

VOMS Architecture
v1.1

05/09/02

1. The VOMS System

The VOMS System is composed by the following parts:

• Server: receives requests from a client and returns information about the user.
• User Client: contacts the server presenting a user's certificate (or possibly proxy) and obtains

a list of groups, roles and capabilities of the user.
• Administration Interface: used by the VO administrators (adding users, creating new

groups, changing roles, etc...).

1.1 Operations

One strong requirement we have is to disrupt as little as possible - from the user’s standpoint - the
creation of the user proxy certificate. To achieve this we have modified the “grid-proxy-init”
command (referred hereinafter as “voms-proxy-init”) in order to get, first, the info from the VOMS
server. The info is returned to the user in a structure containing also the credentials both of the user
and of the VOMS server and the validity; all these data are signed by the VOMS server itself. We
call this structure a “Pseudo-Certificate”1. The user may contact any VOMS as he needs. The
modified procedure creates then the user proxy certificate inserting these data into it in a non critical
extension. In this way, the variations in the new format of user proxy certificate should be
transparent to the old programs, thus allowing a smooth transition to the new system.

1 The reason why we don’t use a “true” Attribute certificate [3] is mainly to be found in the limitations on the length of
the certificate due to the interaction between OpenSSL and Globus. We try to keep the size of these pseudo-certificates
to the minimum, so as to minimize the risk to end up with a proxy too big.

VOMS Architecture (v1.1) 2

Authorization WG – preliminary

More in details, the voms-proxy-init command, which produces a “VOMS-aware” proxy certificate,
can be divided into the following points:

1. Client and server mutually authenticate themselves and establish a secure communication
channel using standard Globus API..

2. The Client sends the request to the Server.

3. The Server checks the correctness of the request and sends back the required info (signed by
itself): User Info Pseudo-Certificate (PC).

4. The Client checks the validity of the info received.

5. Steps 1—4 are repeated for each Server the Client needs to contact.

6. The Client creates a proxy certificates with an extension (non critical) containing all the info
received from the contacted VOMS Servers (as separate PC’s).

1.2 Format of User Info Pseudo-Certificate

The signed info returned by the VOMS Server to the Client is composed by the following fields.

• Holder
Subject and Issuer of the certificate of the user requesting the info.

• Issuer
Subject and Issuer of the VOMS server certificate.

• Validity

Query

Authentication

Request

Auth
DB VOMS

pseudo-
cert

C=IT/O=INFN
/L=CNAF
/CN=Pinco Palla
/CN=proxy

VOMS
pseudo-

cert

VOMS Architecture (v1.1) 3

Authorization WG – preliminary

o notBeforeTime
o notAfterTime

For the moment it is an unique value for all the VOMS: if necessary it could become
different according to the kind of info returned. Of course, the final decision is left to the
local site.

• VO name
• Attributes

The attributes (groups and roles) are returned as two lists. See Appendix C (when it will be
ready!) for details.

• Signature
VOMS Signature of the above data.

2. Modifications to Globus

2.1 Resource Broker

2.2 Gatekeeper

The Gatekeeper, in addition to normal certificate checking, has to perform all the operations that the
client performed on the pseudo-certificates if it wants to use their information. This can be easily
done with an ad hoc LCAS plug-in.

However, as the VOMS info are included in a non critical extension of the proxy certificate, this
can be used even by “VOMS-unaware” Gatekeepers, thus maintaining compatibility with previous
releases.

2.3 Security Considerations

The VOMS server does not add any security issues at user level since it performs the usual GSI
security controls on the user’s certificate before granting rights (it must be signed by a “trusted”
CA, be valid and not revoked).

On the other hand, even compromising the VOMS server itself would be not enough to grant illegal
access to resources since the authorization data must be inserted in a user proxy certificate (i.e.
countersigned by the user himself). Hence the only possible large scale vulnerabilities are denial of
service attacks (e.g. to prevent VO users to get their authorization credentials).

The main security issue about proxy certificates is the lack of a revocation mechanism; on the other
hand these certificates have short lifetimes (12 hours, typically). For a detailed discussion about
security implications of restricted proxy certificates see [12].

VOMS Architecture (v1.1) 4

Authorization WG – preliminary

3. Server Architecture

3.1 Introduction

These are the differences between the v0 version (released 31 July) and v1.1 (in collaboration with
CERN)

• there aren’t user’s capabilities (e.g. ACL’s) and queries (capability and queries tables);
• it is possible to have more than one administrator. Their privileges are specified in the acl

table;
• every transaction is fully traced.

3.2 Database

The server is essentially a front-end to an RDBM, where all information about user are kept. It
accepts the following requests in text format:

A Returns all info regarding the user.

B <group>:<role> Returns all info regarding the user as a member of the specified group
with the specified role

G <group> Returns all info regarding the user as a member of the specified group

L Returns the list of all the available queries

R <role> Returns all info regarding the role specified

Note: All the queries have an implicit <userid> field, derived from the certificate presented by the
user to the server.

The option –print allows to display the result of the query, instead of generating the proxy
certificate.

3.3 Tables

The structure of the tables is the following: (please note that type information has been left
deliberately vague, because different RDBM’s may need to declare the same field with different
types).

Primary key fields are shaded.

m

user user’s identifier number

group user’s group identifier number

VOMS Architecture (v1.1) 5

Authorization WG – preliminary

role user’s role identifier number

createdBy number

createdSerial number

users

uid user’s identifier number

dn DN of the user's certificate (Subject) text

caid Identifier of the user’s CA number

cn User’s CN text

mail User’s e-mail text

cauri URI of the user’s certificate (of CA LDAP
server)

text

createdBy number

createdSerial number

ca

caid Certification Authority identifier number

cadn CA Subject text

cadescr Name of Certification Authority text

This is the only table without the traceability fields.

acl

aclid acl identifier number

principal DN of administrator’s certificate number

operation number

allow boolean

createdBy number

createdSerial number

The table contains the DN’s of the administrators’ certificates, together with their permissions.

groups

gid group identifier number

VOMS Architecture (v1.1) 6

Authorization WG – preliminary

dn group name text

aclid the acl identifier of the administrator number

createdBy number

createdSerial number

roles

rid role identifier number

dn role name text

aclid the acl identifier of the administrator number

createdBy number

createdSerial number

users

uid

dn

ca

…

acl

aclid

principal

operation

allow

groups

gid

dn

aclid

m

user

group

role

…

roles

rid

dn

aclid

VOMS Architecture (v1.1) 7

Authorization WG – preliminary

3.4 Traceability

Every table has two fields (createdBy and createdSerial) which are filled at every update operation.
Deleted and modified rows are kept in another database.

3.5 Replicas

References

[1] Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999).

[2] R. Housley, T. Polk, W. Ford and D. Solo, Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, RFC3280 (2002).

[3] S. Farrel and R. Housley, An Internet Attribute Certificate Profile for Authorization,
RFC3281 (2002).

[4] Architectural design and evaluation criteria: WP4 Fabric Management, DataGrid-04-
D4.2- 0119-2-1 (2001).

[5] The DataGrid Project: http://www.edg.org/

[6] The DataTAG Project: http://www.datatag.org/

[7] iVDGL - International Virtual Data Grid Laboratory: http://www.ivdgl.org/

[8] The Globus Project: http://www.globus.org/

[9] Grid Security Infrastructure: http://www.globus.org/security/

[10] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid, International Journal of
High performance Computing Applications, 15, 3 (2001).

[11] L. Pearlman, V. Welch, I. Foster, K. Kesselman and S. Tuecke, A Community
Authorization Service for Group Collaboration, IEEE Workshop on Policies for
Distributed Systems and Networks (2002).

[12] S. Tuecke, D. Engert, I. Foster, V. Welch, M. Thompson, L. Pearlman and C. Kesselman,
Internet X.509 Public Key Infrastructure Proxy Certificate Profile, draft-ggf-gsi-proxy-04
(2002).

[13] J. Vollbrecht et al, AAA Authorization Framework, RFC2904 (2000).

VOMS Architecture (v1.1) 8

Authorization WG – preliminary

A. Sample “VOMS-enabled” Proxy Certificate

This is a sample proxy certificate with pseudo-certificates from two VOMS.

VOMS Architecture (v1.1) 9

Authorization WG – preliminary

B. API’s

This is a very preliminary list.
createUser (dn, ca)

deleteUser (dn)

createGroup (name)

deleteGroup (name)

createRole (name)

deleteRole (name)

grantAttribute (user, group, role)

removeAttribute (user, group, role)

getAttributes (user, group, role)

listMembers (group)

addACLEntry (attribute, allow, principal, op)

removeACLEntry (attribute, principal, op)

setACL(attribute, {principal, op, allow})

VOMS Architecture (v1.1) 10

Authorization WG – preliminary

C. ASN.1 definition

