
NORDUGRID

NORDUGRID-TECH-14

27/9/2009

ARC Computational Job Management Component – A-REX

Description and Administrator’s Manual

A. Konstantinov∗

∗aleks@fys.uio.no

1 Introduction

A-REX is one of ARC middleware components that implements functions of the so-called Computing El-
ement (CE). Here Computing Element is a service accepting requests containing description of generic
computational job and executing it in the underlying local batch system.

It takes care of job pre- and post-processing. This comprises stage-in of files containing input data or program
modules from wide range of sources and transfer or storing of output results.

A-REX implements a Web Service (WS) interface which provides a way to submit and control computational
tasks (jobs) to be executed by A-REX and the underlying Local Resource Management System.

You should use this document for advanced configuration purposes and understanding of internals of
the aforementioned tools. For general installation and configuration of whole system refer to other
documents available at http://www.nordugrid.org/papers.html.

2 Main concepts

On the computing element a job is described as a set of input files (which may include executables), a main
executable and a set of output files. The process of gathering input files, executing a job, and transferring/s-
toring output files is called a session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The
job is supposed to produce new data files in the SD as well. The A-REX does not guarantee the availability
of any other places accessible by the job other than SD (unless such a place is part of a requested Runtime
Environment). The SD is also the only place which is controlled by the A-REX. It is accessible by the
user from outside through the HTTP(S) protocol. Any file created outside the SD is not controlled by the
A-REX. Any exchange of data between client and A-REX (including also program modules) is performed
via HTTP(S). An URL for accessing input/output files is obtained through the WS Local Information
Description Interface (LIDI) of A-REX.

Each job gets an identifier (jobid). This is a handle – WS-Addressing [?] XML document – which identifies
the job in the A-REX and in the Information Interface.

Jobs are initiated and controlled through the WS interface. Complete job descriptions (JD) are passed to
the A-REX through WS in JSDL [?] coded description. Input data files and job executables are transferred
separately through the same interface, as described in Section 3.

3 Input/output data

One of the most important tasks of the A-REX is to take care of processing of the input and output data
(files) of the job. Input files are gathered in the SD or in the associated cache area. There are two ways to
put a file into the SD:

� Download is initiated by the A-REX – This is the case for files defined in the JD (with name and
source). The A-REX alone is responsible to ensure that all required files will be available in the SD.
The supported protocols for sources at the moment are (in case of full installation): GridFTP, FTP,
HTTP, HTTPS (HTTP over SSLv3). Also some less standard sources are supported. Those are
described below. The A-REX fully relies on HED framework [?] for data transferring capabilities.
Hence actual set of supported protocols depends on installed Data Management Components of the
HED.

� Upload is initiated by the user directly or through the User Interface (UI). Because the SD becomes
available immediately at the time of submission of JD, UI can (and should) use that to upload data
files which are not otherwise accessible by the A-REX. Examples of such files are the main executable
of the job, the job’s input files, etc. These files can (and should) also be specified in the JD.

1

http://www.nordugrid.org/papers.html

There is no other reliable way for a job to obtain input data on the CE based on the A-REX. Access to
AFS, NFS, FTP, HTTP and any other remote data transport during execution of a job is not guaranteed
(at least not by A-REX).

Jobs should store output files in their SD. Like input files, output files belong into two groups:

� Files which are supposed to be moved to a Storage Element (SE) and optionally registered in some
Indexing Service like the Globus Replica Location Service (RLS) – The A-REX takes care of these
files. They have to be specified in the JD. If the job fails during any stage of processing, no attempt
is made to transfer those files to their final destination, unless the option preserve=yes is specified in
their URLs.

� Files which are supposed to be fetched by the user – The user has to use a tool like the UI to obtain
these files. They must also be specified in the JD.

All files not specified in the JD are deleted after job execution finished. If job execution fails for any reason
(if exit code of main executable is not 0) all files from first group are transferred to second one.

4 Job flow

From the point of view of the A-REX a job passes through various states. Figure 1 presents a diagram of
the possible states of a job.

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

R
e
r
u
n

r
e
q
u
e
s
t

DELETED

PENDING

PENDING

PENDING

Figure 1: Job states

A user can examine the state of a job by querying the dedicated Local Information Description Interface of
A-REX using the UI or any other suitable tool or through query method of WS interface.

Configuration can put limits on the amount of simultaneous jobs in some states. If such a limit is reached,
a job ready to enter into the state in question will stay in it’s current state waiting for a free slot. This
situation is presented by additional state mark PENDING to the current state name in the job’s status
description.

Below is the description of all actions taken by the A-REX at every state:

� Accepted – In this state the job has been submitted to a CE but is not processed yet. The A-REX
will analyze the JD and move to the next stage. If the JD can not be processed the job will be canceled
and moved to the state Finishing.

2

� Preparing – The input data is being gathered in the SD (stage-in). The A-REX is downloading the
files specified in the JD and is waiting for files which are supposed to be uploaded by the UI. If all files
are successfully gathered the job moves to the next state. If any file can’t be downloaded or it takes
the UI too long to upload a file, the job moves to Finishing state. It is possible to put a limit on the
number of simultaneous Preparing jobs. If this limit is exceeded, jobs ready to enter the Preparing
state will stay in the Accepted state, but prefixed with the PENDING: mark. Exceptions are jobs
which have no files to be downloaded. These are processed out of limits.

� Submitting – The job is being passed for execution to the Local Resource Management System
(LRMS). The corresponding backends for many LRMSs are provided with the default installation.
If the local job submission is successful the job moves to the Executing state. Otherwise it moves to
Finishing. It is possible to limit the aggregate number of jobs in Submitting and Executing states.

� Executing – The job is queued or being executed in the LRMS. The A-REX takes no actions except
waiting until the job finishes.

� Killing – Necessary action to cancel the job in the LRMS is being taken.

� Finishing – The output data is being processed (stage-out). Specified data files are moved to the
specified SEs and are optionally registered at an Indexing Service. The user can download data files
from the SD by using the UI or other adequate tool. All the files not specified as output files are
removed from the SD at very beginning of this state. It is possible to limit number of simultaneous
jobs in this state.

� Finished – No more processing is performed by the A-REX. The user can continue to download data
files from the SD. The SD is kept available for some time (default is 1 week). After that the job is
moved to the state Deleted. The ’deletion’ time can be obtained by querying the Information Interface
of the A-REX. If a job was moved to Finished because of failure, it may be restarted on request of
a client. When restarted, a job is moved to the state previous to the one in which it failed and is
assigned mark PENDING. This is needed in order to not break the configuration limits. Exception is
a job failed in Executing state and lacking input files specified in JD. Such a job is treated like failed
in Preparing state.

� Deleted – The job is moved to this state if the user have not requested job to be cleaned before
the SD’s lifetime expires. Only minimal subset of information about such job is kept. The SD is not
available anymore.

In case of a failure special processing is applied to output files. All specified output files are treated as
downloadable by the user. No files will be moved to their destination SE.

5 URLs

In full installation the A-REX and it’s components support the following data transfer protocols and corre-
sponding URLs: ftp, gsiftp, http, https, lfc and rls. For more information please see “The Hosting Environ-
ment of the Advanced Resource Connector middleware” document [?].

6 Internals

6.1 Internal Files of the A-REX

For each local UNIX user listed in the A-REX configuration – including a generic one which covers all
local user identities – a control directory exists. In this directory the A-REX stores information about jobs
belonging to that user. Multiple users can share the same control directory. In most common configuration
case A-REX serves all users defined by Operating System and stores their control file in same directory. To
make it easier to recover in case of failure, the A-REX stores most information in files rather than in memory.
All files belonging to the same job have names starting with job.ID., where ID is the job identifier.

The files in the control directory and their formats are described below:

3

� job.ID.status – current state of the job. This is a plain text file containing a single word representing
the internal name of current state of the job. Possible values and corresponding external job states
are:

– ACCEPTED

– PREPARING

– SUBMIT

– INLRMS

– FINISHING

– FINISHED

– CANCELING

– DELETED

See Section 4 for a description of the various states. Additionally each value can be prepended the prefix
“PENDING:” (like PENDING:ACCEPTED, see Section 4). This is used to show that a job is ready to be
moved to the next state but it has to stay in it’s current state only because otherwise some limits set in the
configuration would be exceeded.

� job.ID.description – contains the description of the job (JD).

� job.ID.local – information about the job used by the A-REX. It consists of lines of format “name =
value”. Not all of them are always available. The following names are defined:

– subject – user certificate’s subject, also known as the distinguished name (DN)

– starttime – GMT time when the job was accepted represented in the Generalized Time format of
LDAP

– lifetime – time period to preserve the SD after the job has finished in seconds

– cleanuptime – GMT time when the job should be removed from the cluster and it’s SD deleted
in Generalized Time format

– notify – email addresses and flags to send mail to about the job specified status changes

– processtime – GMT time when to start processing the job in Generalized Time format

– exectime – GMT time when to start job execution in Generalized Time format

– expiretime – GMT time when the credentials delegated to the job expire in Generalized Time
format

– rerun – number of retries left to rerun the job

– jobname – name of the job as supplied by the user

– projectname – name of the project as supplied by the user

– lrms – name of the LRMS backend to be used for local submission

– queue – name of the queue to run the job at

– localid – job id in LRMS (appears only after the job has reached state InLRMS)

– globalid – BES ActivityIdentifier XML tree, the global identifier of the job

– args – executable name followed by a list of command-line arguments

– downloads – number of files to download into the SD before execution

– uploads – number of files to upload from the SD after execution

– gmlog – directory name which holds files containing information about the job when accessed
through GridFTP interface

– clientname – name (as provided by the user interface) and IP address:port of the submitting client
machine

– clientsoftware – version of software used to submit the job

– sessiondir – the job’s SD

4

– failedstate – state in which job failed (available only if it is possible to restart the job)

– jobreport – URL of a user requested logger service. The A-REX will also send job records to this
service in addition to the default logger service configured in the configuration.

– activityid – Job-id of previous job in case the job has been resubmitted or migrated. This value
can appear multiple times if a job has been resubmitted or migrate more than once.

– forcemigration – This boolean is only used for migration of jobs. It determines whether the job
should persists if the termination of the previous job fails.

This file is filled partially during job submission and fully when the job moves from the Accepted to the
Preparing state.

� job.ID.input – list of input files. Each line contains 2 values separated by a space. First value contains
name of the file relative to the SD. Second value is an URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input 12378.dat

URL represents location from which file can be downloaded. Each URL can contain additional options.

file description – [size][.checksum].

size – size of the file in bytes.

checksum – checksum of the file identical to the one produced by cksum (1).

Both size and checksum can be left out. Special kind of file description *.* is used to specify files which
are not required to exist.

This file is used by the ’downloader ’ utility. Files with URL will be downloaded to the SD and files with
’file description’ will simply be checked to exist. Each time a new valid file appears in the SD it is removed
from the list and job.ID.input is updated. Any external tool can thus track the process of collecting input
files by checking job.ID.input.

� job.ID.output – list of output files. Each line contains 1 or 2 values separated by a space. First value
is the name of the file relative to the SD. The second value, if present, is a URL. Supported URLs are
the same as those supported by job.ID.input.

This file is used by the ’uploader ’ utility. Files with URL will be uploaded to SE and remaining files will
be left in the SD. Each time a file is uploaded it is removed from the list and job.ID.output is updated. Files
not mentioned as output files are removed from the SD at the the beginning of the Finishing state.

� job.ID.failed – the existence of this file marks the failure of the job. It can also contain one or more
lines of text describing the reason of failure. Failure includes the return code different from zero of the
job itself.

� job.ID.errors – this file contains the output produced by external utilities like downloader , uploader ,
script for job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can
be just useful information about actions taken during the job processing. In case of problem include
content of that file while asking for help.

� job.ID.diag – information about resources used during execution of job and other information suitable
for diagnostics and statistics. It’s format is similar to that of job.ID.local. The following names are at
least defined:

– nodename – name of computing node which was used to execute job,

– runtimeenvironments – used runtime environments separated by ’;’,

– exitcode – numerical exit code of job,

– frontend distribution – name and version of operating system distribution on frontend computer,

– frontend system – name of operating on frontend computer,

– frontend subject – subject (DN) of certificate representing frontend computer,

– frontend ca – subject (DN) of issuer of certificate representing frontend computer,

5

and other information provided by GNU time utility. Note that some implementation of time insert
unrequested information in their output. Hence some lines can have broken format.

� job.ID.proxy -delegated X509 credentials.

� job.ID.proxy.tmp – temporary X509 credentials with different UNIX ownership used by processes run
with effective user id different form job owner’s id.

There are other files with names like job.ID.* which are created and used by different parts of the A-REX.
Their presence in the control directory can not be guaranteed and can change depending on changes in the
A-REX code.

6.2 Web Service Interface

A-REX Web Service Interface provides means to submit a description of a computational job to a computing
resource, to stage-in additional data, to monitor and control processing of jobs, and obtain data produced
during the execution of a job. The WS Interface is built and deployed inside the Hosting Environment
Daemon (HED) infrastructure [?].

6.2.1 Basic Execution Service Interface

The job submission and control interface is based on a document produced by the OGF OGSA Basic
Execution Services (BES) Working Group [?].

The exchange of SOAP messages is performed via HTTP(S). The BES interface is represented by two port-
types – BES-Management and BES-Factory. The former is made to control the A-REX service itself and thus
defines operations to start and stop the functionality of the BES service. The A-REX does not implement
remote control of service functionality. Hence the BES-Management port-type is not functional. The BES-
Factory port-type provides operations to submit new jobs (to create an activity in terms of BES) and to
monitor its state. It also has an ability to provide information about the service. A-REX fully implements
the functionality of this port-type.

For job descriptions A-REX accepts the Job Submission Description Language (JSDL) [?] documents as de-
fined by the OGF Job Submission Description Language Working Group. Supported elements and extensions
are described below.

6.2.2 Extensions to OGSA BES interface

A-REX introduces two new operations in addition to those provided by BES. It does that by defining its
own port-type with new operations ChangeActivityStatus and MigrateActivity(see Appendix C).

The ChangeActivityStatus operation provides a way to request simple transfers between states of jobs and
corresponding actions.

� ChangeActivityStatus

– Input

* ActivityStatusType OldStatus: Description of the state the job is supposed to be in during
execution of this request. If the current state of the job is different from the one having been
given, the operation is aborted and a fault is returned. This parameter is optional.

* ActivityStatusType NewStatus: Description of the state the job is to be put into.

– Output

* ActivityStatusType NewStatus: Description of the current state of the job.

– Fault(s)

* NotAuthorizedFault : Indicates that the client is not allowed to do this operation.
* InvalidActivityIdentifierFault : There is no such job/activity.
* CantApplyOperationToCurrentStateFault : The requested transition is not possible.

6

On result of this command, the job should be put into the requested state. If such a procedure cannot
be performed immediately then the corresponding sequence is initiated and fault OperationWillBeAp-
pliedEventuallyFault will be returned.

Since BES allows implementations to extend their initial activity states with additional sub-states,
A-REX defines a set of sub-states of activity processing in addition to those defined by the BES, as
listed in Table 1. Their meaning is described in Section 4.

The MigrateActivity operation generates a request to migrate a grid job from another ARC1 cluster,
i.e. the operation will get input files and possibly job description from the cluster currently holding the
job and create the job as a new activity at the present cluster. Currently only migration of queuing
jobs is supported.

� MigrateActivity

– Input

* wsa:EndpointReferenceType ActivityIdentifier : This element should contain the wsa:EndpointReference
of the job to be migrated.

* ActivityDocument : JSDL document of the job to be migrated. This element is optional.
* Boolean ForceMigration: Boolean that determines whether the job will persist on the new

cluster if the termination of the previous job fails.

– Output

* wsa:EndpointReferenceType ActivityIdentifier : This element should contain the wsa:EndpointReference
of the new activity.

* ActivityDocument : Contains the JSDL document of the new activity.

– Fault(s)

* NotAuthorizedFault : Indicates that the client is not allowed to do this operation.
* NotAcceptingNewActivitiesFault : A fault that indicates that A-REX currently is not accepting

new activities.
* UnsupportedFeatureFault : This fault indicates that an sub-element in the JDSL document is

not supported or the ActivityDocument has not been recognised as JSDL.
* InvalidRequestMessageFault : This fault indicates that an element in the request is either

missing or has an invalid format. Typically this would mean that the job-id cannot be
located in the ActivityIdentifier of the old job.

The ActiviterIdentifier specifies the URL of the job which will be migrated. In case the ActivityDocument
is filled this document will be used to create a new activity otherwise an attempt will be made to retrieve
the job description through the BES operation GetActivityDocument.

Once the input files have been downloaded from the other cluster, a request will be send to terminate the old
job. If this request fails the new activity at the present cluster will be terminate unless the ForceMigration
is true. This is to prevent the job from being executed at two different places at the same time.

6.2.3 Delegation Interface

The A-REX also supports the Delegation Interface (see Appendix D). This is a common purpose interface to
be used by ARC services which accepts delegated credentials from clients. The Delegation Interface imple-
ments two operations: initialization of credentials delegation (DelegateCredentialsInit) and update/renewal
of credentials (UpdateCredentials).

� DelegateCredentialsInit operation – this operation performs the first half of the credentials delegation
sequence.

– Input

* None. On this request the service generates a pair of public and private keys. The public key
is then sent to the client in response.

– Output(s)

7

Table 1: Job states definitions and mappings
Applicable BES

State
ARC Sub-state A-REX internal state Description

Pending
Accepting ACCEPTED Job is in the process of being submitted.

This state is not recognised by the A-REX
yet. Accepted is first reported state

Accepted ACCEPTED Job was submitted

Running

Preparing PREPARING Stage-in process is going on

Prepared PREPARING +
PENDING

Stage-in process has finished

Submitting SUBMIT Communication with local batch system is
in process

Queued INLRMS Job entered local batch system but is not
runnning now. This state is not recognised
by the A-REX yet. Executing is reported
instead

Executing INLRMS Job is being executed in local batch system

Executed INLRMS, INLRMS
+ PENDING

Job execution in local batch system has fin-
ished. The A-REX dos not detect job states
inside local batch system yet. As result this
state is reported only if job is Pending.

Killing CANCELING Communication with local batch system to
terminate execution is in process

Finishing FINISHING Stage-out process is going on

Cancelled Killed FINISHED Job was stopped by explicit user request.
The A-REX currently does not remember
this request. Failed is reported instead.

Failed Failed FINISHED There was a failure during execution

Finished Finished FINISHED Job finished successfully

Finished Deleted DELETED Job finished and was left in A-REX too long

All Pending PENDING Job is prevented from going to the next
state due to some internal limits; this sub-
state appears in parallel with other sub-
states

All Held Job processing is suspended on client re-
quest; this sub-state appears in parallel
with other sub-states. This state is reserved
for future and is not implemented yet.

8

* TokenRequestType TokenRequest : Contains the public key generated by the service as a Value
element. It also provides an identifier in the Id element which should be used to refer to the
corresponding private key.

– Fault(s)

* UnsupportedFault : Indicates that the service does not support this operation despite sup-
porting the port-type.

* ProcessingFault : Internal problems during generation of the token.

� UpdateCredentials operation – this operation makes it possible to update the content of delegated
credentials (like in the case of credentials being renewed) unrelated to other operations of the service.

– Input

* DelegatedTokenType DelegatedToken: Contains an X509 proxy certificate based on the public
key from the DelegateCredentialsInit signed by the user’s proxy certificate. Also includes the
Id element which identifies the private key stored at the service side associated with these
credentials. The reference element refers to the object to which these credentials should be
applied in a way specific to the service. The same element must also be used for delegating
credentials as part of other operations on service.

– Output(s)

* None.

– Fault(s)

* UnsupportedFault : Indicates that service does not support this operation despite supporting
the port-type.

* ProcessingFault : Internal problems during generation of the token.

Additionally, A-REX Web Service Interface allows delegation to be performed as part of the CreateActivity
operation of the BES-Factory port-type. For this it accepts the element DelegatedCredentials inside the
CreateActivity element. The Id element of DelegatedCredentials must contain an identifier obtained in
response to the previous DelegateCredentialsInit operation. For more information about delegations and
delegation interface refer to [?].

6.2.4 Local Information Description Interface

The A-REX implements the Local Information Description Interface (LIDI) interface common for all ARC
services. This interface is based on OASIS Web Services Resource Properties specification [?]. Information
about resources and maintained activities/jobs are represented in a WS-Resource Properties informational
XML document. The document type is defined in the A-REX WSDL as a ResourceInformationDocument-
Type. It contains the following elements/resources:

nordugrid – description of computing resource that uses NorudGrid LDAP schema [?] converted to
XML document.

Domains – description of a computation resource that uses Glue2 schema.

All information can be accessed either through requests on particular resources or through XPath queries
using WS-Resource Properties operations.

6.2.5 Supported JSDL elements

A-REX supports the following elements from the JSDL version 1.0 specification [?] including POSIX Appli-
cations extension and JSDL HPC Profile Application Extension [?]:

JobName – name of the job as assigned by the user.

Executable (POSIX,HPC) – name of the executable file.

9

Argument (POSIX,HPC) – arguments the executable will be launched with.

DataStaging

Filename – name of the data file on the executing node.

Source – source where the file will be taken from before execution.

Target – destination the file will be delivered to after execution.

Input (POSIX,HPC) – file to be used as standard input for the executable.

Output (POSIX,HPC) – file to be used as standard output for the executable.

Error (POSIX,HPC) – file to be used as standard error for the executable.

MemoryLimit (POSIX) – amount of physical memory needed for execution.

TotalPhysicalMemory – same as MemoryLimit.

IndividualPhysicalMemory – same as MemoryLimit.

CPUTimeLimit (POSIX) – maximal amount of CPU time needed for execution.

TotalCPUTime – same as CPUTimeLimit.

IndividualCPUTime – same as CPUTimeLimit.

WallTimeLimit (POSIX) – amount of clock time needed for execution.

TotalCPUCount – number of CPUs needed for execution.

IndividualCPUCount – same as TotalCPUCount.

6.2.6 ARC-specific JSDL Extensions

A-REX accepts JSDL documents having the following additional elements (see Appendix E):

IsExecutable – marks file to become executable after being delivered to the computing resource.

RunTimeEnvironment – specifies the name of the Runtime Environment needed for job execution.

Middleware – request for specific middleware on the computing resource frontend.

RemoteLogging – destination for the usage record report of the executed job.

LocalLogging – name for the virtual directory available through job interface and containing various
debug information about job execution.

AccessControl – ACL expression which describes the identities of those clients who are allowed to
perform operations on this job.

Notify – Email destination for notification of job state changes.

SessionLifeTime – duration for the directory containing job-related files to exist after the job finished
executing.

JoinOutputs – specifies if standard output and standard error channels must be merged.

Reruns – defines how many times a job is allowed to rerun in case of failure.

CredentialServer – URL of MyProxy service which may be used for renewing the expired delegated
job credentials.

CandidateTarget – specifies host name and queue of a computing resource.

OldJobID – specifies the previous job-ids in case the job has been resubmitted or migrated.

10

7 Cache

The A-REX can cache input files. Caching is enabled if one or more cache directories are specified in the
configuration file. The A-REX does not cache files marked as executable in a job. Caching can also be
explicitly turned off by the user for each file by using the cache=no option in the URL (for URL options
read “Protocols, Uniform Resource Locators (URL) and extensions supported in ARC” [?]). The disk space
occupied by the cache is controlled by removing old files. For more information look in section 9.1.

7.1 Structure

Cached files are stored in sub-direcories under the data directory in each main cache directory. Filenames
are constructed from an SHA-1 hash of the URL of the file, and split into subdirectories based on the two
initial characters of the hash. This enables the cached files to be evenly split over a number of subdirectories.
If more than one cache directory is used the initial letter of the hash also determines which cache is to be
used. The algorithm is simply to use the cache directory at index i in the list of directories, where i is
found from the initial letter of the hash mod the number of caches. This limits the maximum number of
cache directories to 16, as SHA-1 hashes use the character set [0-9,a-f]. In the extremely unlikely event of
a collision between two URLs having the same SHA-1 hash, caching will not be used for the second file.

There is no indexing system for the cache, and any cache filename can be easily determined from a URL
by using the same hashing algorithm as the A-REX, e.g. the standard command line tool sha1sum. The
cache directory used by a file can be determined from the initial letter of the hash and the order of cache
directories in the configuration file. Some associated metadata (the corresponding URL and an expiry time,
if available) are stored in a file with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

lfc://atlaslfc.nordugrid.org//grid/atlas/file1
is mapped to

/cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3

and the file /cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3.meta contains the original URL and
an expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another
download process cannot write the same file simultaneously. This done by creating a file with the same
name as the cache filename but with a .lock suffix. This file contains the process ID of the process and the
hostname of the host holding the lock. If this file is present, another process cannot do anything with the
cache file and must wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock has a
timeout of one day, so that stale locks left behind by a download process exiting abnormally will eventually
be cleaned up. Also, if the process corresponding to the process ID stored inside the lock is no longer running
on the host specified in the lock, it is safe to assume that the lock file can be deleted.

7.2 How it works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected cache
directory, and depending on the configuration, either the file is copied to the SD or a hard link is created in
a per-job directory and a soft link is created in the SD to there. The per-job directories are in the joblinks
subdirectory of the main cache directory. The former option is advised if the cache is on a file system which
will suffer poor performance from a large number of jobs reading files on it, or the file system containing the
cache is not accessible from worker nodes. The latter option is the default option. The per-job directory is
only readable by the local user running the job, and the cache directory is readable only by the A-REX user
(usually root). This means that the local user cannot access any other users’ cache files. It also means that
cache files can be removed without needing to know whether they are in use by a currently running job.

If the file system containing the cache is full and it is impossible to free any space, the download fails and
is retried without using cacheing.

Before giving access to a file already in the cache, the A-REX contacts the initial file source to check if the
user has read permission on the file. Also file creation or validity times from the original source are checked

11

to make sure the cached file is fresh enough. If it is impossible to obtain creation and invalidation times for
the file, it is invalidated 24 hours after download.

The A-REX checks the cache periodically. If the used space on the file system containing the cache exceeds
the high water-mark given in the configuration file it tries to remove the least-recently accessed files to reduce
size to the low water-mark.

7.3 Administration tools

The following tools (installed in $ARC LOCATION/libexec) exist to help with administration of the cache:

� cache-clean - This tool is used periodically (every 2 minutes) by the A-REX to keep the size of each
cache within the configurated limits. It removes files from the cache if the total size of the cache is
greater than the configured limit. It will attempt to remove files which are not locked in order of access
time, starting with the earliest, until the size is lower than the configured lower limit. If the lower
limit cannot be reached (because too many files are locked, or other files outside the cache are taking
up space on the file system), the tool will exit before the lower limit is reached.
cache-clean -h gives a list of options. The most useful option for administrators is -s, which does not
delete anything, but gives summary information on the files in the cache, including information on the
ages of the files in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to
temporarily clean up the cache with different size limits to those specified in the configuration.

� cache-list - This tool is used to list all files present in each cache. It simply reads through all the .meta
files and prints to stdout a list of all URLs stored in each cache and their corresponding cache filename,
one per line.

8 Files and directories

8.1 Modules

The A-REX consists of several separate modules. These are:

� libarex.so – The main module providing main functionality and web interface. It is implemented as
HTTP and SOAP service inside HED. It is responsible for processing jobs, moving them through states
and running other modules.

� downloader – This is a module responsible for gathering input files in the SD. It processes the
job.ID.input file and updates it.

� uploader – This module is responsible for delivering output files to the specified SEs and registration
at an Indexing Service (like RLS) as needed. It processes and updates the job.ID.output file.

� gm-kick – Sends a signal to the A-REX though a FIFO file to wake it up. It’s used to increase
responsiveness of A-REX.

� CEinfo.pl – Collects and generates information about computing resource as XML document in Nordu-
Grid and Glue 2 format.

The following modules are always run under the Unix account to which a Grid user is mapped.

� smtp-send.sh and smtp-send – These are the modules responsible for sending e-mail notifications to
the user. The format of the mail messages can be easily changed by editing the simple shell script
smtp-send.sh.

� submit-*-job – Here * stands for the name of the LRMS. Currently supported LRMS are PBS/Torque,
Condor, LoadLeveler, LSF, SLURM, and SGE. Also fork pseudo-LRMS is supported for testing pur-
poses. This module is responsible for job submission to the LRMS.

12

� cancel-*-job – This script is for canceling jobs which have been already submitted to the LRMS.

� scan-*-job -This shell script is responsible for notifying the A-REX about completion of jobs. It’s
implementation for PBS uses server logs to extract information about jobs. If logs are not available it
uses the less reliable qstat command for that. Other backends use different techniques.

8.2 Directories

The A-REX is installed into a single installation point referred as $ARC LOCATION and the following
sub-directories are used:

$ARC LOCATION/bin – tools

$ARC LOCATION/libexec – program modules used by A-REX

/etc – central configuration file – location used by default

$ARC LOCATION/lib/arc – service module

The A-REX also uses following directories:

� session root directory – This is the directory in which a user’s SDs are created. It’s location is config-
urable per UNIX user. Several (or even all) users may share the same session root directory.
The A-REX need to have permission to create new files and directories in the session root directory. If
A-REX is run under a dedicated user account, that account needs full permissions in the session root
directory.
If A-REX is run under the root account, make sure session root directory resides on a file system which
does not limit the capabilities of the root user (as does for example NFS with root squash option).
If there is a need to run A-REX under the root account (to be able to run jobs in LRMS under different
users’ accounts, for example) but there is no way to provide a suitable session root directory, use the
norootpower command in configuration file. In that case A-REX will use the identity of the local user
to which a Grid identity is mapped to access the session root directory. Hence those users will need
full access there.
The A-REX creates SDs with proper ownership and permissions for the local identity used to run a
job. Some file systems require users to have execute permission on the session root directory in order
to access any file or subdirectory there.
In order for jobs to access their input files, session root directories should be shared across cluster
nodes. Otherwise, LRMS-specific methods must be used to transfer files to execution nodes.

� control directory – In this directory A-REX stores an information about accepted jobs. It must have
full permissions there.
A subdirectory called logs is created there. It is used to accumulate information about started and
finished jobs. This information is periodically sent to the desired logger service(s). For each job start
and stop event, and for each logger service where that event must be sent, a separate file is written.
Once an event is sent, the corresponding file is deleted.

9 Configuration

9.1 Configuration of the A-REX

Due to historical reasons configuration of the A-REX is split into 2 parts. The small part is located inside
HED configuration (see Appendix B) for schema and description of supported elements. It refers to file
containing main part of configuration. The default location of main configuration file is /etc/arc.conf.

The configuration file can contain empty lines and comments in lines starting with #. It is separated into
sections. Each section starts from string containing pattern

13

[section name/subsection name/subsubsection name]

Each section continues till next section or end of file. One configuration file can have commands for multiple
services/modules/programs. Each service get it’s own section named after it. The A-REX uses section [grid-
manager]. Some services can make use of multiple subsections to reflect their internal modular structure.
Commands in section [common] apply to all services. Command lines have format

name=’’arguments string’’

Following commands are defined:

� joblog=[path] – specifies where to store log file containing information about started and finished jobs.

� jobreport=[URL ... number] – specifies that A-REX has to report information about jobs being
processed (started, finished) to centralized service running at given URL. Multiple entries and multiple
URLs are allowed. number specifies how long old records have to be kept if failed to be reported. That
value is specified in days. Last specified value becomes effective.

� jobreport credentials=[key file [cert file [ca dir]]] – specifies the credentials for accessing the ac-
counting service.

� jobreport options=[options] – specifies additional options for Usage Reporter and/or accounting ser-
vice. The options string is interpreted by Usage Reporter, its format is described in the corresponding
technical document.

� securetransfer=yes—no – specifies whether to use encryption while transferring data. Currently
works for GridFTP only. Default is no. It is overridden by value specified in URL options.

� localtransfer=yes—no – specifies whether to pass file downloading/uploading task to computing
node. If set to yes the A-REX won’t initiate download/upload files. Instead it composes script
submitted to LRMS in way to make it do that. This requires installation of A-REX and all related
software to be accessible from computing nodes and environment variable ARC LOCATION to be set
accordingly. Default is no.

� maxjobs=[max processed jobs [max running jobs]] - specifies maximum number of jobs being pro-
cessed by the A-REX at different stages:
max processed jobs – maximal amount of jobs being processed by A-REX. This does not limit amount
of jobs, which can be submitted to A-REX
max running jobs – maximal amount of jobs passed to Local Resource Management System
Missing value or -1 means no limit.

� maxlod=[max frontend jobs [emergency frontend jobs [max transferred files]]] – specifies maximum
load caused by jobs being processed on frontend:
max frontend jobs – maximal amount of jobs heavily using resources of frontend (applied before moving
job to PREPARING and FINISHING states)
emergency frontend jobs – if limit of max frontend jobs is used only by PREPARING or by FINISHING
jobs aforementioned number of jobs can be moved to another state. This is used to avoid case then
jobs can’t finish due to big amount of recently submitted jobs.
max transfered files – maximal number of files being transferred in parallel by every job. Used to
decrease load on not so powerful frontends.
Missing value or -1 means no limit.

� wakeupperiod=time – specifies how often the A-REX checks for job state changes (like new arrived
job, job finished in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3
minutes.

� authplugin=state options plugin – specifies plugin (external executable) to be run every time job
is going to switch to state. Following states are allowed: ACCEPTED, PREPARING, SUBMIT,
FINISHING, FINISHED and DELETED. If exit code is not 0 job is canceled by default. Options
consist of name=value pairs separated by a comma. Following names are supported:

14

timeout – specifies how long in seconds execution of the plugin allowed to last (mandatory, “timeout=“
can be skipped for backward compatibility).
onsuccess, onfailure and ontimeout – defines action taken in each case (onsuccess happens if exit code
is 0). Possible actions are:
pass – continue execution,
log – write information about result into log file and continue execution,
fail – write information about result into log file and cancel job.

� localcred=timeout plugin – specifies plugin (external executable or function in shared library) to be run
every time job has to do something on behalf of local user. Execution of plugin may not last longer than
timeout seconds. If plugin looks like function@path then function int function(char*,char*,char*,...)
from shared library path is called (timeout is not functional in that case). If exit code is not 0 current
operation will fail.

� norootpower=yes/no – if set to yes all processes involved in job management will use local identity
of a user to which Grid identity is mapped in order to access file system at path specified in session
command (see below). Sometimes this may involve running temporary external process.

� speedcontrol=min speed min time min average speed max inactivity – specifies how long/slow data
transfer is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lower than
min speed for at least min time seconds, or if average rate is lower than min average speed, or no data
is received for longer than max inactivity seconds.

� copyurl=template replacement – specifies that URLs, starting from template should be accessed in
a different way (most probably Unix open). The template part of the URL will be replaced with
replacement. replacement can be either URL or local path starting from ’/’. It is advisable to end
template with ’/’.

� linkurl=template replacement [node path] – mostly identical to copyurl but file won’t be copied. In-
stead soft-link will be created. replacement specifies the way to access the file from the frontend, and
is used to check permissions. The node path specifies how the file can be accessed from computing
nodes, and will be used for soft-link creation. If node path is missing, local path will be used instead.
Both node path and replacement should not be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other URLs.
That means if A-REX has to choose between few URLs from which should it download input file, these
will be tried first.

Per UNIX user commands:

� mail=e-mail address – specifies an email address from which the notification mails are sent.

� defaultttl=ttl [ttr] – specifies the time in seconds for the SD to be available after job finished (ttl)
and after job was deleted (ttr) due to ttl. Defaults are 7days for ttl and 30 days for ttr.

� lrms=default lrms name default queue name - specifies names for the LRMS and queue. Queue name
can also be specified in the JD (currently it is not allowed to override LRMS by usingon the JD).

� session=path – specifies path to the directory in which the SD is created. If the path is * the default
one is used – $HOME/.jobs. In new configuration file this command is called sessiondir .

� cachedir=path [link path] - specifies a directory to store cached data (see 7). Multiple cache directories
may be specified by specifying multiple cachedir commands. Cached data will be distributed evenly
over the caches. Specifying no cachedir command or commands with an empty path disables caching.
Optional link path specifies the path at which path is accessible on computing nodes, if it is different
from the path on the A-REX host. If link path is set to ’.’ files are not soft-linked, nor are per-job
links created, but files are copied to the session directory. In old configuration file this command is
called cache .

15

� cachesize=high mark [low mark] - specifies high and low watermarks for space used by each cache, as
a percentage of the space on the file system on which the cache directory is located. When the max is
exceeded, files will be deleted to bring the used space down to the min level. It is a good idea to have
each cache on its own separate file system. To turn off this feature, ”cachesize” without parameters
can be specified. These cache settings apply to all caches specified by cachedir commands.

� maxrerun=number – specifies maximal number of times job will be allowed to rerun after it failed
at any stage. Default value is 5. This only specifies a upper limit. Actual number is provided in job
description and defaults to 0.

All per-user commands should be put before control command which initiates serviced user.

� control=path username [username [...]] - This option initiates UNIX user as being serviced by the
A-REX. path refers to the control directory (see Section 6 for the description of control directory). If
the path is * the default one is used – $HOME/.jobstatus. username stands for UNIX name of the
local user. Multiple names can be specified. If the name is * it is substituted by all names found
in file /etc/grid-security/grid-mapfile (for the format of this file one should study the Globus
project [?]).
Also the special name ’.’(dot) can be used. Corresponding control directory will be used for any user.
This option should be the last one in the configuration file. There is also command controldir=path.
It uses special username ’.’ and is always executed last independent of placement in file.

� helper=username command [argument [argument [...]]] – associates external program with the local
UNIX user. This program will be kept running under account of the specified user. username stands
for the name of the user. Special names can be used: ’*’ – all names from /etc/grid-security/grid-
mapfile, ’.’ - root user. The user should be already configured with control option (except root, who
is always configured). command is an executable and arguments are passed as arguments to it.

� gnu time=path – path to time utility.

� tmpdir=path – path to directory for temporary files.

� runtimedir=path – path to directory which contains runtimenvironment scripts.

� shared filesystem=yes—no – if computing nodes have an access to session directory through a shared
file system like NFS.

� nodename=command – command to obtain hostname of computing node.

� scratchdir=path – path on computing node where to move session directory before execution.

� shared scratch=path – path on frontend where scratchdir can be found.

In the command arguments (paths, executables, ...) following substitutions can be used:

%R – session root – see command session

%C – control dir – see command control

%U – username

%u – userid – numerical

%g – groupid – numerical

%H – home dir – home specified in /etc/passwd

%Q – default queue – look command ’defaultlrms’

%L – default lrms – look command ’defaultlrms’

%W – installation path – ${ARC LOCATION}

16

%G – globus path – ${GLOBUS LOCATION}

%c – list of all control directories

%I – job’s ID (for plugins only, substituted in runtime)

%S – job’s state (for authplugin plugins only, substituted in runtime)

%O – reason (for localcred plugins only, substituted in runtime). Possible reasons are:

new – new job, new credentials

renew – old job, new credentials

write – write/delete file, create/delete directory

read – read file, directory, etc.

extern – call external program

9.2 Authorization

Authorization is performed by generic means provided by HED framework. Currently A-REX does not
implement any internal authorization techniques except those imposed by Access Policy assigned to jobs
through AccessControl element of assigned JSDL.

9.3 LRMS support

For information about supported LRMSes and their specific features and configuration options please read
dedicated documentation [?].

9.4 Runtime environment

The A-REX can run specially prepared BASH scripts prior to creation of the job’s script, before and after
executing job’s main executable. Those scripts are requested by the user through the runtimeenvironment
attribute in JSDL and are run with the only argument set either equal to ’0’, ’1’ or ’2’ during creation of the
job’s script, before execution of the main executable and after main the executable is finished, respectively.
They all are run through BASH’s ’source’ command, and hence can manipulate shell variables. With
argument ’0’ scripts are run by the A-REX on the frontend. Some environment variables are defined in that
case and can be changed to influence job’s execution later:

� joboption directory – session directory.

� joboption arg # – command with arguments to be executed as specified in the JD (not bash array).

� joboption env # – array of ’NAME=VALUE’ environment variables (not bash array).

� joboption runtime # – array of requested runtimeenvironment names (not bash array).

� joboption num – runtimeenvironment currently beeing processed (number starting from 0).

� joboption stdin – name of file to be attached to stdin handle.

� joboption stdout – same for stdout.

� joboption stderr – same for stderr.

� joboption cputime – amount of CPU time requested (minutes).

� joboption memory – amount of memory requested (megabytes).

� joboption count – number of processors requested.

� joboption lrms – LRMS to be used to run job.

17

� joboption queue – name of a queue of LRMS to put job into.

� joboption nodeproperty # – array of properties of computing nodes (LRMS specific, not bash array).

� joboption jobname – name of the job as given by user.

� joboption rsl – whole RSL for very clever submission scripts.

� joboption rsl name – RSL attributes and values (like joboption rsl executable=”/bin/echo”)

For example joboption arg # could be changed to wrap the main executable. Or joboption runtime could
be expanded if current one depends on others.

With argument ’1’ scripts are run just before the main executable is run. They are executed on the computing
node. Such a script can prepare environment for some third-party software package. A current directory
in that case is the one which would be used for execution of the job. Variable $HOME also points to that
directory.

With argument ’2’ scripts are executed after main executable finished. Main purpose is to clean possible
changes done by scripts run with ’1’ (like removing temporary files). Execution of scripts at that stage also
happens on computing node and is not reliable. If the job is killed by LRMS they most probably won’t be
executed.

For publicly available runtime environments please see the RTE repository at http://gridrer.csc.fi/.

10 Installation

The A-REX is installed as an ARC1 component of ARC middleware and is available in NorduGrid download
area at ARC1 Download http://download.nordugrid.org/software/nordugrid-arc1/.There are pack-
ages available for various Linux distributions. The A-REX comes in the nordugrid-arc1-arex package.
Source code ready for compilation is available too.

10.1 Requirements

When installed from binary packages, all the dependencies are handled automatically. For compilation from
source code please read included README files.

10.2 Setup of the A-REX

The A-REX service is a pluggable module of the HED. So first You need to setup your HED – see HED
documentation.

Then You need to add A-REX to the HED configuration. Add new <Name> element inside <Plugins>
containing string arex. That will make HED load libarex plugin library.

Then add new <Service> element with attribute name=‘‘a-rex’’. That will instantiate A-REX service.
Now to make service accessible extend <Plexer> element with new <next> referring to an id of the service.
Write <Service> element carefully – here is an example:

<!-{}- A-Rex service -{}->
<Service name=\char‘\"{}a-rex\char‘\"{} id=\char‘\"{}a-rex\char‘\"{}>
<!-{}- Optional endpoint element is advised in case of multiple IP adresses -{}->
<arex:endpoint>https://localhost:60000/arex</arex:endpoint>
<!-{}- Use information generated by identity.map plugin or default provided below -{}->
<arex:usermap><arex:defaultLocalName>nobody</arex:defaultLocalName></arex:usermap>
<!-{}- grid-manager part of a-rex requires legacy configuration file.

Use arc_arex.conf example or write own. -{}->
<arex:gmconfig>/etc/arc_arex.conf</arex:gmconfig>

</Service>

18

http://gridrer.csc.fi/
http://download.nordugrid.org/software/nordugrid-arc1/

For in-depth information about available elements see Appendix B.

Use a template arc arex.conf or write own A-REX configuration file. For information about format and
available configuration commands see Section 9.1.

10.3 Usage

Please read User Guide [?] for usage instructions.

10.4 Running as non-root

The A-REX is primarily designed to be run by the root UNIX account and serve multiple global Grid
identities mapped to several UNIX accounts. Nevertheless it is possible to use non-root accounts to run that
service at the cost of some functionality loss as described below.

There are no drawbacks of running A-REX under a non-root account as long as the only UNIX identity
used is that of the user who runs the services and all served files and directories are owned by the server’s
account. Because A-REX has to impersonate a user’s local account while communicating with the LRMS,
it can serve only the account it is run under (unless it is run under the root account, of course).

A Session directory access through HTTP(S) interface

In addition to the BES interface A-REX provides access to the SD through pure HTTP(S) interface. This
functionality is used for uploading user-stageable files during job submission and for staging out result files
produced by job. It can also be used to monitor job execution by checking content of application dependent
files in SD.

The BES defines job identifier as WS Addressing [?] Endpoint Reference (EPR) – XML document. The
EPR is extendable and the A-REX adds it own element JobSessionDir belonging to the namespace
http://www.nordugrid.org/schemas/a-rex as a direct child of ReferenceParameters element. This new
element contains the URL of SD.

Obtained URL should be extended with file names relative to SD and HTTP methods PUT and GET may
be used to upload/download content of those files. For directories – including SD itself – GET method is
supported which returns HTML encoded non-recursive list of files and directories. The files and subdirectories
have their URLs inside HTML element <A>.

B Configuration schema of A-REX

<?xml version=\char‘\"{}1.0\char‘\"{} encoding=\char‘\"{}UTF-8\char‘\"{}?>

<xsd:schema

xmlns:xsd=\char‘\"{}http://www.w3.org/2001/XMLSchema\char‘\"{}

xmlns=\char‘\"{}http://www.nordugrid.org/schemas/ArcConfig/2007/arex\char‘\"{}

xmlns:arc=\char‘\"{}http://www.nordugrid.org/schemas/ArcConfig/2007/arex\char‘\"{}

targetNamespace=\char‘\"{}http://www.nordugrid.org/schemas/ArcConfig/2007/arex\char‘\"{}

elementFormDefault=\char‘\"{}qualified\char‘\"{}>

<xsd:complexType name=\char‘\"{}endpoint_Type\char‘\"{}>

<!-{}-

This element defines URL of A-REX service as seen from outside.

-{}->

<xsd:simpleContent>

<xsd:extension base=\char‘\"{}xsd:string\char‘\"{}>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name=\char‘\"{}endpoint\char‘\"{} type=\char‘\"{}endpoint_Type\char‘\"{}/>

<xsd:complexType name=\char‘\"{}gmconfig_Type\char‘\"{}>

<!-{}-

This element defines path to arc0 Grid Manager configuartion file.

By default it is /etc/arc.conf.

-{}->

19

<xsd:simpleContent>

<xsd:extension base=\char‘\"{}xsd:string\char‘\"{}>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name=\char‘\"{}gmconfig\char‘\"{} type=\char‘\"{}gmconfig_Type\char‘\"{}/>

<xsd:simpleType name=\char‘\"{}gmrun_Type\char‘\"{}>

<!-{}-

This element defines how grid-manager part of A-Rex is run.

{*} internal - as a thread inside service container.

{*} none - no grid-manager is run.

{*} external - as a separate executable (not supported anymore).

Default is ’internal’.

-{}->

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}internal\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}external\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}none\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:element name=\char‘\"{}gmrun\char‘\"{} type=\char‘\"{}gmrun_Type\char‘\"{}/>

<xsd:complexType name=\char‘\"{}usermap_Type\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}defaultLocalName\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}usermap\char‘\"{} type=\char‘\"{}usermap_Type\char‘\"{}/>

<!-{}- CommonName attribute of bes-factory. -{}->

<xsd:element name=\char‘\"{}commonName\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<!-{}- LongDescription attribute of bes-factory. -{}->

<xsd:element name=\char‘\"{}longDescription\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<!-{}- Name of Local Resource Management System. -{}->

<xsd:element name=\char‘\"{}LRMSName\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<!-{}-

Name of Operating System.

The values are based on the OSType field of the CIM_OperatingSystem model:

http://www.dmtf.org/standards/cim/cim_schema_v29

-{}->

<xsd:element name=\char‘\"{}OperatingSystem\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:schema>

C A-REX WSDL

<?xml version=\char‘\"{}1.0\char‘\"{} encoding=\char‘\"{}UTF-8\char‘\"{}?>

<wsdl:definitions targetNamespace=\char‘\"{}http://www.nordugrid.org/schemas/a-rex\char‘\"{}

xmlns:SOAP-ENV=\char‘\"{}http://schemas.xmlsoap.org/soap/envelope/\char‘\"{}

xmlns:SOAP-ENC=\char‘\"{}http://schemas.xmlsoap.org/soap/encoding/\char‘\"{}

xmlns:xsi=\char‘\"{}http://www.w3.org/2001/XMLSchema-instance\char‘\"{}

xmlns:xsd=\char‘\"{}http://www.w3.org/2001/XMLSchema\char‘\"{}

xmlns:soap=\char‘\"{}http://schemas.xmlsoap.org/wsdl/soap/\char‘\"{}

xmlns:wsdl=\char‘\"{}http://schemas.xmlsoap.org/wsdl/\char‘\"{}

xmlns:wsa=\char‘\"{}http://www.w3.org/2005/08/addressing\char‘\"{}

xmlns:bes-factory=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory\char‘\"{}

xmlns:bes-mgmt=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-management\char‘\"{}

xmlns:deleg=\char‘\"{}http://www.nordugrid.org/schemas/delegation\char‘\"{}

xmlns:wsrf-rpw=\char‘\"{}http://docs.oasis-open.org/wsrf/rpw-2\char‘\"{}

xmlns:a-rex=\char‘\"{}http://www.nordugrid.org/schemas/a-rex\char‘\"{}>

<wsdl:import namespase=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory\char‘\"{}

location=\char‘\"{}./bes-factory.wsdl\char‘\"{}/>

<wsdl:import namespase=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-management\char‘\"{}

location=\char‘\"{}./bes-management.wsdl\char‘\"{}/>

<wsdl:import namespase=\char‘\"{}http://www.nordugrid.org/schemas/delegation\char‘\"{}

location=\char‘\"{}../schemas/delegation.wsdl\char‘\"{}/>

<wsdl:import namespase=\char‘\"{}http://docs.oasis-open.org/wsrf/rpw-2\char‘\"{}

location=\char‘\"{}http://docs.oasis-open.org/wsrf/rpw-2.wsdl\char‘\"{}/>

<wsdl:types>

<xsd:schema targetNamespace=\char‘\"{}http://www.nordugrid.org/schemas/a-rex\char‘\"{}>

<xsd:import namespace=\char‘\"{}http://www.w3.org/2005/08/addressing\char‘\"{}

schemaLocation=\char‘\"{}./ws-addr.xsd\char‘\"{}/>

<xsd:simpleType name=\char‘\"{}ActivitySubStateType\char‘\"{}>

20

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}Accepting\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Accepted\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Preparing\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Prepared\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Submitting\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Executing\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Killing\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Executed\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Finishing\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Finished\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Failed\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Deleted\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Pending\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}Held\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:element name=\char‘\"{}State\char‘\"{} type=\char‘\"{}a-rex:ActivitySubStateType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}ResourceInformationDocumentType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}BESFactory\char‘\"{}

type=\char‘\"{}bes-factory:FactoryResourceAttributesDocumentType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}Glue2Resource\char‘\"{} minOccurs=’0’>

<xsd:sequence>

<xsd:any namespace=\char‘\"{}\#\#other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}Activities\char‘\"{} minOccurs=’0’>

<xsd:sequence>

<xsd:complexType name=\char‘\"{}Activity\char‘\"{} minOccurs=’0’ maxOccurs=’unbounded’>

<xsd:sequence>

<xsd:element name=\char‘\"{}ActivityIdentifier\char‘\"{}

type=\char‘\"{}wsa:EndpointReferenceType\char‘\"{}/>

<xsd:element ref=\char‘\"{}bes-factory:ActivityDocument\char‘\"{} minOccurs=’0’/>

<xsd:complexType name=\char‘\"{}Glue2Job\char‘\"{} minOccurs=’0’>

<xsd:sequence>

<xsd:any namespace=\char‘\"{}\#\#other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

</xsd:sequence>

</xsd:complexType>

</xsd:sequence>

</xsd:complexType>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}ChangeActivityStatusRequestType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}ActivityIdentifier\char‘\"{} type=\char‘\"{}wsa:EndpointReferenceType\char‘\"{}/>

<xsd:element name=\char‘\"{}OldStatus\char‘\"{} type=\char‘\"{}bes-factory:ActivityStatusType\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}NewStatus\char‘\"{} type=\char‘\"{}bes-factory:ActivityStatusType\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}ChangeActivityStatus\char‘\"{}

type=\char‘\"{}a-rex:ChangeActivityStatusRequestType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}ChangeActivityStatusResponseType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}NewStatus\char‘\"{} type=\char‘\"{}bes-factory:ActivityStatusType\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}ChangeActivityStatusResponse\char‘\"{}

type=\char‘\"{}a-rex:ChangeActivityStatusResponseType\char‘\"{}/>

<xsd:complexType name="MigrateActivityType">

<xsd:sequence>

<xsd:element name=\char‘\"{}ActivityIdentifier\char‘\"{}

type=\char‘\"{}wsa:EndpointReferenceType\char‘\"{}

minOccurs=\char‘\"{}1\char‘\"{} maxOccurs=\char‘\"{}1\char‘\"{}/>

<xsd:element ref=\char‘\"{}bes-factory:ActivityDocument\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}ForceMigration\char‘\"{} type=\char‘\"{}xsd:boolean\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}1\char‘\"{}/>

<xsd:any namespace=\char‘\"{}##other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

21

<xsd:anyAttribute namespace=\char‘\"{}##other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{}/>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}MigrateActivityResponseType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}ActivityIdentifier\char‘\"{} type=\char‘\"{}wsa:EndpointReferenceType\char‘\"{}/>

<xsd:element ref=\char‘\"{}bes-factory:ActivityDocument\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:any namespace=\char‘\"{}##other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

<xsd:anyAttribute namespace=\char‘\"{}##other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{}/>

</xsd:complexType>

<xsd:element name=\char‘\"{}MigrateActivity\char‘\"{}

type=\char‘\"{}a-rex:MigrateActivityType\char‘\"{}/>

<xsd:element name=\char‘\"{}MigrateActivityResponse\char‘\"{}

type=\char‘\"{}a-rex:MigrateActivityResponseType\char‘\"{}/>

</xsd:schema>

</wsdl:types>

<wsdl:message name=\char‘\"{}ChangeActivityStatusRequest\char‘\"{}>

<wsdl:part name=\char‘\"{}ChangeActivityStatusRequest\char‘\"{}

element=\char‘\"{}a-rex:ChangeActivityStatus\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}ChangeActivityStatusResponse\char‘\"{}>

<wsdl:part name=\char‘\"{}ChangeActivityStatusResponse\char‘\"{}

element=\char‘\"{}a-rex:ChangeActivityStatusResponse\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}MigrateActivityRequest\char‘\"{}>

<wsdl:part name=\char‘\"{}MigrateActivityRequest\char‘\"{}

element=\char‘\"{}a-rex:MigrateActivity\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}MigrateActivityResponse\char‘\"{}>

<wsdl:part name=\char‘\"{}MigrateActivityResponse\char‘\"{}

element=\char‘\"{}a-rex:MigrateActivityResponse\char‘\"{}/>

</wsdl:message>

<wsdl:portType name=\char‘\"{}a-rex\char‘\"{}>

<wsdl:operation name=\char‘\"{}ChangeActivityStatus\char‘\"{}>

<wsdl:documentation>

This operation allows any simple status change request

which involves no additional parameters. It should be

used to modify job/activity execution flow:

- To put job on hold

- To rerun job in case of failure

- To cancel job (same as TerminateActivity of BESFActory)

- To remove/release job - as long as non-existence is a state

- Any other status change no supported by BES

</wsdl:documentation>

<wsdl:input name=\char‘\"{}ChangeActivityStatusRequest\char‘\"{}

message=\char‘\"{}a-rex:ChangeActivityStatusRequest\char‘\"{}/>

<wsdl:output name=\char‘\"{}ChangeActivityStatusResponse\char‘\"{}

message=\char‘\"{}a-rex:ChangeActivityStatusResponse\char‘\"{}/>

<wsdl:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{}

message=\char‘\"{}bes-factory:NotAuthorizedFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}InvalidActivityIdentifierFault\char‘\"{}

message=\char‘\"{}bes-factory:InvalidActivityIdentifierFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}CantApplyOperationToCurrentStateFault\char‘\"{}

message=\char‘\"{}bes-factory:CantApplyOperationToCurrentStateFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}OperationWillBeAppliedEventuallyFault\char‘\"{}

message=\char‘\"{}bes-factory:OperationWillBeAppliedEventuallyFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

</wsdl:operation>

<wsdl:operation name=\char‘\"{}MigrateActivity\char‘\"{}>

<wsdl:input

name=\char‘\"{}MigrateActivity\char‘\"{}

message=\char‘\"{}a-rex:MigrateActivityRequest\char‘\"{}

<wsdl:output

name=\char‘\"{}MigrateActivityResponse\char‘\"{}

22

message=\char‘\"{}a-rex:MigrateActivityResponse\char‘\"{}

<wsdl:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{}

message=\char‘\"{}bes-factory:NotAuthorizedFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}NotAcceptingNewActivitiesFault\char‘\"{}

message=\char‘\"{}bes-factory:NotAcceptingNewActivitiesFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}UnsupportedFeatureFault\char‘\"{}

message=\char‘\"{}bes-factory:UnsupportedFeatureFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}InvalidRequestMessageFault\char‘\"{}

message=\char‘\"{}bes-factory:InvalidRequestMessageFault\char‘\"{}

wsa:Action=\char‘\"{}http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault\char‘\"{}/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=\char‘\"{}a-rex\char‘\"{} type=\char‘\"{}a-rex:a-rex\char‘\"{}>

<soap:binding style=\char‘\"{}document\char‘\"{}

transport=\char‘\"{}http://schemas.xmlsoap.org/soap/http\char‘\"{}/>

<wsdl:operation name=\char‘\"{}ChangeActivityStatus\char‘\"{}>

<soap:operation soapAction=\char‘\"{}ChangeActivityStatus\char‘\"{}/>

<wsdl:input name=\char‘\"{}ChangeActivityStatusRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}ChangeActivityStatusResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

<wsdl:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{}>

<soap:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}InvalidActivityIdentifierFault\char‘\"{}>

<soap:fault name=\char‘\"{}InvalidActivityIdentifierFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}CantApplyOperationToCurrentStateFault\char‘\"{}>

<soap:fault name=\char‘\"{}CantApplyOperationToCurrentStateFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}OperationWillBeAppliedEventuallyFault\char‘\"{}>

<soap:fault name=\char‘\"{}OperationWillBeAppliedEventuallyFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name=\char‘\"{}MigrateActivity\char‘\"{}>

<soap:operation soapAction=\char‘\"{}MigrateActivity\char‘\"{} />

<wsdl:input name=\char‘\"{}MigrateActivity\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{} />

</wsdl:input>

<wsdl:output name=\char‘\"{}MigrateActivityResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{} />

</wsdl:output>

<wsdl:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{}>

<soap:fault name=\char‘\"{}NotAuthorizedFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}NotAcceptingNewActivitiesFault\char‘\"{}>

<soap:fault name=\char‘\"{}NotAcceptingNewActivitiesFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}UnsupportedFeatureFault\char‘\"{}>

<soap:fault name=\char‘\"{}UnsupportedFeatureFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}InvalidRequestMessageFault\char‘\"{}>

<soap:fault name=\char‘\"{}InvalidRequestMessageFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=\char‘\"{}GetResourcePropertyDocument\char‘\"{}

type=\char‘\"{}wsrf-rpw:GetResourcePropertyDocument\char‘\"{}>

<soap:binding style=\char‘\"{}document\char‘\"{}

transport=\char‘\"{}http://schemas.xmlsoap.org/soap/http\char‘\"{}/>

<wsdl:operation name=\char‘\"{}GetResourcePropertyDocument\char‘\"{}>

<soap:operation soapAction=\char‘\"{}GetResourcePropertyDocument\char‘\"{}/>

<wsdl:input name=\char‘\"{}wsrf-rpw:GetResourcePropertyDocumentRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}wsrf-rpw:GetResourcePropertyDocumentResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

23

<wsdl:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}ResourceUnavailableFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnavailabbleFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=\char‘\"{}GetResourceProperty\char‘\"{} type=\char‘\"{}wsrf-rpw:GetResourceProperty\char‘\"{}>

<soap:binding style=\char‘\"{}document\char‘\"{}

transport=\char‘\"{}http://schemas.xmlsoap.org/soap/http\char‘\"{}/>

<wsdl:operation name=\char‘\"{}GetResourceProperty\char‘\"{}>

<soap:operation soapAction=\char‘\"{}GetResourceProperty\char‘\"{}/>

<wsdl:input name=\char‘\"{}wsrf-rpw:GetResourcePropertyRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}wsrf-rpw:GetResourcePropertyResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

<wsdl:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}ResourceUnavailableFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnavailabbleFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}InvalidResourcePropertyQNameFault\char‘\"{}>

<soap:fault name=\char‘\"{}InvalidResourcePropertyQNameFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=\char‘\"{}QueryResourceProperties\char‘\"{} type=\char‘\"{}wsrf:QueryResourceProperties\char‘\"{}>

<soap:binding style=\char‘\"{}document\char‘\"{}

transport=\char‘\"{}http://schemas.xmlsoap.org/soap/http\char‘\"{}/>

<wsdl:operation name=\char‘\"{}QueryResourceProperties\char‘\"{}>

<soap:operation soapAction=\char‘\"{}QueryResourceProperties\char‘\"{}/>

<wsdl:input name=\char‘\"{}wsrf-rpw:QueryResourcePropertiesRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}wsrf-rpw:QueryResourcePropertiesResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

<wsdl:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnknownFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}ResourceUnavailableFault\char‘\"{}>

<soap:fault name=\char‘\"{}ResourceUnavailabbleFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}InvalidResourcePropertyQNameFault\char‘\"{}>

<soap:fault name=\char‘\"{}InvalidResourcePropertyQNameFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}UnknownQueryExpressionDialectFault\char‘\"{}>

<soap:fault name=\char‘\"{}UnknownQueryExpressionDialectFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}InvalidQueryExpressionFault\char‘\"{}>

<soap:fault name=\char‘\"{}InvalidQueryExpressionFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

<wsdl:fault name=\char‘\"{}QueryEvaluationErrorFault\char‘\"{}>

<soap:fault name=\char‘\"{}QueryEvaluationErrorFault\char‘\"{} use=\char‘\"{}literal\char‘\"{} />

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=\char‘\"{}a-rex\char‘\"{}>

<wsdl:port name=\char‘\"{}delegation\char‘\"{} binding=\char‘\"{}deleg:DelegationBinding\char‘\"{}>

</wsdl:port>

<wsdl:port name=\char‘\"{}bes-factory\char‘\"{} binding=\char‘\"{}bes-factory:BESFactoryBinding\char‘\"{}>

</wsdl:port>

<wsdl:port name=\char‘\"{}bes-mgmt\char‘\"{} binding=\char‘\"{}bes-mgmt:BESManagementBinding\char‘\"{}>

</wsdl:port>

<wsdl:port name=\char‘\"{}GetResourcePropertyDocument\char‘\"{}

binding=\char‘\"{}a-rex:GetResourcePropertyDocument\char‘\"{}>

</wsdl:port>

<wsdl:port name=\char‘\"{}GetResourceProperty\char‘\"{} binding=\char‘\"{}a-rex:GetResourceProperty\char‘\"{}>

</wsdl:port>

24

<wsdl:port name=\char‘\"{}QueryResourceProperties\char‘\"{}

binding=\char‘\"{}a-rex:QueryResourceProperties\char‘\"{}>

</wsdl:port>

<wsdl:port name=\char‘\"{}a-rex\char‘\"{} binding=\char‘\"{}a-rex:a-rex\char‘\"{}>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

D Delegation WSDL

<?xml version=\char‘\"{}1.0\char‘\"{} encoding=\char‘\"{}UTF-8\char‘\"{}?>

<wsdl:definitions targetNamespace=\char‘\"{}http://www.nordugrid.org/schemas/delegation\char‘\"{}

xmlns:SOAP-ENV=\char‘\"{}http://schemas.xmlsoap.org/soap/envelope/\char‘\"{}

xmlns:SOAP-ENC=\char‘\"{}http://schemas.xmlsoap.org/soap/encoding/\char‘\"{}

xmlns:xsi=\char‘\"{}http://www.w3.org/2001/XMLSchema-instance\char‘\"{}

xmlns:xsd=\char‘\"{}http://www.w3.org/2001/XMLSchema\char‘\"{}

xmlns:soap=\char‘\"{}http://schemas.xmlsoap.org/wsdl/soap/\char‘\"{}

xmlns:wsdl=\char‘\"{}http://schemas.xmlsoap.org/wsdl/\char‘\"{}

xmlns:wsa=\char‘\"{}http://www.w3.org/2005/08/addressing\char‘\"{}

xmlns:deleg=\char‘\"{}http://www.nordugrid.org/schemas/delegation\char‘\"{}>

<wsdl:types>

<xsd:schema targetNamespace=\char‘\"{}http://www.nordugrid.org/schemas/delegation\char‘\"{}>

<!-{}- Common types -{}->

<xsd:simpleType name=\char‘\"{}TokenFormatType\char‘\"{}>

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}x509\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}ReferenceType\char‘\"{}>

<xsd:sequence>

<xsd:any namespace=\char‘\"{}\#\#other\char‘\"{} processContents=\char‘\"{}lax\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}DelegatedTokenType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}Id\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}Value\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}Reference\char‘\"{} type=\char‘\"{}deleg:ReferenceType\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

</xsd:sequence>

<xsd:attribute name=\char‘\"{}Format\char‘\"{} type=\char‘\"{}deleg:TokenFormatType\char‘\"{}

use=\char‘\"{}required\char‘\"{}/>

</xsd:complexType>

<xsd:element name=\char‘\"{}DelegatedToken\char‘\"{} type=\char‘\"{}deleg:DelegatedTokenType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}TokenRequestType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}Id\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}Value\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:sequence>

<xsd:attribute name=\char‘\"{}Format\char‘\"{} type=\char‘\"{}deleg:TokenFormatType\char‘\"{}

use=\char‘\"{}required\char‘\"{}/>

</xsd:complexType>

<xsd:element name=\char‘\"{}TokenRequest\char‘\"{} type=\char‘\"{}deleg:TokenRequestType\char‘\"{}/>

<!-{}- Types for messages -{}->

<xsd:complexType name=\char‘\"{}DelegateCredentialsInitRequestType\char‘\"{}>

<xsd:sequence>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}DelegateCredentialsInit\char‘\"{}

type=\char‘\"{}deleg:DelegateCredentialsInitRequestType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}DelegateCredentialsInitResponseType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}TokenRequest\char‘\"{} type=\char‘\"{}deleg:TokenRequestType\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}DelegateCredentialsInitResponse\char‘\"{}

type=\char‘\"{}deleg:DelegateCredentialsInitResponseType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}UpdateCredentialsRequestType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}DelegatedToken\char‘\"{} type=\char‘\"{}deleg:DelegatedTokenType\char‘\"{}/>

25

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}UpdateCredentials\char‘\"{}

type=\char‘\"{}deleg:UpdateCredentialsRequestType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}UpdateCredentialsResponseType\char‘\"{}>

<xsd:sequence>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}UpdateCredentialsResponse\char‘\"{}

type=\char‘\"{}deleg:UpdateCredentialsResponseType\char‘\"{}/>

<!-{}- Faults -{}->

<xsd:complexType name=\char‘\"{}UnsupportedFaultType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}Description\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}UnsupportedFault\char‘\"{} type=\char‘\"{}deleg:UnsupportedFaultType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}ProcessingFaultType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}Description\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}ProcessingFault\char‘\"{} type=\char‘\"{}deleg:ProcessingFaultType\char‘\"{}/>

<xsd:complexType name=\char‘\"{}WrongReferenceFaultType\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}Description\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name=\char‘\"{}WrongReferenceFault\char‘\"{} type=\char‘\"{}deleg:WrongReferenceFaultType\char‘\"{}/>

</xsd:schema>

</wsdl:types>

<wsdl:message name=\char‘\"{}DelegateCredentialsInitRequest\char‘\"{}>

<wsdl:part name=\char‘\"{}DelegateCredentialsInitRequest\char‘\"{}

element=\char‘\"{}deleg:DelegateCredentialsInit\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}DelegateCredentialsInitResponse\char‘\"{}>

<wsdl:part name=\char‘\"{}DelegateCredentialsInitResponse\char‘\"{}

element=\char‘\"{}deleg:DelegateCredentialsInitResponse\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}UpdateCredentialsRequest\char‘\"{}>

<wsdl:part name=\char‘\"{}UpdateCredentialsRequest\char‘\"{} element=\char‘\"{}deleg:UpdateCredentials\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}UpdateCredentialsResponse\char‘\"{}>

<wsdl:part name=\char‘\"{}UpdateCredentialsResponse\char‘\"{}

element=\char‘\"{}deleg:UpdateCredentialsResponse\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}UnsupportedFault\char‘\"{}>

<wsdl:part name=\char‘\"{}Detail\char‘\"{} element=\char‘\"{}deleg:UnsupportedFault\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}ProcessingFault\char‘\"{}>

<wsdl:part name=\char‘\"{}Detail\char‘\"{} element=\char‘\"{}deleg:ProcessingFault\char‘\"{}/>

</wsdl:message>

<wsdl:message name=\char‘\"{}WrongReferenceFault\char‘\"{}>

<wsdl:part name=\char‘\"{}Detail\char‘\"{} element=\char‘\"{}deleg:WrongReferenceFault\char‘\"{}/>

</wsdl:message>

<wsdl:portType name=\char‘\"{}DelegationPortType\char‘\"{}>

<wsdl:operation name=\char‘\"{}DelegateCredentialsInit\char‘\"{}>

<wsdl:documentation>

</wsdl:documentation>

<wsdl:input name=\char‘\"{}DelegateCredentialsInitRequest\char‘\"{}

message=\char‘\"{}deleg:DelegateCredentialsInitRequest\char‘\"{}/>

<wsdl:output name=\char‘\"{}DelegateCredentialsInitResponse\char‘\"{}

message=\char‘\"{}deleg:DelegateCredentialsInitResponse\char‘\"{}/>

<wsdl:fault name=\char‘\"{}UnsupportedFault\char‘\"{}

message=\char‘\"{}deleg:UnsupportedFault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}ProcessingFault\char‘\"{}

message=\char‘\"{}deleg:ProcessingFault\char‘\"{}/>

</wsdl:operation>

<wsdl:operation name=\char‘\"{}UpdateCredentials\char‘\"{}>

<wsdl:documentation>

26

</wsdl:documentation>

<wsdl:input name=\char‘\"{}UpdateCredentialsRequest\char‘\"{}

message=\char‘\"{}deleg:UpdateCredentialsRequest\char‘\"{}/>

<wsdl:output name=\char‘\"{}UpdateCredentialsResponse\char‘\"{}

message=\char‘\"{}deleg:UpdateCredentialsResponse\char‘\"{}/>

<wsdl:fault name=\char‘\"{}UnsupportedFault\char‘\"{}

message=\char‘\"{}deleg:UnsupportedFault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}ProcessingFault\char‘\"{}

message=\char‘\"{}deleg:ProcessingFault\char‘\"{}/>

<wsdl:fault name=\char‘\"{}WrongReferenceFault\char‘\"{}

message=\char‘\"{}deleg:WrongReferenceFault\char‘\"{}/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=\char‘\"{}DelegationBinding\char‘\"{} type=\char‘\"{}deleg:DelegationPortType\char‘\"{}>

<soap:binding style=\char‘\"{}document\char‘\"{}

transport=\char‘\"{}http://schemas.xmlsoap.org/soap/http\char‘\"{}/>

<wsdl:operation name=\char‘\"{}DelegateCredentialsInit\char‘\"{}>

<soap:operation soapAction=\char‘\"{}DelegateCredentialsInit\char‘\"{}/>

<wsdl:input name=\char‘\"{}DelegateCredentialsInitRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}DelegateCredentialsInitResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=\char‘\"{}UpdateCredentials\char‘\"{}>

<soap:operation soapAction=\char‘\"{}UpdateCredentials\char‘\"{}/>

<wsdl:input name=\char‘\"{}UpdateCredentialsRequest\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:input>

<wsdl:output name=\char‘\"{}UpdateCredentialsResponse\char‘\"{}>

<soap:body use=\char‘\"{}literal\char‘\"{}/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

</wsdl:definitions>

E ARC extensions for JSDL schema

<?xml version=\char‘\"{}1.0\char‘\"{} encoding=\char‘\"{}UTF-8\char‘\"{}?>

<xsd:schema xmlns:xsd=\char‘\"{}http://www.w3.org/2001/XMLSchema\char‘\"{}

xmlns=\char‘\"{}http://www.nordugrid.org/ws/schemas/jsdl-arc\char‘\"{}

xmlns:jsdl-arc=\char‘\"{}http://www.nordugrid.org/ws/schemas/jsdl-arc\char‘\"{}

targetNamespace=\char‘\"{}http://www.nordugrid.org/ws/schemas/jsdl-arc\char‘\"{}>

<xsd:simpleType name=\char‘\"{}GMState_Type\char‘\"{}>

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}ACCEPTED\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}PREPARING\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}SUBMIT\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}INLRMS\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}FINISHING\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}FINISHED\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}DELETED\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}CANCELING\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}Version_Type\char‘\"{}>

<xsd:sequence>

<xsd:element name=\char‘\"{}UpperExclusive\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}LowerExclusive\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}Exact\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}unbounded\char‘\"{}/>

<xsd:element name=\char‘\"{}Exclusive\char‘\"{} type=\char‘\"{}xsd:boolean\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=\char‘\"{}SessionType_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}SessionType\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

27

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}INTERNAL\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}LIMITED\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}READONLY\char‘\"{}/>

<xsd:enumeration value=\char‘\"{}FULL\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=\char‘\"{}IsExecutable_Type\char‘\"{}>

<xsd:documentation> For jsdl:DataStaging_Type (default: false) </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}IsExecutable\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:boolean\char‘\"{}/>

</xsd:simpleType>

<xsd:simpleType name=\char‘\"{}FileParameters_Type\char‘\"{}>

<xsd:documentation> For jsdl:DataStaging_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}IsExecutable\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:simpleType>

<xsd:simpleType name=\char‘\"{}JoinOutputs_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type (default: false) </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}JoinOutputs\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:boolean\char‘\"{}/>

</xsd:simpleType>

<xsd:simpleType name=\char‘\"{}Reruns_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type (default: false) </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}Reruns\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}// -{}->

<xsd:restriction base=\char‘\"{}xsd:integer\char‘\"{}/>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}RunTimeEnvironment_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}RunTimeEnvironment\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}unbounded\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}Name\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}Version\char‘\"{} type=\char‘\"{}Version_Type\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}Middleware_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}Middleware\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}unbounded\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}Name\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}Version\char‘\"{} type=\char‘\"{}Version_Type\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}RemoteLogging_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}RemoteLogging\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}3\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}URL\char‘\"{} minOccurs=\char‘\"{}1\char‘\"{} maxOccurs=\char‘\"{}1\char‘\"{}

type=\char‘\"{}xsd:anyURI\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}CredentialServer_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}CredentialServer\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}URL\char‘\"{} minOccurs=\char‘\"{}1\char‘\"{} maxOccurs=\char‘\"{}1\char‘\"{}

type=\char‘\"{}xsd:anyURI\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=\char‘\"{}LocalLogging_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}LocalLogging\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}1\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}Directory\char‘\"{} minOccurs=\char‘\"{}1\char‘\"{} maxOccurs=\char‘\"{}1\char‘\"{}

type=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

28

<xsd:simpleType name=\char‘\"{}AccessControlType_Type\char‘\"{}>

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}GACL\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}AccessControl_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}AccessControl\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}OwnerAlwaysAllowed\char‘\"{} type=\char‘\"{}xsd:boolean\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}Type\char‘\"{} type=\char‘\"{}AccessControlType_Type\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}Content\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=\char‘\"{}NotificationType_Type\char‘\"{}>

<xsd:restriction base=\char‘\"{}xsd:string\char‘\"{}>

<xsd:enumeration value=\char‘\"{}Email\char‘\"{}/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}Notify_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}Notify\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} maxOccurs=\char‘\"{}3\char‘\"{}/

-{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}Type\char‘\"{} type=\char‘\"{}NotificationType_Type\char‘\"{}

minOccurs=\char‘\"{}0\char‘\"{}/>

<xsd:element name=\char‘\"{}Endpoint\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}State\char‘\"{} minOccurs=\char‘\"{}1\char‘\"{} maxOccurs=\char‘\"{}unbounded\char‘\"{}

type=\char‘\"{}GMState_Type\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=\char‘\"{}SessionLifeTime_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}SessionLifeTime\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}1\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:long\char‘\"{}/>

</xsd:simpleType>

<xsd:simpleType name=\char‘\"{}GridTimeLimit_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}GridTimeLimit\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}1\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:positiveInteger\char‘\"{}/>

</xsd:simpleType>

<xsd:complexType name=\char‘\"{}CandidateTarget_Type\char‘\"{}>

<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}jsdl-arc:CandidateTarget\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}1\char‘\"{}/ -{}->

<xsd:sequence>

<xsd:element name=\char‘\"{}HostName\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

<xsd:element name=\char‘\"{}QueueName\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{} type=\char‘\"{}xsd:string\char‘\"{}/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=\char‘\"{}Time_Type\char‘\"{}>

<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>

<!-{}- xsd:element ref=\char‘\"{}ProcessingStartTime\char‘\"{} minOccurs=\char‘\"{}0\char‘\"{}

maxOccurs=\char‘\"{}1\char‘\"{}/ -{}->

<xsd:restriction base=\char‘\"{}xsd:dateTime\char‘\"{}/>

</xsd:simpleType>

<!-{}-===-{}->

<xsd:element name=\char‘\"{}IsExecutable\char‘\"{} type=\char‘\"{}IsExecutable_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}FileParameters\char‘\"{} type=\char‘\"{}FileParameters_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}RunTimeEnvironment\char‘\"{} type=\char‘\"{}RunTimeEnvironment_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}Middleware\char‘\"{} type=\char‘\"{}Middleware_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}RemoteLogging\char‘\"{} type=\char‘\"{}RemoteLogging_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}LocalLogging\char‘\"{} type=\char‘\"{}LocalLogging_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}AccessControl\char‘\"{} type=\char‘\"{}AccessControl_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}Notify\char‘\"{} type=\char‘\"{}Notify_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}SessionLifeTime\char‘\"{} type=\char‘\"{}SessionLifeTime_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}SessionType\char‘\"{} type=\char‘\"{}SessionType_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}JoinOutputs\char‘\"{} type=\char‘\"{}JoinOutputs_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}Reruns\char‘\"{} type=\char‘\"{}Reruns_Type\char‘\"{}/>

29

<xsd:element name=\char‘\"{}CredentialServer\char‘\"{} type=\char‘\"{}CredentialServer_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}GridTimeLimit\char‘\"{} type=\char‘\"{}GridTimeLimit_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}CandidateTarget\char‘\"{} type=\char‘\"{}CandidateTarget_Type\char‘\"{}/>

<xsd:element name=\char‘\"{}ProcessingStartTime\char‘\"{} type=\char‘\"{}Time_Type\char‘\"{}/>

</xsd:schema>

F Error messages of A-REX

If job has not finished successfully the A-REX puts one or more lines into job.ID.failed. Possible values
include those generated by the A-REX itself:

Error string Reason/description

Internal error Error in internal algorithm

Internal error: can’t read local
file

Error manipulating files in the control directory

Failed reading local job informa-
tion

-//-

Failed reading status of the job -//-

Failed writing job status -//-

Failed during processing failure -//-

Serious troubles (problems dur-
ing processing problems)

-//-

Failed initiating job submission
to LRMS

Could not run backend executable to pass job to LRMS

Job submission to LRMS failed Backend executable supposed to pass job to LRMS returned non-
zero exit code

Failed extracting LRMS ID due
to some internal error

Output of Backend executable supposed to contain local ID of
passed job could not be parsed

Failed in files upload (post-
processing)

Failed to upload some or all output files

Failed in files upload due to ex-
pired credentials – try to renew

Failed to upload some or all output files most probably due to
expired credentials (proxy certificate)

Failed to run uploader (post-
processing)

Could not run uploader executable

uploader failed (postprocessing) Generic error related to uploader component

Failed in files download (pre-
processing)

Failed to upload some or all input files

Failed in files download due to
expired credentials – try to renew

Failed to download some or all input files most probably due to
expired credentials (proxy certificate)

Failed to run downloader (pre-
processing)

Could not run downloader executable

downloader failed (preprocess-
ing)

Generic error related to downloader component

User requested to cancel the job A-REX detected external request to cancel this job, most probably
issued by user

Could not process RSL Job description could not be processed to syntax errors or missing
elements

User requested dryrun. Job
skiped.

Job description contains request not to process this job

30

LRMS error: (CODE) DE-
SCRIPTION

LRMS returned error. CODE is replaced with numeric code of
LRMS, and DESCRIPTION with textual description

Plugin at state STATE failed:
OUTPUT

External plugin specified in A-REX configuration returned non-
zero exit code. STATE is replcaced by name of state to which job
was going to be passed, OUTPUT by textual output generated
by plugin.

Failed running plugin at state
STATE

External plugin specified in A-REX configuration could not be
executed.

Provided by downloader component (URL is replcaced by source of input file, FILE by name of file):

Error string Reason/description

Internal error in downloader Generic error

Input file: URL – unknown error Generic error

Input file: URL – unexpected er-
ror

Generic error

Input file: URL – bad source
URL

Source URL is either malformed or not supported

Input file: URL – bad destina-
tion URL

Shouldn’t happen

Input file: URL – failed to re-
solve source locations

File either not registred or other problems related to Data Index-
ing service.

Input file: URL – failed to re-
solve destination locations

Shouldn’t happen

Input file: URL – failed to regis-
ter new destination file

Shouldn’t happen

Input file: URL – can’t start
reading from source

Problems related to accessing instance of file at Data Storing ser-
vice.

Input file: URL – can’t read from
source

-//-

Input file: URL – can’t start
writing to destination

Access problems in a session directory

Input file: URL – can’t write to
destination

-//-

Input file: URL – data transfer
was too slow

Timeouted while trying to download file

Input file: URL – failed while
closing connection to source

Shouldn’t happen

Input file: URL – failed while
closing connection to destination

Shouldn’t happen

Input file: URL – failed to regis-
ter new location

Shouldn’t happen

Input file: URL – can’t use local
cache

Problems with A-REX cache

Input file: URL – system error Operating System returned error code where unexpected

Input file: URL – delegated cre-
dentials expired

Access to source requires credententials and they are either out-
dated or missing (not delegated).

31

User file: FILENAME – Bad in-
formation about file: checksum
can’t be parsed.

In job description there is a checksum provided for file uploadable
by user interface and this record can’t be interpreted.

User file: FILENAME – Bad in-
formation about file: size can’t
be parsed.

In job description there is a size provided for file uploadable by
user interface and this record can’t be interpreted.

User file: FILENAME – Ex-
pected file. Directory found.

Instead of file uploadable by user interface A-REX found directory
with same name in a session directory.

User file: FILENAME – Ex-
pected ordinary file. Special ob-
ject found.

Instead of file uploadable by user interface A-REX found special
object with same name in a session directory.

User file: FILENAME – Deliv-
ered file is bigger than specified.

The size of file uploadable by user interface is bigger

User file: FILENAME – Deliv-
ered file is unreadable.

A-REX can’t check user uploadable file due to some internal error.
Most probably due to improperly configured local permissions.

User file: FILENAME – Could
not read file to compute check-
sum.

A-REX can’t read user uploadable file due to some internal error.
Most probably due to improperly configured local permissions.

User file: FILENAME – Time-
out waiting

A-REX waited for user uploadable file too long.

Provided by uploader component (URL is replaced by destination of output file) :

Error string Reason/description

Internal error in uploader Generic error

Output file: URL – unknown er-
ror

Generic error

Output file: URL – unexpected
error

Generic error

User requested to store output
locally URL

Destination is URL of type file.

Output file: URL – bad source
URL

Shouldn’t happen

Output file: URL – bad destina-
tion URL

Destination URL is either malformed or not supported

Output file: URL – failed to re-
solve source locations

Shouldn’t happen

Output file: URL – failed to re-
solve destination locations

Problems related to Data Indexing service.

Output file: URL – failed to reg-
ister new destination file

-//-

Output file: URL – can’t start
reading from source

User request to store output file, but there is no such file or there
are problems accessing session directory

Output file: URL – can’t start
writing to destination

Problems with Data Storing services

Output file: URL – can’t read
from source

Problems accessing session directory

Output file: URL – can’t write
to destination

Problems with Data Storing services

32

Output file: URL – data transfer
was too slow

Timeout during transfer

Output file: URL – failed while
closing connection to source

Shouldn’t happen

Output file: URL – failed while
closing connection to destination

Shouldn’t happen

Output file: URL – failed to reg-
ister new location

Problems related to Data Indexing service.

Output file: URL – can’t use lo-
cal cache

Shouldn’t happen

Output file: URL – system error Operating System returned error code where unexpected

Output file: URL – delegated
credentials expired

Access to destination requires credententials and they are either
outdated or missing (not delegated).

33

	Introduction
	Main concepts
	Input/output data
	Job flow
	URLs
	Internals
	Internal Files of the A-REX
	Web Service Interface
	Basic Execution Service Interface
	Extensions to OGSA BES interface
	Delegation Interface
	Local Information Description Interface
	Supported JSDL elements
	ARC-specific JSDL Extensions

	Cache
	Structure
	How it works
	Administration tools

	Files and directories
	Modules
	Directories

	Configuration
	Configuration of the A-REX
	Authorization
	LRMS support
	Runtime environment

	Installation
	Requirements
	Setup of the A-REX
	Usage
	Running as non-root

	Session directory access through HTTP(S) interface
	Configuration schema of A-REX
	A-REX WSDL
	Delegation WSDL
	ARC extensions for JSDL schema
	Error messages of A-REX

