
The VOMS C++ API

A Developer’s Guide

Vincenzo Ciaschini

December 20, 2005

2

Contents

1 Introduction 5

2 The API. 7
2.1 The data structure . 7

2.1.1 group . 7
2.1.2 role . 7
2.1.3 cap . 8

2.2 The voms structure . 8
2.2.1 version . 9
2.2.2 siglen . 9
2.2.3 user . 9
2.2.4 userca . 9
2.2.5 server . 9
2.2.6 serverca . 9
2.2.7 voname . 9
2.2.8 uri . 10
2.2.9 date1, date2 . 10
2.2.10 type . 10
2.2.11 std . 11
2.2.12 custom . 11
2.2.13 fqan . 11

2.3 vomsdata . 11
2.3.1 error . 13
2.3.2 data . 13

2.4 Methods . 13
2.4.1 voms . 13
2.4.2 voms::voms() . 13
2.4.3 voms::voms(const voms &) 14
2.4.4 voms::operator=(const voms &) 14

2.5 vomsdata . 14
2.5.1 vomsdata::vomsdata(std::string voms dir=””, std::string

cert dir=””) . 14
2.5.2 bool vomsdata::LoadSystemContacts(std::string dir = “”) 14
2.5.3 bool vomsdata::LoadUserContacts(std::string dir = “”) . 15
2.5.4 std::vector<contactdata> vomsdata::FindByAlias(std::string

alias) . 15
2.5.5 void vomsdata::Order(std::string attribute) 15
2.5.6 void vomsdata::ResetOrder(void) 16

3

4 CONTENTS

2.5.7 void vomsdata::AddTarget(std::string target) 16
2.5.8 std::vector<std::string> vomsdata::listTargets(void) . . . 16
2.5.9 void vomsdata::ResetTargets(void) 17
2.5.10 std::string vomsdata::ServerErrors() 17
2.5.11 void vomsdata::SetVerificationType(verify type how) . . . 17
2.5.12 void vomsdata::SetLifetime(int lifetime) 18
2.5.13 bool vomsdata::Retrieve(X509 *cert, STACK OF(X509)

*chain, recurse type how = RECURSE CHAIN) 18
2.5.14 bool vomsdata::Contact(std::string hostname, int port, std::string

servsubject, std::string command) 19
2.5.15 bool vomsdata::ContactRaw(std::string hostname, int port,

std::string servsubject, std::string command, std::string
&raw, int &version) . 20

2.5.16 bool vomsdata::Export(std::string &data) 21
2.5.17 bool vomsdata::Import(std::string buffer) 21
2.5.18 bool vomsdata::DefaultData(voms &d) 22
2.5.19 std::string vomsdata::ErrorMessage(void) 22
2.5.20 bool vomsdata::RetrieveFromCtx(gss ctx id t context, re-

curse type how) . 22
2.5.21 bool vomsdata::RetrieveFromCred(gss cred id t credential,

recurse type how) . 22
2.5.22 bool vomsdata::Retrieve(X509 EXTENSION *ext) 23
2.5.23 bool vomsdata::RetrieveFromProxy(recurse type how) . . 23

Chapter 1

Introduction

The VOMS API already come with their own documentation in doxygen for-
mat. However, that documentation is little more than a simple enumeration of
functions, with a very terse description.

The aim of this document is different. Here the intention is not only to
describe the different functions that comprise the API, but also to show how
they are supposed to work together, what particular care the user needs to take
when calling them, what should be done to mantain compatibility between the
different versions, etc. . .

Throughout this whole document, you will find sections marked thus:

Compatibility

Some information

These section contain informations regarding both back and forward compati-
bility between different versions of the API.

Compatibility

Finally, please note that everything not explicitly defined
in this argument should be considered a private detail and
subject to change without notice.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

The API.

There are three basic data structures: data, voms and vomsdata.

2.1 The data structure

The first one, data contains the data regarding a single attribute, giving its
specification in terms of Groups, Roles and Capabilities. It is defined as follows:
struct data {

std : : s t r i n g group ;
std : : s t r i n g r o l e ;
s td : : s t r i n g cap ;

} ;

All the values of these strings must be composed from regular expression:
[a-ZA-Z0-9 /]*.

2.1.1 group

This field contains the name of a group which the user belongs into. The format
of entries in this group is reminiscent of the structure of pathnames, and is the
following:

/ group/group/.../group

where the name of the first group is by convention the name of the Virtual
Organization (VO), while each other /group component is a subgroup of the
group immediately preceding it on the left. The character ’/’ is not acceptable
as part of a group name.

This field MUST always be filled.

2.1.2 role

This field contains the name of the role which the user owns in the group spec-
ified by group. If the user does not own any particular role in that group, than
this field contains the value “NULL”.

7

8 CHAPTER 2. THE API.

2.1.3 cap

This field details a capability that the user has as a member of the group spec-
ified by group while owning the role specified by role. If there is no specific
capability, than this value is “NULL”.

No specific format is associated to a capability. They are basically free-form
strings, whose value should be agreed between the AA and the Attribute verifier.

2.2 The voms structure

The second one, voms is used to group together all the informations that can
be gleaned from a single AC, and is defined as follows:
enum data type {

TYPE NODATA, /∗ !< no data ∗/
TYPE STD, /∗ !< group , r o l e , c a p ab i l i t y t r i p l e t ∗/
TYPE CUSTOM /∗ !< r e s u l t o f an S command ∗/

} ;

struct voms {
friend class vomsdata ;
int ve r s i on ;
int s i g l e n ;
std : : s t r i n g s i gna tu r e ;
s td : : s t r i n g user ;
s td : : s t r i n g userca ;
s td : : s t r i n g s e r v e r ;
s td : : s t r i n g s e rv e r ca ;
s td : : s t r i n g voname ;
std : : s t r i n g u r i ;
s td : : s t r i n g date1 ;
std : : s t r i n g date2 ;
data type type ;
std : : vec to r<data> std ;
std : : s t r i n g custom ;
/∗ Data below t h i s l i n e only makes sense i f v e r s i on >= 1 ∗/
std : : vec to r<std : : s t r i n g > fqan ;
std : : s t r i n g s e r i a l ;
/∗ Data below t h i s l i n e i s p r i va t e . ∗ /

private :
AC ∗ ac ;
X509 ∗ ho lder ;

public :
voms(const voms &) ;
voms () ;
voms &operator=(const voms &) ;
˜voms () ;

} ;

The purpose of this structure is to present, in a readable format, the data
that has been included in a single Attribute Certificate (AC). While the various

2.2. THE VOMS STRUCTURE 9

public fields may be freely modified to simplify internal coding, such changes
have no effect on the underlying AC. Let’s examine the various fields in detail,
starting with the constructors.

2.2.1 version

This field specifies the version of this structure that is currently being used. A
value of 0 indicates that it comes from an old format extension, while a value
of 1 indicates that this structure comes from an AC.

Compatibility

Support for version 0 is going to be phased out of the code
base in roughly 6 months (late june - start of july). When
that happens, version 0 structures will not be readable
anymore. Until then, support for it is being kept as a
transition measure.
Update: With software version 1.6.0 and onwards, support
for version 0 has been dropped.

Please do note that modifying the fields of a version 0 structure associated
with a versiondata object invalidates the result of the Export method on that
object.

2.2.2 siglen

The length of the data signature.

2.2.3 user

This field contains the subject of the holder’s certificate in slash-separated for-
mat.

2.2.4 userca

This field contains the subject of the CA that issued the holder’s certificate, in
slash-separated format.

2.2.5 server

This field contains the subject of the certificate that the AA used to issue the
AC, in slash-separated format.

2.2.6 serverca

This field contains, in slash-separated format, the subject of the CA that issued
the certificate that the AA used to issue the AC.

2.2.7 voname

This field contains the name of the Virtual Organization (VO) to which the rest
of the data contained in this structure applies to.

10 CHAPTER 2. THE API.

2.2.8 uri

This is the URI at which the AA that issued this particular AC can be contacted.
Its format is:

fqdn:port

where fqdn is the Fully Qualified Domain Name of the server which hosts the
AA, and port is the port at which the AA can be contacted on that server.

2.2.9 date1, date2

These are the dates of start and end of validity of the rest of the informations.
They are in a string representation readable to humans, but they may be easily
converted back to their original format, with a little twist: dates coming from
an AC are in GeneralizedTime format, while dates coming from the old version
data are in UtcTime format.

Here follows a code example doing that conversion:

ASN1 TIME ∗
convtime (std : : s t r i n g data)
{

ASN1 TIME ∗ t= ASN1 TIME new () ;

t−>data = (unsigned char ∗) (data . data ()) ;
t−>l ength = data . s i z e () ;
switch (t−>l ength) {
case 1 0 :

t−>type = V ASN1 UTCTIME;
break ;

case 1 5 :
t−>type = V ASN1 GENERALIZEDTIME;
break ;

default :
ASN1 TIME free (t) ;
return NULL;

}
return t ;

}

2.2.10 type

This datum specifies the type of data that follows. It can assume the following
values:

TYPE NODATA There actually was no data returned.

Compatibility

This is actually only true for version 0 structures. The
following versions will simply not generate a voms struc-
ture in this case.

2.3. VOMSDATA 11

TYPE CUSTOM The data will contain the output of an “S” command sent
to the server.

Compatibility

Again, this type of datum will only be present in version
0 structures. Due to lack of use, support for it has been
disabled in new versions of the server.

TYPE STD The data will contain (group, role, capabilities) triples.

2.2.11 std

This vector contains all the attributes found in an AC, in the exact same order
as they were found, in the format specified by the data structure. It is only
filled if the value of the type field is TYPE STD.

Compatibility

This structure is filled in both version 1 and version 0
structures, although this is scheduled to be left empty after
the transition period has passed.

2.2.12 custom

This field contains the data returned by the “S” server command, and it is only
filled if the type value id TYPE CUSTOM.

2.2.13 fqan

This field contains the same data as the std field, but specified in the Fully
Qualified Attribute Name (FQAN) format.

2.3 vomsdata

The purpose of this object is to collect in a single place all informations present
in a VOMS extension. It is defined so.
struct vomsdata {

private :
class I n i t i a l i z e r {
public :

I n i t i a l i z e r () ;
private :

I n i t i a l i z e r (I n i t i a l i z e r &) ;
} ;

private :
stat ic I n i t i a l i z e r i n i t ;
s td : : s t r i n g c a c e r t d i r ;
s td : : s t r i n g voms ce r t d i r ;

12 CHAPTER 2. THE API.

int durat ion ;
std : : s t r i n g orde r ing ;
std : : vec to r<contactdata> s e r v e r s ;
s td : : vec to r<std : : s t r i n g > t a r g e t s ;

public :
v e r r o r t ype e r r o r ; /∗ !< Error code ∗/

vomsdata (std : : s t r i n g voms dir = ”” ,
std : : s t r i n g c e r t d i r = ””) ;

bool LoadSystemContacts (std : : s t r i n g d i r = ””) ;
bool LoadUserContacts (std : : s t r i n g d i r = ””) ;
s td : : vec to r<contactdata> FindByAlias (std : : s t r i n g a l i a s) ;
s td : : vec to r<contactdata> FindByVO(std : : s t r i n g vo) ;
void Order (std : : s t r i n g at t) ;
void ResetOrder (void) ;
void AddTarget (std : : s t r i n g t a r g e t) ;
s td : : vec to r<std : : s t r i n g > Li s tTarge t s (void) ;
void ResetTargets (void) ;
s td : : s t r i n g Se rve rEr ro r s (void) ;
bool Retr i eve (X509 ∗ c e r t , STACK OF(X509) ∗ chain ,

r e cu r s e t ype how = RECURSE CHAIN) ;
bool Contact (std : : s t r i n g hostname , int port ,

s td : : s t r i n g s e r v sub j e c t ,
s td : : s t r i n g command) ;

bool ContactRaw (std : : s t r i n g hostname , int port ,
s td : : s t r i n g s e r v sub j e c t ,
s td : : s t r i n g command ,
std : : s t r i n g &raw , int & ver s i on) ;

void SetVer i f i c a t i onType (v e r i f y t y p e how) ;
void Se tL i f e t ime (int l i f e t i m e) ;
bool Import (std : : s t r i n g bu f f e r) ;
bool Export (std : : s t r i n g &data) ;
bool DefaultData (voms &) ;
std : : vec to r<voms> data ;
std : : s t r i n g workvo ;
std : : s t r i n g ext ra data ;

std : : s t r i n g ErrorMessage (void) ;
bool RetrieveFromCtx (g s s c t x i d t context , r e cu r s e t ype how) ;
bool RetrieveFromCred (g s s c r e d i d t c r e d e n t i a l , r e cu r s e t ype how) ;
bool Retr i eve (X509 EXTENSION ∗ ext) ;
bool RetrieveFromProxy (r e cu r s e t ype how) ;

private :
/∗ not r e l e van t : removed from th i s l i s t i n g . ∗ /

} ;

Let us see the fields in detail.

2.4. METHODS 13

2.3.1 error

This field contains the error code returned by one of the methods. Please note
that the value of this field is only significant if the last method called returns
an error value. Also, the value of this field is subject to change without notice
during method executions, regardless of whether an error effectively occurred.

The possible values returned are the following:

enum ve r r o r type {
VERR NONE,
VERR NOSOCKET,
VERR NOIDENT,
VERRCOMM,
VERRPARAM,
VERR NOEXT,
VERR NOINIT,
VERR TIME,
VERR IDCHECK,
VERR EXTRAINFO,
VERRFORMAT,
VERRNODATA,
VERR PARSE,
VERR DIR,
VERR SIGN,
VERR SERVER,
VERRMEM,
VERR VERIFY,
VERR TYPE,
VERR ORDER,
VERR SERVERCODE

} ;
In general, a first idea of what each code means can be gleaned from the code

name, but in any case every method description will document what errors its
execution may generate and on which conditions.

2.3.2 data

This field contains a vector of voms structures, in the exact same order as
the corresponding ACs appeared in the proxy certificate, and containing the
informations present in that AC.

2.4 Methods

2.4.1 voms

2.4.2 voms::voms()

This is the standard default constructor. Please note that a structure created
this way would not contain any real data. The only use for this constructor is

14 CHAPTER 2. THE API.

to create a “placeholder” structure to which you will copy data using the copy
operator.

2.4.3 voms::voms(const voms &)

This is the standard copy constructor. Structures allocated via this method will
retain an exact copy of the data of their source.

2.4.4 voms::operator=(const voms &)

This defines an assignment operator between two different voms structures.

2.5 vomsdata

2.5.1 vomsdata::vomsdata(std::string voms dir=””, std::string
cert dir=””)

This is the standard constructor that also doubles as the default constructor.
voms dir This is the directory where the VOMS server’ certificates are kept. If
this value is empty (the default), then the value of $X509 VOMS DIR is considered,
and if this is also empty than its default is /etc/grid-security/vomsdir.
cert dir This is the directory where the CA certificates are kept. If this value
is empty (the default), then the value of $X509 CERT DIR is considered, and if
this is also empty than its default is /etc/grid-security/certificate.

Compatibility

This function is the only supported way to create and
initialize a vomsdata structure other than the copy con-
structor. It is forbidden to ever take the sizeof() of this
class.

The default values are strongly suggested. If you want to hardcode specific
ones, think very hard about the loss of configurability that it would entail.

2.5.2 bool vomsdata::LoadSystemContacts(std::string dir
= “”)

This function loads the vomses files that are shared system-wide.
dir This is the directory in which the various vomses files are kept. If left as
blank, it defaults to /opt/edg/etc/vomses.

RETURNS
The return value is true if all went well and false otherwise. In the latter case the
vomsdata::error member becomes significant, and it may assume the following
values:

VERR DIR The function tried to access something that either
was not a directory or a regular file, could not be
read, or it had the wrong permissions. The correct
permissions are 644 for files and 755 for directories.

VERR FORMAT The file was not in the expected format.

2.5. VOMSDATA 15

2.5.3 bool vomsdata::LoadUserContacts(std::string dir =
“”)

This function loads the vomses files that are user-specific.
dir This is the directory in which the various vomses files are kept. If left as
blank, it defaults to $VOMS USERCONF. If this is also empty, then the last default
is /.edg/vomses.

RETURNS
The return value is true if all went well and false otherwise. In the latter case the
vomsdata::error member becomes significant, and it may assume the following
values:

VERR DIR
The function tried to access something that either
was not a directory or a regular file, could not be
read, or it had the wrong permissions. The correct
permissions are 644 for files and 755 for directories.

VERR FORMAT The file was not in the expected format.

2.5.4 std::vector<contactdata> vomsdata::FindByAlias(std::string
alias)

struct contactdata { /∗ !< You must never a l l o c a t e d i r e c t l y t h i s s t r u c tu r e .
I t s s i z e o f () i s sub j e c t to change without no t i c e .
The only supported way to obta in i t i s v ia the
FindBy ∗ f un c t i on s . ∗ /

std : : s t r i n g n ick ; /∗ !< The a l i a s o f the s e r v e r ∗/
std : : s t r i n g host ; /∗ !< The hostname o f the s e r v e r ∗/
std : : s t r i n g contact ; /∗ !< The sub j e c t o f the s e r v e r ’ s c e r t i f i c a t e ∗/
std : : s t r i n g vo ; /∗ !< The VO served by t h i s s e r v e r ∗/
int port ; /∗ !< The port on which the s e r v e r i s l i s t e n i n g ∗/

} ;

This function looks in the vomses files loaded by vomsdata::LoadSystemContacts()
and vomsdata::LoadUserContacts() for servers that have been registered with
a particular alias.
alias The alias that will be searched for. The search will be case sensitive.

RETURNS
The return value is a vector containing the data (in contactdata format) of all
the servers known by the system that go by the specified alias. This function
does not have an error code, but the vector may be empty if no servers satisfying
the query are found or if there are no known servers altogether, typically because
the Load*Contacts() function have not been called.

2.5.5 void vomsdata::Order(std::string attribute)

This function should be called before the various Contact*() ones, and it is used
to specify in which order the clients would like to have the attributes returned
by the server.

It can be called multiple times, each time specifying a new attribute, creating
in this way an ordered list of attributes. Then, when the server is contacted, it

16 CHAPTER 2. THE API.

will exemine this list of attributes against the one it would grant the client, and
order the latter in the same way, with the following provisions:

• All attributes not explicitly indicated in the order list will be placed in an
unspecified order after all the specified ones.

• An attribute present in the order list but not present among the attributes
that the server is prepared to grant will be silently ignored.

attribute The attribute that should be ordered

Compatibility

For the moment, this is the only place where the FQAN
format for attribute names is not yet fully supported. The
attribute field will so have to be specified in the <group
name>:<role name> format. This situation will be cor-
rected sometime in the 1.2.x series.

SEE ALSO
ResetOrder

2.5.6 void vomsdata::ResetOrder(void)

This function clears the list of attributes that has been setup via calls to the
Order() function. SEE ALSO
Order

2.5.7 void vomsdata::AddTarget(std::string target)

This function takes advantage of ACs capability to target themselves to a specific
set of hosts. Through consecutive calls of this function, the user can target the
AC that the server will generate to any set of hosts it likes. Obviously, this
funciton should be called before the Contact*() ones.
target The name of the host to which the AC will be targeted. The name
MUST be expressed in Fully Qualified Host Name format. SEE ALSO
ListTargets, ResetTargets

2.5.8 std::vector<std::string> vomsdata::listTargets(void)

function returns a vector containing the list of hosts that will constitute the
targets that will be include in the AC.

RETURNS
A vector whose members are the FQHNs of the machines against which the AC
will be targeted. This may be empty if the list has been cleared or it has never
been filled.

SEE ALSO
AddTarget, ResetTargets

2.5. VOMSDATA 17

2.5.9 void vomsdata::ResetTargets(void)

This function clears the list of targets for an AC. SEE ALSO
AddTarget, ListTargets

2.5.10 std::string vomsdata::ServerErrors()

In case one of the other functions returned a VERR SERVER message, meaning
that some error has occurred on the server side of a connection, calling this
function MAY return a message from the server itself detailing the error.

RETURNS
The error message itself

2.5.11 void vomsdata::SetVerificationType(verify type how)

This function sets the type of AC verification done by the Retrieve() and Con-
tact() functions. The choices are detailed in the verify type type.
enum v e r i f y t y p e {

VERIFY FULL = 0 x f f f f f f f f ,
VERIFY NONE = 0x00000000 ,
VERIFY DATE = 0x00000001 ,
VERIFY TARGET = 0x00000002 ,
VERIFY KEY = 0x00000004 ,
VERIFY SIGN = 0x00000008 ,
VERIFY ORDER = 0x00000010 ,
VERIFY ID = 0x00000020

} ;
The meaning of these types is the following:

VERIFY DATE This flag verifies that the current date is within the limits
specified by the AC itself.

VERIFY TARGET This flag verifies that the AC is being evaluated in a
machine that is included in the target extension of the AC itself.

VERIFY KEY This flag is for a future extension and is unused at the mo-
ment.

VERIFY SIGN This flag verifies that the signature of the AC is correct.

VERIFY ORDER This flag verifies that the attributes present in the AC are
in the exact order that was requested. Please note that this can ONLY
be done when examining an AC right after generation with the Contact()
function. This flag is meaningless in all other cases.

VERIFY ID This flag verifies that the holder information present in the AC
is consistent with:

1. The enveloping user proxy in case the AC was contained in one.

2. The user’s own certificate in case the AC was received without an
enclosing proxy.

VERIFY FULL This flag implies all other verifications.

18 CHAPTER 2. THE API.

VERIFY NONE This flag disables all verifications.

These flags can be combined by OR-ing them together. However, if VER-
IFY NONE is OR-ed to any other flag, it can be dismissed, while if VER-
IFY FULL is OR-ed to any other flag, all other flags ca be dismissed.

If this function is not explicitly called by the user, a VERIFY FULL flag is
considered to be in effect.

2.5.12 void vomsdata::SetLifetime(int lifetime)

This function should be called before the Contact*() ones. Its aim is to set the
requested lifetime for the AC that the server would create. Please note that this
is only a suggestion, and that the server may well override it if the requested
time is against its own policy.
lifetime The requested lifetime, in seconds.

2.5.13 bool vomsdata::Retrieve(X509 *cert, STACK OF(X509)
*chain, recurse type how = RECURSE CHAIN)

This function retrieves a VOMS AC from a VOMS-enabled proxy certificate,
executes the verifications requested by the SetVerificationType() function and
interprets the data.
cert This is the X509 proxy certificate from which we want to retrieve the
informations.
chain This is the certificate chain associated to the proxy certificate. This
parameter is only significant if the value of the next parameter is RECURSE CHAIN.
how This parameters may have two values:

RECURSE NONE meaning that the VOMS extension MUST be found in
the certificate proper, or

RECURSE CHAIN meaning that if the VOMS extension are not found in
the certificate proper, the certificate chain may be descended until either
the extension is found or the chain ends.

The default value is RECURSE CHAIN.

RECURSE NONE should only be used in special circumstances, since it is guar-
anteed that in a normal Grid environment the process of credential delegation
will make the VOMS extension to be only present in the certificate chain.

The result value is a boolean that is true if and only if there have not been
errors. If the value is false, then you should check the error code, which may
have one of the following values:

2.5. VOMSDATA 19

VERR PARAM There was something wrong with the parameters
passes to the function, or some of the required
information (holder, etc...) is empty.

VERR FORMAT If the format of the data is unknown (e.g. neither
an AC nor an old-style blob.

VERR NOIDENT If it was impossible to discover the holder of the
AC.

VERR NOINIT The vomsdata object hasn’t been properly initial-
ized. Most likely the voms dir and ca dir parame-
ters are empty.

VERR PARSE There has been some problem in parsing the AC
or blob.

VERR VERIFY It was not possible to verify the signature.
VERR SERVER It was not possible to properly identify the At-

tribute Issuer.
VERR TIME The check on the validity dates failed.
VERR IDCHECK The holder of the AC is not the same entity as the

holder of the enclosing certificate.

SEE ALSO
SetVerificationType()

2.5.14 bool vomsdata::Contact(std::string hostname, int
port, std::string servsubject, std::string command)

This function is used to contact a specified server and use the received AC to
fill the vomsdata structure.
hostname The fully qualified hostname of the machine on which the server
runs.
port The port number on which the server is listening.
servsubject The subject of the server’ certificate.
command The command to be sent to the server.

These parameters may be obtained by using the FindByAlias() and Find-
ByVO() methods.

RETURNS
The return value is true if everything went well, false otherwise. In the latter
case, the error field becomes significant, and it may assume the following values.

20 CHAPTER 2. THE API.

VERR NOSOCKET The client was unable to connect to the server.
VERR COMM Some communication errors (Usually related to

certificate problems)
VERR SERVERCODE The server returned an error code. More detailed

information may be obtaind by the ServeError()
function.

VERR PARAM There was something wrong with the parameters
passed to the function, or some of the required
information (holder, etc...) is empty.

VERR FORMAT If the format of the data is unknown (e.g. neither
an AC nor an old-style blob.

VERR NOIDENT If it was impossible to discover the holder of the
AC or the client was unable to find its own proxy
certificate.

VERR NOINIT The vomsdata object hasn’t been properly initial-
ized. Most likely the voms dir and ca dir parame-
ters are empty.

VERR PARSE There has been some problem in parsing the AC
or blob.

VERR VERIFY It was not possible to verify the signature.
VERR SERVER It was not possible to properly identify the At-

tribute Issuer.
VERR TIME The check on the validity dates failed.
VERR IDCHECK The holder of the AC is not the same entity as the

holder of the enclosing certificate.

2.5.15 bool vomsdata::ContactRaw(std::string hostname,
int port, std::string servsubject, std::string com-
mand, std::string &raw, int &version)

This function is used to contact a specified server and use the received AC to
fill the vomsdata structure.
hostname The fully qualified hostname of the machine on which the server
runs.
port The port number on which the server is listening.
servsubject The subject of the server’ certificate.
command The command to be sent to the server.
raw This is an output parameter, and it will contain the data received by the
server.
version This, too, is an output parameter, and it will contain the version
number of the data included.

The first four parameters may be obtained by using the FindByAlias() and
FindByVO() methods.

RETURNS
The return value is true if everything went well, false otherwise. In the latter
case, the error field becomes significant, and it may assume the following values.

2.5. VOMSDATA 21

VERR NOSOCKET The client was unable to connect to the server.
VERR COMM Some communication error (Usually related to cer-

tificate problems)
VERR SERVERCODE The server returned an error code. More detailed

information may be obtaind by the ServeError()
function.

VERR PARAM There was something wrong with the parameters
passed to the function, or some of the required
information (holder, etc...) is empty.

VERR FORMAT If the format of the data is unknown (e.g. neither
an AC nor an old-style blob.

VERR NOIDENT If the client was unable to find its own proxy cer-
tificate.

VERR NOINIT The vomsdata object hasn’t been properly initial-
ized. Most likely the voms dir and ca dir parame-
ters are empty.

2.5.16 bool vomsdata::Export(std::string &data)

This function is used to create a string representation of all the data that has
been read from VOMS certificates so far.
data This is an output parameter, and it will contain the data in encoded
format.

RETURNS
The return value is true if everything went well, false otherwise. In the latter
case, the error field becomes significant, and it may assume the following values.

VERR MEM There is not enough memory free.
VERR FORMAT There is an inconsistency in the internal data.
VERR TYPE The same as above. The difference is only for de-

bugging purposes.

SEE

ALSO
Import()

2.5.17 bool vomsdata::Import(std::string buffer)

This function is used to add a string created by the Export() call back into the
vomsdata structure. This function also runs verification again.
buffer The string to convert.

RETURNS
The return value is true if everything went well, false otherwise. In the latter
case, the error field becomes significant, and it may assume the following values:

22 CHAPTER 2. THE API.

VERR PARAM There was something wrong with the parameters
passes to the function, or some of the required
information (holder, etc...) is empty.

VERR FORMAT If the format of the data is unknown (e.g. neither
an AC nor an old-style blob.

VERR NOIDENT If is was impossible to discover the holder of the
AC or there was not a user certificate ready.

VERR NOINIT The vomsdata object hasn’t been properly initial-
ized. Most likely the voms dir and ca dir parame-
ters are empty.

VERR PARSE There has been some problem in parsing the AC
or blob.

VERR VERIFY It was not possible to verify the signature.
VERR SERVER It was not possible to properly identify the At-

tribute Issuer.
VERR TIME The check on the validity dates failed.
VERR IDCHECK The holder of the AC is not the same entity as the

holder of the enclosing certificate.

2.5.18 bool vomsdata::DefaultData(voms &d)

This function returns the default attributes from a vomsdata class.
d This is the voms structure that will contain the default attributes.

RETURNS
The return value is true if everything went well, false otherwise. In the latter
case, the error field becomes significant, and it may assume the following values:

VERR NOEXT If there was no default attributes (most likely be-
cause no attributes were read in.

2.5.19 std::string vomsdata::ErrorMessage(void)

This function returns a textual description for the error encountered by the
other functions. This cannot fail.

2.5.20 bool vomsdata::RetrieveFromCtx(gss ctx id t con-
text, recurse type how)

This function is capable of retrieving VOMS AC information from a GSS con-
text.
context The context from which to obtain the certificate.
how What to do with the certificate chain. See the documentation of Retrieve
(2.5.13) for possible values.

Return and error values are the same as Retrieve. Again, see (2.5.13) for
possible values.

2.5.21 bool vomsdata::RetrieveFromCred(gss cred id t cre-
dential, recurse type how)

This function is capable of retrieving VOMS AC information from a GSS cre-
dential.

2.5. VOMSDATA 23

credential The credential from which to obtain the certificate.
how What to do with the certificate chain. See the documentation of Retrieve
(2.5.13) for possible values.

Return and error values are the same as Retrieve. Again, see (2.5.13) for
possible values.

2.5.22 bool vomsdata::Retrieve(X509 EXTENSION *ext)

Tihs function retrieves the VOMS AC extension from the passed extension.
Please note that the unavailability of the holder certificate means that checks
related to the holder of the AC will not be done.
ext The extension to evaluate.

Return and error values are the same as Retrieve. Again, see (2.5.13) for
possible values.

2.5.23 bool vomsdata::RetrieveFromProxy(recurse type how)

This function is capable of retrieving VOMS AC information from an existing
proxy.
how What to do with the certificate chain. See the documentation of Retrieve
(2.5.13) for possible values.

Return and error values are the same as Retrieve. Again, see (2.5.13) for
possible values.

