
The VOMS C API

A Developer’s Guide

Vincenzo Ciaschini

December 20, 2005

2

Contents

1 Introduction 5

2 The API. 7
2.1 The data structure . 7

2.1.1 group . 7
2.1.2 role . 7
2.1.3 cap . 8

2.2 The voms structure . 8
2.2.1 version . 8
2.2.2 siglen . 9
2.2.3 user . 9
2.2.4 userca . 9
2.2.5 server . 9
2.2.6 serverca . 9
2.2.7 voname . 9
2.2.8 uri . 9
2.2.9 date1, date2 . 10
2.2.10 type . 10
2.2.11 std . 11
2.2.12 custom . 11
2.2.13 fqan . 11

2.3 vomsdata . 11
2.3.1 data . 12
2.3.2 workvo, volen . 12
2.3.3 extra data, extralen . 12
2.3.4 cdir, vdir . 12

2.4 Functions . 12
2.4.1 Generalities . 12
2.4.2 struct contactdata **VOMS FindByAlias(struct vomsdata

*vd, char *alias, char *system, char *user, int *error) . . 12
2.4.3 struct contactdata **VOMS FindByVO(struct vomsdata

*vd, char *vo, char *system, char *user, int *error) 13
2.4.4 void VOMS DeleteContacts(struct contactdata **list) . . 14
2.4.5 struct vomsdata *VOMS Init(char *voms, char *cert) . . 14
2.4.6 struct voms *VOMS Copy(struct voms *, int *error) . . . 15
2.4.7 struct vomsdata *VOMS CopyAll(struct vomsdata *vd,

int *error) . 15
2.4.8 void VOMS Delete(strcut voms *v) 15

3

4 CONTENTS

2.4.9 int VOMS AddTarget(struct vomsdaa *vd, char *target,
int *error) . 15

2.4.10 void VOMS FreeTargets(struct vomsdata *vd , int *error) 16
2.4.11 char *VOMS ListTargets(struct vomsdata *vd, int *error) 16
2.4.12 int VOMS SetVerificationType(int type, struct vomsdata

*vd, int *error) . 16
2.4.13 int VOMS SetLifetime(int length, struct vomsdata *vd,

int *error) . 17
2.4.14 void VOMS Destroy(struct vomsdata *vd) 17
2.4.15 int VOMS Ordering(char *order, struct vomsdata *vd, int

*error) . 18
2.4.16 int VOMS ResetOrder(struct vomsdata *cd, int *error) . 18
2.4.17 int VOMS Contact(char *hostname, int port, char *serv-

subject, char *command, struct vomsdata *vd, int *error) 19
2.4.18 int VOMS ContactRaw(char *hostname, int port, char

*servsubject, char *command, void **data, int *datalen,
int *version, struct vomsdata *vd, int *error) 20

2.4.19 int VOMS Retrieve(X509 *cert, STACK OF(X509) *chain,
int how, struct vomsdata *vd, int *error) 21

2.4.20 int VOMS Import(char *buffer, int buflen, struct voms-
data *vd, int *error) . 21

2.4.21 int VOMS Export(char **buffer, int *buflen, struct voms-
data *vd, int *error) . 22

2.4.22 struct voms *VOMS DefaultData(struct vomsdata *vd,
int *error) . 22

2.4.23 char *VOMS ErrorMessage(struct vomsdata *vd, int er-
ror, char *buffer, int len) 23

2.4.24 int VOMS RetrieveEXT(X509 EXTENSION *ext, struct
vomsdata *vd, int *error) 23

2.4.25 int VOMS RetrieveFromCtx(gss ctx id t ctx, int how, struct
vomsdata *vd, int *error) 24

2.4.26 int VOMS RetrieveFromCred(gss cred id t cred, int how,
struct vomsdata *vd, int *error) 24

2.4.27 int VOMS RetrieveFromProxy(int how, struct vomsdata
*vd, int *error) . 24

Chapter 1

Introduction

The VOMS API already come with their own documentation in doxygen for-
mat. However, that documentation is little more than a simple enumeration of
functions, with a very terse description.

The aim of this document is different. Here the intention is not only to
describe the different functions that comprise the API, but also to show how
they are supposed to work together, what particular care the user needs to take
when calling them, what should be done to mantain compatibility between the
different versions, etc. . .

Throughout this whole document, you will find sections marked thus:

Compatibility

Some information

These section contain informations regarding both back and forward compati-
bility between different versions of the API.

Compatibility

Finally, please note that everything not explicitly defined
in this argument should be considered a private detail and
subject to change without notice.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

The API.

There are three basic data structures: data, voms and vomsdata.

2.1 The data structure

The first one, data contains the data regarding a single attribute, giving its
specification in terms of Groups, Roles and Capabilities. It is defined as follows:
struct data {

char ∗ group ;
char ∗ r o l e ;
char ∗ cap ;

} ;

All the values of these strings must be composed from regular expression:
a-ZA-Z0-9 /]*.

2.1.1 group

This field contains the name of a group into which the user belongs. The format
of entries in this group is reminiscent of the structure of pathnames, and is the
following:

/ group/group/.../group

where the name of the first group is by convention the name of the Virtual
Organization (VO), while each other /group component is a subgroup of the
group immediately preceding it on the left. The character ’/’ is not acceptable
as part of a group name.

This field MUST always be filled.

2.1.2 role

This field contains the name of the role to which the user owns in the group
specified by group. If the user does not own any particular role in that group,
than this field contains the value “NULL”.

7

8 CHAPTER 2. THE API.

2.1.3 cap

This field details a capability that the user has as a member of the group spec-
ified by group while owning the role specified by role. If there is no specific
capability, than this value is “NULL”.

No specific format is associated to a capability. They are basically free-form
strings, whose value should be agreed between the AA and the Attribute verifier.

2.2 The voms structure

The second one, voms is used to group together all the informations that can
be gleaned from a single AC, and is defined as follows:
#define TYPE NODATA 0 /∗ !< no data ∗/
#define TYPE STD 1 /∗ !< group , r o l e , c a p ab i l i t y t r i p l e t ∗/
#define TYPE CUSTOM 2 /∗ !< r e s u l t o f an S command ∗/

struct voms {
int s i g l e n ;
char ∗ s i gna tu r e ;
char ∗ user ;
char ∗ userca ;
char ∗ s e r v e r ;
char ∗ s e rv e r c a ;
char ∗voname ;
char ∗ u r i ;
char ∗ date1 ;
char ∗ date2 ;
int type ;
struct data ∗∗ std ;
char ∗ custom ;
int data len ;
int ve r s i on ;
char ∗∗ fqan ;
char ∗ s e r i a l ;
/∗ F i e l d s below t h i s l i n e are r e s e rved . ∗ /

} ;
The purpose of this structure is to present, in a readable format, the data

that has been included in a single Attribute Certificate (AC). While the various
public fields may be freely modified to simplify internal coding, such changes
have no effect on the underlying AC. Let’s examine the various fields in detail,
starting with the constructors.

2.2.1 version

This field specifies the version of this structure that is currently being used. A
value of 0 indicates that it comes from an old format extension, while a value
of 1 indicates that this structure comes from an AC.

Compatibility

2.2. THE VOMS STRUCTURE 9

Support for version 0 is going to be phased out of the code
base in roughly 6 months (late june - start of july). When
that happens, version 0 structures will not be readable
anymore. Until then, support for it is being kept as a
transition measure.

Please do note that modifying the fields of a version 0 structure associated
with a versiondata struct invalidates the result of the VOMS_Export() funciton
on that object.

2.2.2 siglen

The length of the data signature.

2.2.3 user

This field contains the subject of the holder’s certificate in slash-separated for-
mat.

2.2.4 userca

This field contains the subject of the CA that issued the holder’s certificate, in
slash-separated format.

2.2.5 server

This field contains the subject of the certificate that the AA used to issue the
AC, in slash-separated format.

2.2.6 serverca

This field contains, in slash-separated format, the subject of the CA that issued
the certificate that the AA used to issue the AC.

2.2.7 voname

This field contains the name of the Virtual Organization (VO) to which the rest
of the data contained in this structure applies.

2.2.8 uri

This is the URI at which the AA that issued this particular AC can be contacted.
Its format is:

fqdn:port

where fqdn is the Fully Qualified Domain Name of the server which hosts the
AA, while port is the port at which the AA can be contacted on that server.

10 CHAPTER 2. THE API.

2.2.9 date1, date2

These are the dates of start and end of validity of the rest of the informations.
They are in a string representation readable to humans, but they may be easily
converted back to their original format, with a little twist: dates coming from
an AC are in GeneralizedTime format, while dates coming from the old version
data are in UtcTime format.

Here follows a code example doing that conversion:

ASN1 TIME ∗
convtime (char ∗ data)
{

char ∗ data2 = strdup (data) ;

i f (data2) {
ASN1 TIME ∗ t= ASN1 TIME new () ;

t−>data = (unsigned char ∗) data2 ;
t−>l ength = s t r l e n (data) ;
switch (t−>l ength) {

case 1 0 :
t−>type = V ASN1 UTCTIME;
break ;
case 1 5 :
t−>type = V ASN1 GENERALIZEDTIME;
break ;
default :
ASN1 TIME free (t) ;
return NULL;

}
return t ;

}
return NULL;

}

2.2.10 type

This datum specifies the type of data that follows. It can assume the following
values:

TYPE NODATA There actually was no data returned.

Compatibility

This is actually only true for version 0 structures. The
following versions will simply not generate a voms struc-
ture in this case.

TYPE CUSTOM The data will contain the output of an “S” command sent
to the server.

2.3. VOMSDATA 11

Compatibility

Again, this type of datum will only be present in version
0 structures. Due to lack of use, support for it has been
disabled in new versions of the server.

TYPE STD The data will contain (group, role, capabilities) triples.

2.2.11 std

This vector contains all the attributes found in an AC, in the exact same order
in which they were found, in the format specified by the data structure. It is
only filled if the value of the type field is TYPE_STD.

Compatibility

This structure is filled in both version 1 and version 0
structures, although this is scheduled to be left empty after
the transition period has passed.

2.2.12 custom

This field contains the data returned bu the “S” server command, and it is only
filled if the type value id TYPE_CUSTOM.

2.2.13 fqan

This field contains the same data as the std field, but specified in the Fully
Qualified Attribute Name (FQAN) format.

2.3 vomsdata

The purpose of this object is to collect in a single place all informations present
in a VOMS extension. All the fields should be considered read-only. Changing
them has indefinite results.
struct vomsdata {

char ∗ cd i r ;
char ∗ vd i r ;
struct voms ∗∗ data ;
char ∗workvo ;
char ∗ ext ra data ;
int volen ;
int ex t r a l en ;
/∗ F i e l d s below t h i s l i n e are r e s e rved . ∗ /

} ;

Let us see the fields in detail.

12 CHAPTER 2. THE API.

2.3.1 data

This field contains a vector of voms structures, in the exact same order as
the corresponding ACs appeared in the proxy certificate, and containing the
informations present in that AC.

2.3.2 workvo, volen

Compatibility

This fields is obsolete in the current version. Expect workvo
to be set to NULL and volen to be set to 0.

2.3.3 extra data, extralen

This field contains additional data that has been added by the user via to the
proxy via the -include command option. Extralen represents the length of
that data.

2.3.4 cdir, vdir

This fields contain the paths, respectively, of the CA certificates and of the
VOMS servers certificates.

2.4 Functions

2.4.1 Generalities

Most of these functions share two parameters, struct vomsdata *vd, and int *error.
To avoid repetition, these two parameters are described here.
error This field contains the error code returned by one of the methods. Please
note that the value of this field is only significant if the last method called returns
an error value. Also, the value of this field is subject to change without notice
during method executions, regardless of whether an error effectively occurred.

The possible values returned are: VERR NONE, VERR NOSOCKET, VERR NOIDENT,
VERR COMM, VERR PARAM, VERR NOEXT, VERR NOINIT, VERR TIME,
VERR IDCHECK, VERR EXTRAINFO, VERR FORMAT, VERR NODATA,
VERR PARSE, VERR DIR, VERR SIGN, VERR SERVER, VERR MEM, VERR VERIFY,
VERR TYPE, VERR ORDER, VERR SERVERCODE

In general, a first idea of what each code means can be gleaned from the code
name, but in any case every method description will document which errors its
execution may generate and on which conditions.
vd This parameter is a pointer to the vomsdata structure that should be used by
the function for both configuration and data retrieval and also for data storage.

2.4.2 struct contactdata **VOMS FindByAlias(struct voms-
data *vd, char *alias, char *system, char *user, int
*error)

struct contactdata { /∗ !< You must never a l l o c a t e d i r e c t l y t h i s s t r u c tu r e . I t s s i z e o f () i s

2.4. FUNCTIONS 13

sub j e c t to change without no t i c e . The only supported way to obta in i t
i s v ia the VOMS FindBy∗ f un c t i on s . ∗ /

char ∗ nick ; /∗ !< The a l i a s o f the s e r v e r ∗/
char ∗ host ; /∗ !< The hostname o f the s e r v e r ∗/
char ∗ contact ; /∗ !< The sub j e c t o f the s e r v e r ’ s c e r t i f i c a t e ∗/
char ∗ vo ; /∗ !< The VO served by t h i s s e r v e r ∗/
int port ; /∗ !< The port on which the s e r v e r i s l i s t e n i n g ∗/
char ∗ r e s e rved ; /∗ !< HANDS OFF! ∗ /
int ve r s i on ; /∗ !< The ve r s i on o f Globus on which t h i s s e r v e r runs . ∗ /

} ;

This function looks in the vomses files installed in both the system-wide and
user-specific directories for servers that have been registered with a particular
alias.
alias The alias that will be searched for. The search will be case sensitive.
system The directory where the system-wide files are located. If empty then
its default is /opt/edg/etc/vomses.
user The directory where the user-specific files are stored. If empty its defaul is
$VOMS_USERCONF. If this is also empty, then the default becomse $HOME/.edg/vomses.
RETURNS
The return value is a NULL-terminated vector containing the data (in contactdata
format) of all the servers known by the system that go by the specified alias.
This may be NULL if there was an error or no server was found registered with
the specified alias.

The errors that you may find are:

VERR MEM Not enough memory.
VERR DIR There were some problems while traversing the di-

rectory.
VERR NONE No error occurred. Simply, no servers were found.

2.4.3 struct contactdata **VOMS FindByVO(struct voms-
data *vd, char *vo, char *system, char *user, int
*error)

This function looks in the vomses files installed in both the system-wide and
user-specific directories for servers that have been registered as serving a par-
ticular alias.
vo The alias that will be searched for. The search will be case sensitive.
system The directory where the system-wide files are located. If this field is
NULL then the default of /opt/edg/etc/cvomses is used.
user The directory where the user-specific files are stored. If this field is NULL,
then the default of \$VOMS_USERCONF is used. If this is also empty, then the
default becomse \$HOME/.edg/vomses.
RETURNS
The return value is a NULL-terminated vector containing the data (in contactdata
format) of all the servers known by the system that go by the specified VO. This
may be NULL if there was an error or no server was found registered with the
specified VO.

The errors that you may find are:

14 CHAPTER 2. THE API.

VERR MEM Not enough memory.
VERR DIR There were some problems while traversing the di-

rectory.
VERR NONE No error occurred. Simply, no servers were found.

2.4.4 void VOMS DeleteContacts(struct contactdata **list)

This function deletes a vector of server data returned by either the VOMS_FindByAlias{}
or the VOMS_FindByVO() functions. This is the only supported way to deallocate
the vector. Any other attempt will result in undefined behaviour.

It is although possible to deallocate only part of a vector. See the following
code for an example.
/∗
∗ Supposing that v i s a vec to r returned by one o f the VOMS FindBy∗ ()
∗ f un c t i on s . Also suppose that n i s the vec tor ’ s s i z e (i n c l ud ing the
∗ NULL ending element) .
∗
∗ The f o l l ow i ng sn ippet w i l l d e l e t e j u s t the f i r s t member .
∗/
struct contactdata ∗dummy [2] ;

dummy[1] = NULL;
dummy[0] = v [0] ;
v [0] = v [n−1] ;
v [n−1] = NULL;
VOMS DeleteContacts (dummy) ;

list The data to be deleted.
RETURNS
None.

2.4.5 struct vomsdata *VOMS Init(char *voms, char *cert)

This function allocates and initializes a vomsdata structure. This is the only
way to do so. Trying to allocate a vomsdata structure by any other way will
trigger undefined behaviour, since the structure that is published is only a small
part of the real one.
voms The directory that contains the certificates of the VOMS servers. If this
value is NULL, then \$X509_VOMS_DIR is considered. If this is also empty than
its default is /etc/grid-security/vomsdir.
cert The directory that contains the certificates of the CAs recognized by the
server. If this value is NULL, then \$X509_CERT_DIR is considered. If this is
also empty than its default is /etc/grid-security/certificates.
RETURNS
A pointer to a properly initialized vomsdata structure, or NULL if something
went wrong. This is the only case in which an error code would no be associated
to the function.

The default values are strongly suggested. If you want to hardcode specific
ones, think very hard about the less of configurability that it would entail.

2.4. FUNCTIONS 15

2.4.6 struct voms *VOMS Copy(struct voms *, int *er-
ror)

This function duplicates an existing voms structure. It is the only way to do so.
voms The voms structure that you wish to be duplicated.
RESULTS
A pointer to a voms structure that duplicates the content of the one you passed,
or NULL if something went wrong.
ERRORS
VERR MEM Not enough memory.

2.4.7 struct vomsdata *VOMS CopyAll(struct vomsdata
*vd, int *error)

This function duplicates an existing vomsdata structure. It is the ONLY sup-
ported way to do so.
RESULTS
A pointer to a voms structure that duplicates the content of the one you passed,
or NULL if something went wrong.
ERRORS
VERR MEM Not enough memory.

2.4.8 void VOMS Delete(strcut voms *v)

This functions deletes an existing voms structure. It is the ONLY supported
way to do so.
v A pointer to the voms structure to delete. It is safe to call this structure with
a NULL pointer.
RESULTS
None.

2.4.9 int VOMS AddTarget(struct vomsdaa *vd, char *tar-
get, int *error)

This function adds a target to the target list for the AC that will be generated
by a server when it will be contacted by the VOMS_Contact*() function.
target The target to add. It should be a Fully Qualified Domain Name.
RESULTS

0 If something went wrong.

<>0 Otherwise.

ERRORS
VERR NOINIT The vomsdata structure was not properly initial-

ized.
VERR PARAM The target parameter was NULL.
VERR MEM There was not enough memory.

16 CHAPTER 2. THE API.

2.4.10 void VOMS FreeTargets(struct vomsdata *vd , int
*error)

This function resets the list of targets. It always succeeds. It is also safe to call
this function when targets have been set.

2.4.11 char *VOMS ListTargets(struct vomsdata *vd, int
*error)

This function returns a comma separated string containing all the targets that
have been set by the VOMS_AddTarget() function. The caller is the owner of the
returned string, and is responsible for calling free() over it when he no longer
needs it.
RESULTS
A string with the result, or NULL.

VERR NOINIT The vomsdata structure was not properly initial-
ized.

VERR MEM There was not enough memory.

2.4.12 int VOMS SetVerificationType(int type, struct voms-
data *vd, int *error)

This function sets the type of AC verification done by the VOMS_Retrieve()
and Contact() functions. The choices are detailed in the verify_type type.
#define VERIFY FULL 0 x f f f f f f f f
#define VERIFY NONE 0x00000000
#define VERIFY DATE 0x00000001
#define VERIFY NOTARGET 0x00000002
#define VERIFY KEY 0x00000004
#define VERIFY SIGN 0x00000008
#define VERIFY ORDER 0x00000010
#define VERIFY ID 0x00000020

The meaning of these types is the following:

VERIFY DATE This flag verifies that the current date is within the limits
specified by the AC itself.

VERIFY TARGET This flag verifies that the AC is being evaluated in a
machine that is included in the target extension of the AC itself.

VERIFY KEY This flag is for a future extension and is unused at the mo-
ment.

VERIFY SIGN This flag verifies that the signature of the AC is correct.

VERIFY ORDER This flag verifies that the attributes present in the AC are
in the exact order that was requested. Please note that this can ONLY
be done when examining an AC right after generation with the Contact()
function. This flag is meaningless in all other cases.

2.4. FUNCTIONS 17

VERIFY ID This flag verifies that the holder information present in the AC
is consistent with:

1. The enveloping user proxy in case the AC was contained in one.

2. The user’s own certificate in case the AC was received without an
enclosing proxy.

VERIFY FULL This flag implies all other verifications.

VERIFY NONE This flag disables all verifications.

These flags can be combined by OR-ing them together. However, if VER-
IFY NONE is OR-ed to any other flag, it can be dismissed, while if VER-
IFY FULL is OR-ed to any other flag, all other flags ca be dismissed.

If this function is not explicitly called by the user, a VERIFY FULL flag is
considered to be in effect.
RESULTS

0 If there is an error.

<> 0 otherwise.

VERR NOINIT The vomsdata structure was not properly initial-
ized.

2.4.13 int VOMS SetLifetime(int length, struct vomsdata
*vd, int *error)

This funxtion sets the requested lifetime for ACs that would be generated as
the result of a VOMS_Contact() or VOMS_ContactRaw()} request. Note however
that this is only an hint sent to the server, since it can lower it at will if the
requested length is against server policy.
length The lifetime requested, measured in seconds.
RESULTS

0 If there is an error.

<> 0 otherwise.

VERR NOINIT The vomsdata structure was not properly initial-
ized.

2.4.14 void VOMS Destroy(struct vomsdata *vd)

This function destroys an allocated vomsdata structure. It is the ONLY sup-
ported way to do so. It is also safe to pass a NULL pointer to it.
RESULTS
None.

18 CHAPTER 2. THE API.

2.4.15 int VOMS Ordering(char *order, struct vomsdata
*vd, int *error)

This function is used to request a specific ordering of the attributes present in an
AC returned by the VOMS_Contact() or by the VOMS_ContactRaw() functions.

This function can be called several times, each time specifying a new at-
tribute. The attributes in th AC created by the server will be in the same order
as the calls to this function, ignoring attributes specified by this function that
the server does not wish to grant. Attributes not explicitly specified in this list
will be inserted, in an unspecified order, after all the others.

Never calling this function means that the corresponding list will be empty,
and as a consequence all the attributes will be in an unspecified ordering.
order The name of an attribute, in the <group>[:<role>: format.

Compatibility

This is the only point where the FQAN format is not yet
fully supported. Expect this to change in future revisions.

RESULTS

0 If there is an error.

<> 0 otherwise.

ERRORS
VERR NOINIT The vomsdata structure was not properly initial-

ized.
VERR PARAM The order parameter is NULL.
VERR MEM There is not enough memory.

2.4.16 int VOMS ResetOrder(struct vomsdata *cd, int *er-
ror)

This function resets the attribute ordering set by the VOMS_Ordering function.
RESULTS

0 If there is an error.

<> 0 otherwise.

VERR NOINIT The vomsdata structure was not properly initial-
ized.

2.4. FUNCTIONS 19

2.4.17 int VOMS Contact(char *hostname, int port, char
*servsubject, char *command, struct vomsdata *vd,
int *error)

This function is used to contact a VOMS server to receive an AC containing the
calling user’s authorization informations. A prerequisite to calling this function
is the existance of a valid proxy for the user himself. This function does not
create such a proxy, which then must already exist. Also, the parameters needed
to call this function should have been obtained by calling one of FindByAlias()
or FindByVO().
hostname This is the hostname of the machine hosting the server.
port This is the port number on which the server is listening.
servsubject This is the subject of the VOMS server’ certificate. This is needed
for the mutual authentication.
command This is the command to be sent to the server. For more info about
it, consult the voms-proxy-init() manual.

RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
VERR NOINIT If the vomsdata structure was not properly initial-

ized.
VERR NOSOCKET If it was impossible to contact the server.
VERR MEM If there was not enough memory.
VERR IDCHECK If a proxy certificate was not found or the data

returned by the server did not contain identifying
information.

VERR FORMAT If there was an error in the format of the data
received.

VERR NODATA If no data was receied at all. (Usually as a conse-
quence of either a server error or not being recog-
nized by the server as a valid user.)

VERR ORDER If the attribute that the client requested, via the
VOMS_Ordering() function, to be first in the list of
attributes received is not first in the attributes re-
turned by the server. This particular code means
that the data has been correctly interpreted and
is available in the vomsdata structure if you want
to use it.

VERR SERVERCODE Some strange error occured in the server.

20 CHAPTER 2. THE API.

2.4.18 int VOMS ContactRaw(char *hostname, int port,
char *servsubject, char *command, void **data,
int *datalen, int *version, struct vomsdata *vd, int
*error)

This function, like VOMS_Contact() can be used to contact a server and receive
Authorization info from it. The difference between the two functions is that
this version does not interpret the raw data, but on the contrary returns it to
the caller. This function has all the same prerequisites as VOMS_Contact().
hostname This is the hostname of the machine hosting the server.
port This is the port number on which the server is listening.
servsubject This is the subject of the VOMS server’ certificate. This is needed
for the mutual authentication.
command This is the command to be sent to the server. For more info about
it, consult the voms-proxy-init() manual.
data A pointer to a pointer to an area of memory where the data returned
from the server is stored. It is the caller’s responsibility to free() this memory
when it is no longer useful.
datalen The length of the data returned.
version The version of the AC returned. Note that this is a minimum version,
it only guarantees that the data is at least in that version of the format.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
VERR NOINIT If the vomsdata structure was not properly initial-

ized.
VERR NOSOCKET If it was impossible to contact the server.
VERR MEM If there was not enough memory.
VERR IDCHECK If a proxy certificate was not found or the data

returned by the server did not contain identifying
information.

VERR FORMAT If there was an error in the format of the data
received.

VERR NODATA If no data was receied at all. (Usually as a conse-
quence of either a server error or not being recog-
nized by the server as a valid user.)

VERR ORDER If the attribute that the client requested, via the
VOMS_Ordering() function, to be first in the list of
attributes received is not first in the attributes re-
turned by the server. This particular code means
that the data has been correctly interpreted and
is available in the vomsdata structure if you want
to use it.

VERR SERVERCODE Some strange error occured in the server.

2.4. FUNCTIONS 21

2.4.19 int VOMS Retrieve(X509 *cert, STACK OF(X509)
*chain, int how, struct vomsdata *vd, int *error)

This function is used to extract from a proxy certificate the VOMS-specific ex-
tension, to parse them and to insert the results into the vomsdata structure.
cert This is the certificate that contains the VOMS information. No checks
are done on the validity of this certifiate, that is supposed to have already been
verified by some other means.
chain This is the chain of certificates that signed the cert certificate. This
pointer may be null, but see the next parameter.
how This parameter indicates how the search for the VOMS info will be per-
formed. If RECURSE_CHAIN then the information is searched first into the cert
and then, if it was not found, in the walking the chain, from the certificates to
the CA. If RECURSE_NONE is specified, then the information is only searched in
the cert.

In case the first value is specified, then the searches stop as soon as the info
is found, ignoring further extension that may be found down the chain.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
VERR NOINIT If the vomsdata structure was not properly initial-

ized.
VERR PARAM If there is something wrong with one of the pa-

rameters.
VERR MEM If there was not enough memory.
VERR IDCHECK If a proxy certificate was not found or the data

returned by the server did not contain identifying
information.

VERR FORMAT If there was an error in the format of the data
received.

VERR NOEXT If the extension was not found.

2.4.20 int VOMS Import(char *buffer, int buflen, struct
vomsdata *vd, int *error)

This function is used to add a string created with VOMS_Export() back into the
vomsdata structure.
buffer A pointer to the string.
buflen The length of the string.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

22 CHAPTER 2. THE API.

ERRORS
VERR NOINIT If the vomsdata structure was not properly initial-

ized.
VERR FORMAT If there was an error in the format of the data

received.
VERR PARAM If there is something wrong with one of the pa-

rameters.
VERR MEM If there was not enough memory.
VERR IDCHECK If a proxy certificate was not found or the data

returned by the server did not contain identifying
information.

VERR SERVER The VOMS server was unidentifiable.
VERR PARSE There has been some problem in parsing the AC

or blob.
VERR SIGN It was not possible to verify the signature.
VERR SERVER It was not possible to properly identify the At-

tribute Issuer.
VERR TIME The check on the validity dates failed.

2.4.21 int VOMS Export(char **buffer, int *buflen, struct
vomsdata *vd, int *error)

This function will take the current vomsdata structure and encode it in a string
that can then be exported.
buffer A pointer to an area of memory that will be allocated and filled by the
function. It is the caller’s responsibility to free() this memory. It is possible
that this pointer will be set to NULL, in case the vomsdata structure is empty.
buflen The size of the data pointed by buffer.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
VERR PARAM If there is something wrong with one of the pa-

rameters.
VERR MEM If there was not enough memory.

2.4.22 struct voms *VOMS DefaultData(struct vomsdata
*vd, int *error)

This function returns the default attributes from a vomsdata class.
RESULTS

NULL There has been an error or the vomsdata structure was empty.

2.4. FUNCTIONS 23

<>NULL There is some data.

ERRORS
VERR NOINIT The vomsdata structure was not properly initial-

ized.
VERR NONE The vomsdata structure was empty.

2.4.23 char *VOMS ErrorMessage(struct vomsdata *vd,
int error, char *buffer, int len)

This function gives a textual description of the last encountered error.
error The error returned by the previous function.
buffer A pointer to a buffer that will hold the error message. If this is NULL,
then it will be allocated by the function (and must be released by the caller).
len The length of the buffer pointed to by the previous parameter.
RESULTS

NULL The buffer passed was not long enough, or there is not enough memory
to allocate a buffer or the vomsdata structure was improperly initialized.

<>NULL A pointer to a buffer containig the error message. If buffer was not
null, then this is buffer, else it is a newly allocated chunk of memory that
should be free()ed by the caller.

ERRORS
VERR NOPARAM The vomsdata structure was not properly initial-

ized.

2.4.24 int VOMS RetrieveEXT(X509 EXTENSION *ext,
struct vomsdata *vd, int *error)

This function retrieves VOMS information from the given extension. Due to
the lack of a holder certificate, all checks regarding holder information will be
skipped.
ext The extension to parse.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
Check the description of the the VOMS Retrieve() function for a description of
the errors.

24 CHAPTER 2. THE API.

2.4.25 int VOMS RetrieveFromCtx(gss ctx id t ctx, int
how, struct vomsdata *vd, int *error)

This function retrieves VOMS information from the given Globus context.
ctx The context from which to retrieve the certificate to parse.
how This parameter indicates how the search for the VOMS info will be per-
formed. If RECURSE_CHAIN then the information is searched first into the cert
and then, if it was not found, in the walking the chain, from the certificates to
the CA. If RECURSE_NONE is specified, then the information is only searched in
the cert.

In case the first value is specified, then the searches stop as soon as the info
is found, ignoring further extension that may be found down the chain.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
Check the description of the the VOMS Retrieve() function for a description of
the errors.

2.4.26 int VOMS RetrieveFromCred(gss cred id t cred, int
how, struct vomsdata *vd, int *error)

This function retrieves VOMS information from the given Globus credential.
cred The credential from which to retrieve the certificate to parse.
how This parameter indicates how the search for the VOMS info will be per-
formed. If RECURSE_CHAIN then the information is searched first into the cert
and then, if it was not found, in the walking the chain, from the certificates to
the CA. If RECURSE_NONE is specified, then the information is only searched in
the cert.

In case the first value is specified, then the searches stop as soon as the info
is found, ignoring further extension that may be found down the chain.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
Check the description of the the VOMS Retrieve() function for a description of
the errors.

2.4.27 int VOMS RetrieveFromProxy(int how, struct voms-
data *vd, int *error)

This function retrieves VOMS information from an existing Globus proxy cer-
tificate.

2.4. FUNCTIONS 25

how This parameter indicates how the search for the VOMS info will be per-
formed. If RECURSE_CHAIN then the information is searched first into the cert
and then, if it was not found, in the walking the chain, from the certificates to
the CA. If RECURSE_NONE is specified, then the information is only searched in
the cert.

In case the first value is specified, then the searches stop as soon as the info
is found, ignoring further extension that may be found down the chain.
RESULTS

0 If there is an error.

<>0 otherwise. Furthermore, the data returned by the server has been parsed
and added to the vomsdata structure.

ERRORS
Check the description of the the VOMS Retrieve() function for a description of
the errors.

