The options above are exclusive. If none of the above specified usual Unix access rights are applied.

· read - allow reading files

· delete - allow deleting files

· append - allow appending files (does not allow creation)

· overwrite - allow overwriting already existing files (does not allow creation, file attributes are not
changed)

· dirlist - allow obtaining list of the files

· cd - allow to make this directory current

· create owner:group permissions_or:permissions_and - allow creating new files. File will be
owned by owner and owning group will be group. If ’*’ is used, the user/group to which con-
nected user is mapped will be used. The permissions will be set to permissions_or & permis-

sions_and (second number is reserved for the future usage).

· mkdir owner:group permissions_or:permissions_and - allow creating new directories.

– gaclpligin.so does not have options in case of the old configuration. First line of it’s configuration contains
local path (root directory) served by it. Rest till keyword end contains GACL [12] XML used to setup
initial access rules for every newly created file and directory. If GACL XML is empty then there will be
no default ACLs created for new files and directories. That means ACL of parent directory will be used.
For the new configuration format following options are supported: gacl=gacl - GACL XML, mount=path

- local path server by plugin.
XML may contain variables which are replaced with values taken from client’s credentials. Following
variables are supported:

$subject - subject of user’s certificate (DN),

$voms - subject of VOMS[13] server (DN),

$vo - name of VO (from VOMS certificate),

$role - role (from VOMS certificate),

$capability - capabilities (from VOMS certificate),

$group - name of group (from VOMS certificate) .

Additionally root directory must contain .gacl file with initial ACL. Otherwise rule will be “deny all for
everyone”.

Some configuration parameters can be specified from command line while starting the GFS:

18

gridftpd [-h] [-p number] [-n number] [-b number] [-B number] [-d level] [-c path] [-F] [-U uid[:gid]] [-L path] [-P

path]

-h - short help,
-d - debug level,
-L - name log file (overwrites value in configuration file),
-P - name for file containing process id (overwrites value in configuration file),
-U - user and gropu id to use for running daemon,
-F - do not make process daemon,
-c - name od configuration file,
-p - TCP/IP port number,
-n - maximal number of simultaneously served connection,
-b - default size of buffer used for data transfer (default is 64kB),
-B - maximal size of buffer used for data transfer (default is 640kB).

8.4 Authorization

Authorization is performed at GFS by applying set of rules. Each rule takes one line in the group section. For
information about supported rules please read “Configuration and authorisation of ARC (NorduGrid) Services” [10].

8.5 Directories

The GM is installed into a single installation point referred as $NORDUGRID_LOCATION and following sub-
directories are used:

$NORDUGRID_LOCATION/bin - tools

$NORDUGRID_LOCATION/libexec - program modules used by GM

$NORDUGRID_LOCATION/etc - configuration files, deprecated, central configuration file is used by
deault

$NORDUGRID_LOCATION/sbin - daemons

$NORDUGRID_LOCATION/lib - gridftp server’s plugins and API libraries

The GM also uses following directories:

• session root directory - In this directory the SD is created. It can be multiple directories for the various users
specified in the configuration file.
There are 2 processes which need to have a permissions to create new files and directories in it. Those are GM
and GFS.
If any of those processes processes are run under dedicated user account, that account need full permissions in
the session root directory.
If those processes are run under root account make sure session root directory is not on filesystem which limits
capabilities of root user. For example NFS with root_squash option.
If there is need to run processes under root account (to run jobs in LRMS under different users’ accounts) but
there is no way to provide suitable session root directory use norootpower command in configuration of the
GM. In that case GM and GFS will use identity of local user to which Grid identity is mapped to access session

root directory. Hence those users will need full access there.
The GM creates SD with proper ownership and permissions for local identity used to run job. Some filesystems
require executable permissions on session root directory to be set for local identity in order to access any file or
subdirectory there.

19

This directory should also be shared among cluster nodes in order for job to access input files. Or internal means
of LRMS must be used to transfer files to executing node. For more see section 8.6.

• control directory - In this directory the SD stores an information about the accepted jobs. Both GM and GFS
processes must have full permissions there.
Also subdirectory called log is created there. It is used to accumulate information about started and finished
jobs. This information is periodically sent to the logger service.

8.6 LRMS support

The GM comes with support for several LRMS. And this number is slowly growing. Features explained below are
for PBS backend. This support is provided through submit-pbs-job, cancel-pbs-job, scan-pbs-job scripts. submit-pbs-

job creates job’s script and submits it to PBS. Created job’s script is responsible for moving data between frontend
machine and cluster node (if required) and execution of actual job. Alternatively it can download input files and upload
output if “localtransfer no” is specified in the configuration file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified on
frontend in GM’s environment and overwritten on cluster’s node through PBS configuration. Some of them may be
set in configuration file too.

PBS_BIN_PATH - path to PBS executables. Like /usr/local/bin for example. pbs_bin_path configuration command.

PBS_LOG_PATH - path to PBS server logs. pbs_log_path configuration command.

TMP_DIR - path to directory to store temporary files. Default value is /tmp. tmpdir configuration command.

RUNTIME_CONFIG_DIR - path where runtime setup scripts can be found. runtimedir configuration command.

GNU_TIME - path to GNU time utility. It is important to path to utility compatible with GNU time. If such utility
is not available, modify submit-pbs-job to either reset this variable or change usage of available utility. gnu_time

configuration command.

NODENAME - command to obtain name of cluster’s node. Default is /bin/hostname -f. nodename configuration
command.

RUNTIME_LOCAL_SCRATCH_DIR - if defined should contain path to the directory on computing node, which can
be used to store job’s files during execution. scratchdir configuration command.

RUNTIME_FRONTEND_SEES_NODE - if defined should contain path corresponding to RUNTIME_LOCAL_SCRATCH_DIR

as seen on frontend machine. shared_scratch configuration command.

RUNTIME_NODE_SEES_FRONTEND - if set to “no” means computing node does not share filesystem with fron-
tend. In that case content of the SD is moved to computing node by using means provided by the LRMS. Results are
moved back after job’s execution in a same way. shared_filesystem configuration command.

Figures 2,3,4 present some possible combinations for RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE
and explain how data movement is performed. Pictures a) correspond to situation right after all input files are gathered
in session directory and actions taken right after job’s script starts. Pictures b) show how it looks while job is running
and actions which are taken right after it finished. Pictures c) stand for final situation, when job files are ready to be
uploaded to external storage element or be downloaded by user.

20

Frontend Cluster node

Session directory Session directory

Figure 2: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE undefined. Job is
executed in session directory placed on frontend.

8.7 Runtime environment

The GM can run specially prepared BASH scripts prior creation of job’s script, before and after executing job’s main
executable. Those scripts are requested by user through runtimeenvironment attribute in RSL and are run with only
argument set equal to ’0’, ’1’ or ’2’ during creation of job’s script, before execution of main executable and after main
executable finished accordingly. They all are run through BASH’s ’source’ command, and hence can manipulate with
shell variables. With argument ’0’ scripts are run by the GM on frontend. Some environment variables are defined in
that case and can be changed to influence job’s execution later:

• joboption_directory - session directory.

• joboption_args - command to be executed as specified in RSL.

• joboption_env_# - array of ’NAME=VALUE’ environment variables (not bash array).

• joboption_runtime_# - array of requested runtimeenvironment names (not bash array).

• joboption_num - runtimeenvironment currently beeing processed (number starting from 0).

• joboption_stdin - name of file to be attached to stdin handle.

• joboption_stdout - same for stdout.

• joboption_stderr - same for stderr.

• joboption_maxcputime - amout of CPU time requested (minutes).

• joboption_maxmemory - amout of memory requested (megabytes).

• joboption_count - number of processors requested.

• joboption_lrms - LRMS to be used to run job.

• joboption_queue - name of a queue of LRMS to put job into.

• joboption_nodeproperty_# - array of properties of computing nodes (LRMS specific, not bash array).

• joboption_jobname - name of the job as given by user.

• joboption_rsl - whole RSL for very clever submission scripts.

• joboption_rsl_name - RSL attributes and values (like joboption_rsl_executable=”/bin/echo”)

21

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session directory Session directory
imported from
frontend

Job files

Scratch directory
Copy of session dir.

stdout+stderr stdout+stderr

COPY before execution

SOFT-LINKS

MOVE after execution

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

a)

b)

c)

Figure 3: RUNTIME_LOCAL_SCRATCH_DIR is set to value representing sratch directory on computing node,
RUNTIME_FRONTEND_SEES_NODE undefined.

a) After job script starts all input files are moved to ’scratch directory’ on computing node.

b) Job runs in separate directory in ’scratch directory’. Only files representing job’s stdout and stderr are
placed in original ’session directory’ and soft-linked in ’scratch’. After execution all files from ’scratch’
are moved back to original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

22

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session link

Job files

Scratch directory
Session directory

COPY before execution

MOVE after execution

a)

b)

Scratch directory

Job files

Session directory

Scratch directory

Frontend Cluster node

Scratch directory
c)

Scratch directory

SOFT-LINK

Session directory

Session link

Job files

Session directory

Figure 4: Both RUNTIME_LOCAL_SCRATCH_DIR and RUNTIME_FRONTEND_SEES_NODE are set to valuea
representing sratch directory on computing node and way to access that scratch from frontend correspondingly.

a) After job script starts all input files are moved to ’scratch directory’ on computing node. Original ’session
directory’ is removed and replaced with soft-link to copy of session directory in ’scratch’ as seen on
frontend.

b) Job runs in separate directory in ’scratch directory’. All files are also available on frontend through soft-
link. After execution soft-link is replaced with directory and all files from ’scratch’ are moved back to
original ’session directory’.

c) All output files are in ’session directory’ and are ready to be uploaded/downloaded.

23

For example joboption_args could be changed to wrap main executable. Or joboption_runtime could be expanded if
current one depends on others.

With argument ’1’ scripts are run just before main executable is run. They are executed on computing node. Such
script can prepare environment for some third-party software package. A current directory in that case is one which
would be used for execution of job. Variable HOME also points to that directory.

With argument ’2’ scripts are executed after main executable finished. Main purpose is to clean possible changes done
by scripts run with ’1’ (like removing temporary files). Execution of scripts at that stage also happens on computing
node and is not reliable. If the job is killed by LRMS they most probably won’t be executed.

9 Installation

To install GM as part of ARC-enabled site please read “NorduGrid ARC server installation instructions” at http:
//www.nordugrid.org/documents/ng-server-install.html.

9.1 Requirements

The GM is mostly written using C++. It was tested and should compile on recent enough Linux systems using gcc

compiler and GNU make (gcc versions 2.95, 2.96, 3.2, 3.4 were tested). You will also need Globus ToolkitT M of
version higher than 2.2 installed http://www-unix.globus.org/toolkit/.

9.2 Setup of the Grid Manager

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC server
installation instructions” at http://www.nordugrid.org/documents/ng-server-install.html. Fol-
low that manual to install GM, configure and run it. Additional tips are described here.

The GM is designed to be able to run both as root and as ordinary user. You can chose the name of the user by using
corresponding command in configuration file. It is better run GM as root if You want to serve few users.

The GM writes debug information into a file /var/log/grid-manager.log by default. . Also file /var/log/gm-jobs.log
(default path in configuration template, turned off by default) contains information about all started and finished jobs,
2 lines per job (1 when job is started and 1 after it finished).

9.3 Setup of the GridFTP Server

For in-depth information about how to properly setup the GM and related software please read “NorduGrid ARC server
installation instructions” at http://www.nordugrid.org/documents/ng-server-install.html. Fol-
low that manual to install GM, configure and run it. Additional tips are described here.

Local file access in the GFS is implemented through plugins (shared libraries). There are 3 plugins provided with
the GFS: fileplugin.so, gaclplugin.so and jobplugin.so . The fileplugin.so is intended to be uses for plain file access
with the configuration senitive to user subject and is not necessary for setting a NorduGrid compatible site. The
gaclplugin.so uses GACL (http://www.gridpp.ac.uk/authz/gacl/) to control access to local file system.
The jobplugin.so is using information about jobs being controlled by GM and provides access to session directories of
the jobs owned by user. It also provides an interface (virtual directory and virtual operations) to submit, cancel, clean,
renew credentials and obtain information about the job.

24

http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html
http://www-unix.globus.org/toolkit/
http://www.nordugrid.org/documents/ng-server-install.html
http://www.nordugrid.org/documents/ng-server-install.html
http://www.gridpp.ac.uk/authz/gacl/

To make GFS to interoperate with other parts of the ARC only one jobplugin.so needs to be configured. It is advisable
to use the template configuration file. You can leave only part which configures jobplugin.so plugin.

9.4 Usage

Refer to the description of the User Interface part [14] and extensions to RSL [8] for using the GM.

9.5 Unix accounts

Bot GM and GFS are designed to be run by root UNIX account and serve multiple local UNIX and global Grid
identities. Nevertheless it is possible to use non-root accounts to run those services. Although this means some
functionality loss described below.

There are no implication on running GFS with gaclplugin or fileplugin under non-root account as long as only Grid
identity of user is used and all served files and directories are owned by server’s account.

For combination of GM and GFS with jobplugin both services must be run either by same account or one of services
must be run under root account. That is needed because services communicate over local filesystem, hence must have
full access to same set of files.

As long as GFS with jobplugin is run under non-root account there is no mapping from Grid identity to local UNIX
account taking place. All alowed Grid users are assigned server’s account and are then processes by GM using
same account. Only way to overcome this limitation is to run one GFS per local account with proper access control
configured.

Because GM has to represent user’s local account while communication with LRMS, it can serve only account it is run
under (unless it is run under root account, of course). Like in case of GFS, multiple instances of GM may be run, one
per local account. That solution causes another implications. The GM looses possibility to share cached files among
serviced users. It is not also possible to control load on a frontend by limiting number of simultatenuosly running
downloader and uploader modules.

One has also take into account that private part of GSI infrastructure (private key of a host at least) has to be duplicated
for every account used to run GFS.

Appendix A. Job control over jobplugin.so

Virtual tree

Under mount point of jobplugin gridftp client can see directories representing job belonging to user, who started client.
Directory per job. Directory names are same as jobs’ identifiers. Those directories are directly connected to session
directories of jobs and contain same files and subdirectories. Except if jobs session directory is moved to computing
node. In that case directories only contain files with redirected stdout and strderr as specified in xRSL.

If job’s xRSL has gmlog specified job’s directory also contains virtual subdirectory with same name, which contains
files with information about job as created by GM. The most important are ’errors’ and ’status’. ’errors’ contains stderr
of separate modules run by GM in order to process job (downloader, uploader, job’s submission to LRMS). ’status’
contains one word representing state of job.

Also under mount point there is additional directory named "new" used to submit new jobs. And another directory
“info” with subdirectories named after job ids. Those subdirectories contain files with information about job identical

25

to those in subdirectory specified through gmlog.

Submission

Each xRSL put into directory "new" is accepted as job’s description. jobplugin parses it and client gets positive
response if there are no errors in request.

Job gets identifier and directory with corresponding name appears. If job’s description contains input files which
should be delivered from client’s machine, client must upload them to that directory under specified names.

Because each job gets identifier there should be a way for client to obtain it. For that prior to providing xRSL client
sends command CWD to change current directory to "new". In this way job’s identifier is reserved, new directory
corresponding to that identifier is created and client is redirected to it (as specified in FTP protocol). Job’s description
put into "new" will get reserved identifier.

Actions

Various actions to affect processing of existing job are performed by uploading xRSL files into directory “new”.
Content of xRSL may consist of only 2 parameters - action for action to be performed, and jobid to identify job to be
affected. Rest of parameters are ignored.

Currently supported actions are:

cancel to cancel job

clean to remove job from computing resource

renew to renew credentials delegated to job

restart to restart job after failure at some phases

It is also possible to perform some actions by using shortcut FTP operations described below.

Cancel

Job is canceled by performing DELE (delete file) command on directory representing job. It can take some time (few
minutes) before job is actually canceled. Nevertheless client gets response immediately.

Clean

Job’s content is cleaned by performing RMD (remove directory) command on directory representing job. If job is in
"FINISHED" state it will be cleaned immediately. Otherwise it will be cleaned after it reaches state "FINISHED".

Renew

If client requests CWD to session directory credentials passed during authentication are compared to current creden-
tials of the job. If validity time of the new credentials is longer job’s credentials are replaced with new.

26

Appendix B. Library libarcdata

libarcdata is now part of libngui library. It’s functions are declared in a header file arcdata.h. They correspond to ng*
utilities meant for data handling - arcacl, arccp, arcls, arcrm, arctransfer. It consists of following functions:

void arcacl(const std::string& file_url, const std::string& command, int timeout = 0);

void arcregister (const std::string& source_url, const std::string& destination_url, bool secure = false, bool passive = true, bool force_meta = false, int timeout = 0);

void arccp (const std::string& source_url, const std::string& destination_url, bool secure = false, bool passive = true, bool force_meta = false, int recursion = 0, bool verbose = false, int timeout = 0);

void arcls(const std::string& dir_url, bool show_details = false, bool show_urls = false, int recursion = 0, int timeout = 0);

void arcrm(const std::string& file_url, bool errcont = false, int timeout = 0);

void arctransfer(const std::string& destination, std::list<std::string>& sources, int timeout = 0);

Additionally this library contains C++ classes used by ng* data management utilities. Those are described in “ARC::DataMove
Reference Manual”.

Appendix C. Error messages of GM

If job has not finished successfully the GM put one or more lines into job.ID.failed. Possible valuesinclude those
generated by the GM itself:

27

Error string Reason/description

Internal error Error in internal algorithm

Internal error: can’t read local file Error manipulating files in the control directory

Failed reading local job information -//-

Failed reading status of the job -//-

Failed writing job status -//-

Failed during processing failure -//-

Serious troubles (problems during processing
problems)

-//-

Failed initiating job submission to LRMS Could not run backend executable to pass job to LRMS

Job submission to LRMS failed Backend executable supposed to pass job to LRMs returned non-zero exit
code

Failed extracting LRMS ID due to some in-
ternal error

Output of Backend executable supposed to contain local ID of passed job
could not be parsed

Failed in files upload (post-processing) Failed to upload some or all output files

Failed in files upload due to expired creden-
tials - try to renew

Failed to upload some or all output files most probably due to expired
credentials (proxy certificate)

Failed to run uploader (post-processing) Could not run uploader executable

uploader failed (postprocessing) Generic error related to uploader component

Failed in files download (pre-processing) Failed to upload some or all input files

Failed in files download due to expired cre-
dentials - try to renew

Failed to download some or all input files most probably due to expired
credentials (proxy certificate)

Failed to run downloader (pre-processing) Could not run downloader executable

downloader failed (preprocessing) Generic error related to downloader component

User requested to cancel the job GM detected external request to cancel this job, most probably issued by
user

Could not process RSL Job description could not be processed to syntax errors or missing ele-
ments

User requested dryrun. Job skiped. Job description contains request not to process this job

LRMS error: (CODE) DESCRIPTION LRMS returned error. CODE is replaced with numeric code of LRMS,
and DESCRIPTION with textual description

Plugin at state STATE failed: OUTPUT External plugin specified in GM’s configuration returned non-zero exit
code. STATE is replcaced by name of state to which job was going to be
passed, OUTPUT by textual output generated by plugin.

Failed running plugin at state STATE External plugin specified in GM’s configuration could not be executed.

Provided by downloader component (URL is replcaced by source of input file, FILE by name of file):

28

Error string Reason/description

Internal error in downloader Generic error

Input file: URL - unknown error Generic error

Input file: URL - unexpected error Generic error

Input file: URL - bad source URL Source URL is either malformed or not supported

Input file: URL - bad destination URL Shouldn’t happen

Input file: URL - failed to resolve source lo-
cations

File either not registred or other problems related to Data Indexing ser-
vice.

Input file: URL - failed to resolve destination
locations

Shouldn’t happen

Input file: URL - failed to register new desti-
nation file

Shouldn’t happen

Input file: URL - can’t start reading from
source

Problems related to accessing instance of file at Data Storing service.

Input file: URL - can’t read from source -//-

Input file: URL - can’t start writing to desti-
nation

Access problems in a session directory

Input file: URL - can’t write to destination -//-

Input file: URL - data transfer was too slow Timeouted while trying to download file

Input file: URL - failed while closing connec-
tion to source

Shouldn’t happen

Input file: URL - failed while closing connec-
tion to destination

Shouldn’t happen

Input file: URL - failed to register new loca-
tion

Shouldn’t happen

Input file: URL - can’t use local cache Problems with GM cache

Input file: URL - system error Operating System returned error code where unexpected

Input file: URL - delegated credentials ex-
pired

Access to source requires credententials and they are either outdated or
missing (not delegated).

User file: FILENAME - Bad information
about file: checksum can’t be parsed.

In job description there is a checksum provided for file uploadable by
user interface and this record can’t be interpreted.

User file: FILENAME - Bad information
about file: size can’t be parsed.

In job description there is a size provided for file uploadable by user
interface and this record can’t be interpreted.

User file: FILENAME - Expected file. Direc-
tory found.

Instead of file uploadable by user interface GM found directory with
same name in a session directory.

User file: FILENAME - Expected ordinary
file. Special object found.

Instead of file uploadable by user interface GM found special object with
same name in a session directory.

User file: FILENAME - Delivered file is big-
ger than specified.

The size of file uploadable by user interface is bigger than specified in
job description.

User file: FILENAME - Delivered file is un-
readable.

GM can’t check user uploadable file due to some internal error. Most
probably due to improperly configured local permissions.

User file: FILENAME - Could not read file
to compute checksum.

GM can’t read user uploadable file due to some internal error. Most
probably due to improperly configured local permissions.

User file: FILENAME - Timeout waiting GM waited for user uploadable file too long.

29

Provided by uploader component (URL is replcaced by destination of output file) :

Error string Reason/description

Internal error in uploader Generic error

Output file: URL - unknown error Generic error

Output file: URL - unexpected error Generic error

User requested to store output locally URL Destination is URL of type file.

Output file: URL - bad source URL Shouldn’t happen

Output file: URL - bad destination URL Destination URL is either malformed or not supported

Output file: URL - failed to resolve source
locations

Shouldn’t happen

Output file: URL - failed to resolve destina-
tion locations

Problems related to Data Indexing service.

Output file: URL - failed to register new des-
tination file

-//-

Output file: URL - can’t start reading from
source

User request to store output file, but there is no such file or there are
problems accessing session directory

Output file: URL - can’t start writing to des-
tination

Problems with Data Storing services

Output file: URL - can’t read from source Problems accessing session directory

Output file: URL - can’t write to destination Problems with Data Storing services

Output file: URL - data transfer was too slow Timeout during transfer

Output file: URL - failed while closing con-
nection to source

Shouldn’t happen

Output file: URL - failed while closing con-
nection to destination

Shouldn’t happen

Output file: URL - failed to register new lo-
cation

Problems related to Data Indexing service.

Output file: URL - can’t use local cache Shouldn’t happen

Output file: URL - system error Operating System returned error code where unexpected

Output file: URL - delegated credentials ex-
pired

Access to destination requires credententials and they are either outdated
or missing (not delegated).

Coming from LRMS (PBS) backend:

30

Error string Reason/description

Submission: Configuration error.

Submission: System error.

Submission: Job description error.

Submission: Local submission client be-
haved unexpectedly.

Submission: Local submission client failed.

References

[1] “The NorduGrid Collaboration,” Web site. [Online]. Available:

http://www.nordugrid.org

[2] A. Wäänanen, “An Overview of an Architecture Proposal for a High

Energy Physics Grid,” in Proc. of PARA 2002, LNCS 2367, p. 76,

J. Fagerholm, Ed. Springer-Verlag Berlin Heidelberg, 2002.

[3] A. Konstantinov, The HTTP(s,g) And SOAP Framework, The NorduGrid

Collaboration, NORDUGRID-TECH-9. [Online]. Available:

http://www.nordugrid.org/documents/HTTP_SOAP.pdf

[4] W. Allcock et al., “Data management and transfer in

high-performance computational grid environments,” Parallel

Comput., vol. 28, no. 5, pp. 749-771, 2002.

[5] B. Kónya, The NorduGrid/ARC Information System, The NorduGrid

Collaboration, NORDUGRID-TECH-4. [Online]. Available:

http://www.nordugrid.org/documents/arc_infosys.pdf

[6] “The Globus Resource Specification Language RSL v1.0.” [Online].

Available: http://www-fp.globus.org/gram/rsl_spec1.html

[7] A. Anjomshoaa et al., “Job Submission Description Language (JSDL)

Specification v1.0,” November 2007, GFD-R.056. [Online].

Available: http://www.gridforum.org/documents/GFD.56.pdf

[8] O. Smirnova, Extended Resource Specification Language, The

NorduGrid Collaboration, NORDUGRID-MANUAL-4. [Online]. Available:

http://www.nordugrid.org/documents/xrsl.pdf

[9] A. Konstantinov, Protocols, Uniform Resource Locators (URL) and

Extensions Supported in ARC, The NorduGrid Collaboration,

NORDUGRID-TECH-7. [Online]. Available:

http://www.nordugrid.org/documents/URLs.pdf

[10] ----, Configuration and Authorisation of ARC (NorduGrid)

Services, The NorduGrid Collaboration, NORDUGRID-TECH-6.

[Online]. Available: http://www.nordugrid.org/documents/Config_Auth.pdf

[11] I. Foster and C. Kesselman, “Globus: A Metacomputing

Infrastructure Toolkit,” International Journal of Supercomputer

31

http://www.nordugrid.org
http://www.nordugrid.org/documents/HTTP_SOAP.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www-fp.globus.org/gram/rsl_spec1.html
http://www.gridforum.org/documents/GFD.56.pdf
http://www.nordugrid.org/documents/xrsl.pdf
http://www.nordugrid.org/documents/URLs.pdf
http://www.nordugrid.org/documents/Config_Auth.pdf

Applications, vol. 11, no. 2, pp. 115-128, 1997, available at:

http://www.globus.org.

[12] A. McNab, “The GridSite Web/Grid security system: Research

Articles,” Softw. Pract. Exper., vol. 35, no. 9, pp. 827-834,

2005.

[13] R. Alfieri et al., “From gridmap-file to VOMS: managing

authorization in a Grid environment,” Future Gener. Comput.

Syst., vol. 21, no. 4, pp. 549-558, 2005.

[14] M. Ellert, The NorduGrid toolkit user interface, The NorduGrid

Collaboration, NORDUGRID-MANUAL-1. [Online]. Available:

http://www.nordugrid.org/documents/ui.pdf

32

http://www.nordugrid.org/documents/ui.pdf

	Introduction
	Main concepts
	Input/output data
	Job flow
	URLs
	Internals
	Files
	Library

	Cache
	Structure
	How it works
	Administration tools

	Files and directories
	Modules
	Configuration of the Grid Manager
	Configuration of the GridFTP Server
	Authorization
	Directories
	LRMS support
	Runtime environment

	Installation
	Requirements
	Setup of the Grid Manager
	Setup of the GridFTP Server
	Usage
	Unix accounts

