
ARC Computing Element System Administrator Guide

F. Paganelli, Zs. Nagy, O. Smirnova,
and various contributions from all ARC developers

2011-09-23

This document is currently a draft. It’s still under review but is based on for-
mer ARC documents hence the technical information is reliable. Any comment is
appreciated. Please send comments to florido.paganelli@hep.lu.se

Contents

1 Overview 5

1.1 The grid . 5

1.2 The ARC services . 5

1.3 The functionality of the ARC Computing Element . 6

1.4 The A-REX, the execution service . 7

1.4.1 The pre-web service interfaces . 7

1.4.2 The web service interfaces . 8

1.5 Security on the Grid . 8

1.6 Handling jobs . 9

1.6.1 A sample job processing flow . 9

1.7 The runtime environments . 11

1.8 The local information . 12

1.8.1 Overview of ARC LDAP Infosys schemas . 13

1.9 LRMS, Queues and execution targets . 13

2 Requirements 14

2.1 Software Requirements . 14

2.2 Hardware Requirements . 14

2.3 Certificates . 15

3 Installation 16

3.1 Installation for commom GNU/Linux Distributions . 16

3.1.1 Setting up the repositories . 16

3.1.2 Performing the installation . 16

3.2 Installation for other systems and distributions . 17

3.3 Installation of certificates . 17

3.3.1 Installing host certificates . 19

3.3.2 Installing custom CA certificates . 19

3.3.3 Authentication Policy . 19

3.3.4 Revocation lists . 19

3.3.5 Authorization policy . 19

1

4 Configuration 20

4.1 Preparing the system . 20

4.1.1 Users and groups . 20

4.1.2 Disk, partitioning, directories . 20

4.1.3 Permissions . 21

4.1.4 Networking . 22

4.1.5 Security considerations . 23

4.2 Configuration file formats . 23

4.2.1 Structure of the arc.conf configuration file . 23

4.2.2 Description of configuration items . 24

4.3 Setting up a basic CE . 26

4.3.1 Creating the arc.conf file . 26

4.3.2 The [common] section . 26

4.3.3 The [grid-manager] section: setting up the A-REX and the arched 27

4.3.4 The [gridftpd] section: the job submission interface . 27

4.3.5 The [infosys] section: the local information system . 28

4.3.5.1 The [cluster] section: information about the host machine 28

4.3.5.2 The [queue/fork] section: configuring the fork queue 29

4.3.6 A basic CE is configured. What’s next? . 29

4.4 Production CE setup . 29

4.4.1 Access control: users, groups, VOs . 30

4.4.1.1 [vo] configuration commands . 31

4.4.1.2 Automatic update of the mappings . 31

4.4.1.3 [group] configuration commands . 31

4.4.2 Connecting to the LRMS . 31

4.4.2.1 PBS . 32

4.4.2.2 Condor . 34

4.4.2.3 LoadLeveler . 34

4.4.2.4 Fork . 35

4.4.2.5 LSF . 35

4.4.2.6 SGE . 36

4.4.2.7 SLURM . 36

4.4.3 Enabling the cache . 37

4.4.4 How to join the grid: registering to an index service . 38

4.5 Enhancing CE capabilities . 39

4.5.1 Enabling other LDAP schemas . 39

4.5.1.1 Applying changes . 40

4.5.2 Runtime Environments . 40

4.5.3 Enabling the Web Services interface . 41

4.5.4 VOMS . 41

2

5 Operations 43

5.1 Starting and stopping CE services . 43

5.1.1 Overview . 43

5.1.2 Starting the CE . 43

5.1.3 Stopping the CE . 44

5.1.4 Verifying the status of a service . 44

5.1.5 Cache administration . 44

5.2 Testing a configuration . 45

5.2.1 Testing the information system . 45

5.2.1.1 Check NorduGrid Schema publishing . 45

5.2.1.2 Check Glue 1.x Schema publishing . 45

5.2.1.3 Check LDAP GLUE2 Schema publishing . 48

5.2.1.4 Check WS/XML GLUE2 Schema publishing 48

5.2.1.5 Further testing hints . 48

5.2.2 Testing whether the certificates are valid . 48

5.2.3 Testing the job submission interface . 51

5.2.4 Testing the LRMS . 51

5.3 Log files . 52

5.3.1 The format of the log files . 52

6 Technical Reference 53

6.1 Reference of the arc.conf configuration commands . 53

6.1.1 Generic commands in the [common] section . 53

6.1.2 Commands in the [vo] section . 53

6.1.3 Commands in the [group] section . 54

6.1.4 Commands in the [gridftpd] section . 55

6.1.5 Commands in the [infosys] section . 56

6.1.6 Commands in the [cluster] section . 57

6.1.7 Commands in the [queue] subsections . 58

6.1.8 Commands in the [grid-manager] section . 58

6.1.8.1 Commands affecting the A-REX process and logging 58

6.1.8.2 Commands affecting the A-REX Web Service communication interface 58

6.1.8.3 Commands setting limits and options for how the A-REX handles jobs and files 59

6.1.8.4 Per UNIX user commands and setting the control directory 61

6.1.8.5 Global commands specific to communication with the underlying LRMS 62

6.1.8.6 Substitutions in the command arguments . 62

6.1.9 PBS specific commands . 63

6.1.10 Condor specific commands . 63

6.1.11 LoadLeveler specific commands . 64

6.1.12 Fork specific commands . 64

6.1.13 LSF specific commands . 64

6.1.14 SGE specific commands . 65

6.1.15 SLURM specific commands . 65

6.2 Handling of the input and output files . 65

6.3 The new data staging framework . 66

6.4 Job states . 67

6.5 Cache . 68

3

6.5.1 Structure of the cache directory . 68

6.5.2 How the cache works . 68

6.5.3 Remote caches . 69

6.5.4 Cache cleaning . 69

6.6 Transfer shares . 69

6.7 Batch system back-ends implementation details . 71

6.7.1 Submit-LRMS-job . 71

6.7.2 Cancel-LRMS-job . 71

6.7.3 Scan-LRMS-job . 71

6.7.4 PBS . 72

6.7.5 Condor . 72

6.7.6 LoadLeveler . 72

6.7.7 Fork . 72

6.7.8 LSF . 73

6.7.9 SGE . 73

6.8 Clustering A-REX . 73

6.9 The XML and the INI configuration formats . 74

6.10 The internals of the service container of ARC (the HED) . 75

6.10.1 The MCCs . 75

6.10.2 The SecHandlers . 76

6.10.2.1 IdentityMap . 77

6.10.2.2 ArcAuthZ . 77

6.10.2.3 LegacyMap . 77

6.10.2.4 LegacySecHandler . 77

6.10.3 The PDPs . 77

6.10.3.1 LegacyPDP . 78

6.10.3.2 SimpleListPDP . 78

6.10.3.3 ArcPDP . 78

6.10.3.4 AllowPDP . 78

6.10.3.5 DenyPDP . 78

6.11 How the a-rex init script configures the HED . 78

6.12 Structure of the grid-mapfile . 80

6.13 Environment variables set for the job submission scripts . 81

6.14 Using a scratch area . 81

4

Chapter 1

Overview

The ARC middleware [?] by NorduGrid [?] is a software solution that uses grid technologies to enable sharing
and federation of computing and storage resources distributed across different administrative and application
domains. ARC is used to create grid infrastructures of various scope and complexity, from campus to national
grids.

This document gives a detailed overview of the ARC Computing Element (CE), along with step-by-step instal-
lation and configuration instructions and a full reference of the configuration commands.

1.1 The grid

ARC-based grid aggregates computing and storage resources, making them accessible through standard inter-
faces, and using a common information system to optimize access.

Client tools can query this information system to see what kind of resources are available, match user’s tasks
to best available resources, submit computing jobs, which are smaller or bigger tasks (scripts and/or binaries,
often processing defined input data) to run on computing nodes in the grid, they can access files on and upload
results to storage resources.

For users, all this complexity is hidden: they simply formulate their tasks in a special language and send them
to the grid, not even knowing which computing or storage resources are out there. ARC takes care of the rest.

While submitting jobs, users must specify requirements for each job, namely, what software should it execute,
what data to process, what kind of software environment it needs on the computing node, how much memory,
how strong CPU etc—these are specified in the formal job description. They can use various client tools, like
the native command-line interface supplied along with the ARC middleware [?], GUI tools, web portals or
specialized clients as part of a bigger software tool. All users must be authenticated by grid services using
X.509 certificates signed by trusted Certificate Authorities. ARC also uses short-lived proxy certificates to
delegate users’ rights to various activities performed by Grid services on their behalf, such as job execution or
data transfer. Authentication alone is not sufficient: users must also be authorized to perform such activities.
Typically, users form groups (called Virtual Organizations, VOs) to ease to process of getting authorized on the
several computing resources.

In order to handle all the computing resources in a uniform way, there is a need for a layer (,,middleware”)
between the client tools and the resources: the Computing Element (CE). This document describes how to use
the CE functionality of the ARC middleware to make a computing resource accessible for grid users.

1.2 The ARC services

Grid computing has three big areas: computation, storage and information. The server side of the ARC
middleware provides services for all three main areas:

• The Computing Element (CE). By installing the ARC Computing Element (CE), a computing resource
(usually, computing clusters managed by a batch system—LRMS—or a standalone workstation) will gain
standard grid interfaces, through which users (authenticated using their X.509 certificates) can get infor-
mation about the resource, submit, query and manage computing jobs with the help of client tools. The
computing resource will also gain a capability to register itself to several different grid information system
such that client tools would discover it.

5

computing
element

jobs
job submission interfaceclient

tools
info

file access interface

fi les

info query interface

input/output file staging

information provider

local batch system interface

execution service

Figure 1.1: The interfaces and internal components of a generic grid computing element

ARC CE

jobsclient
tools

info

fi les
downloader uploader

infoprovider scripts

LRMS job mgmt scripts

A-REX

GFS job interface
OGSA-BES

LDAP
OASIS-WSRF

GridFTP
HTTPS

pre-WS
WS

pre-WS
WS

pre-WS
WS

Figure 1.2: The interfaces and components of the ARC Computing Element

• The Storage Element (SE). The ARC GridFTP Server [?] besides being an important part of the ARC
Computing Element, can also be installed as a standalone storage solution.

• The Indexing Service (EGIIS). The ARC Enhanced Grid Information Indexing Service (EGIIS) is capable
of collecting registrations from computing elements and storage elements equipped with ARC Resource
Information Service (ARIS) and providing these resource pointers to the client tools. There are several
EGIIS instances deployed all around the world. New resources usually register themselves to one or more
of the existing indexes.

These three functionalities are implemented by one or more ARC services, which can be installed separately in
a standalone manner, or all of them can reside on the same machine. This document only describes the ARC
Computing Element (CE). For the description of the standalone GridFTP Storage Element, please refer to the
The NorduGrid GridFTP Server document [?].

There is a very important forth area: the client side. The ARC command line clients [?] are able to fully
interact with the A-REX or other computing elements, they support several data transfer protocols to be able
to upload and download files from all kinds of storage resources. They are querying the available computing
resources from the information system, doing brokering based on the requirements specified in the job description
(languages supported: XRSL [?], JSDL [?] and JDL [?]), they are able to query the status of jobs and
manage their lifecycle, and to handle all aspects of the secure communication including delegation of the user’s
credentials.

1.3 The functionality of the ARC Computing Element

Figure 1.1 shows the interfaces and the internal components of a generic grid computing element. An ARC
Computing Element (CE) has these interfaces and components, and with them it is capable of the following:

6

ARC pre-WS CE

HED

GridFTP Server
(GFS)

GFS job
interface

A-REX
downloader
uploader

LRMS job
management
scripts

infoprovider
scriptsARIS (LDAP + BDII)

GridFTP

jobs
inf

o

fi les

client
tools

proxy

Figure 1.3: The services and components of the pre-web service ARC CE

• to advertise (register) itself in an information system to make the clients tools know about its location
and capabilities

• to accept job execution requests coming through the job submission interface and to process the jobs
(written in standard job description languages) handled by the execution service

• to accept the files requested by the jobs from the user through the file access interface or to download
them from remote storages (input file staging) and to avoid downloading the same files over and over
again by caching them

• to forward the jobs to the local resource management system (LRMS) (such as Condor [?], Torque [?
], OpenPBS [?], Sun Grid Engine [?], etc.), which will schedule and execute them on the computing
nodes in the local cluster

• to monitor the status of the jobs by running the information provider scripts and make this information
available through the information query interface.

• to make the results (output files) of the jobs accessible through the file access interface or upload them
to a remote storage output file staging

1.4 The A-REX, the execution service

The most important component of the ARC Computing Element is the A-REX (ARC Resource-coupled EXecu-
tion service). The A-REX accepts requests containing a description of generic computational jobs and executing
it in the underlying local batch system. It takes care of the pre- and post-processing of the jobs: staging in
(downloading) files containing input data or program modules from a wide range of sources and storing or staging
out (uploading) the output results.

The ARC Computing Element with the help of A-REX and some other services provides two distinct set of
interfaces: the pre-web service interfaces, which are based on LDAP and GridFTP, and are currently widely
deployed and in production; and the web service interfaces, which are based on grid standards, are also well-
tested and production-quality but not yet widely used. Figure 1.2 shows the interfaces and also the other
components.

1.4.1 The pre-web service interfaces

The pre-web service job submission interface uses the GridFTP protocol in a special way. It is provided by a
separate component, the ARC GridFTP Server (GFS) has a job plugin which accepts job descriptions in the
XRSL job description language. The A-REX works together with the GridFTP Server to get notified about new
jobs.

7

ARC WS CE

HED

A-REX

downloader
uploader

OASIS-WSRF

HTTPS

OGSA-BES

jobs

info

fi les

client
tools

proxy
LRMS job
management
scripts

infoprovider
scripts

Figure 1.4: The components of the web service ARC CE

The pre-web service information query interface of the ARC CE is an LDAP/BDII based interface, which is
provided by a separate component, called the ARIS (the ARC Resource Information System).

The pre-web service file access interface uses the GridFTP protocal, and is served by the same ARC GridFTP
Server (GFS) which provides the job submission interface too.

The A-REX service itself has no direct interface to the clients in the pre-web service case, it communicates
through the GridFTP Server (GFS). Figure 1.3 shows the services and the components of the pre-web service
ARC CE.

1.4.2 The web service interfaces

The web service job submission interface of the ARC CE is provided by the A-REX itself, and it is a standard-
based interface: an enhancement of the OGSA Basic Execution Service recommendation [?]).

The web service information query interface of the ARC CE is also provided by the A-REX itself, and it is also a
standard-based interface, called LIDI (Local Information Description Interface), which is an implementation of
the OASIS Web Services Resource Properties specification [?].

The file access interface is technically not a web service, but it is the well-known HTTPS interface provided by
the A-REX itself.

In the web service case, all the interfaces are provided by the A-REX itself, there is no need of separate services.
Figure 1.4 shows the components of the web service ARC CE.

The web service and the pre-web service interfaces are capable to work together: an ARC CE can provide both
interfaces at the same time.

1.5 Security on the Grid

Security on the grid is achieved using X.509 certificates. Any grid service needs to have a certificate issued by
a trusted Certificate Authority (CA). A single machine, like a front-end running a CE, is identified by a host
certificate. A single user accessing the grid is identified by a user certificate also issued by a trusted CA.

Grid CAs are often established in each country, though there are also CAs issuing certificates for specific orga-
nizations (like CERN), or for several countries (like TERENA). Each CA has its own certification policies and
procedures: to access/setup a grid service, one has to contact the relevant Certificate Authority in order to
obtain the needed certificates.

When a user wants to access the grid, the client tools generate a short-lived proxy certificate to delegate user’s
rights to jobs or other activities performed by grid services on user’s behalf.

8

client
trusted CAs

CA cert

CA cert

CA cert

CA cert

VOMS
server

server
trusted CAs

CA cert

CA cert

CA cert

CA cert

host cert

host key
client
proxy

user cert

user key client
tools

A-REX

secure
connection

Figure 1.5: Certificates on the client side and on the server side. The client tools create a proxy certificate using the
user’s credentials, and optionally collect more information about the Virtual Organization (VO) the user
belongs by connecting to a Virtual Organization Membership Service (VOMS).

In order for the server to authenticate the client, the certificate of the CA issuing the user’s certificate has to
be installed on the server machine. In the same manner in order for the client to authenticate the server, the
certificate of the CA issuing the host’s certificate should be installed on the client machine.

On the server side it is the responsibility of the system administrator to decide which authorities to trust, by
installing each authority’s certificate. On the client side, the user decides which CA certificates she installs. The
user cannot access a grid resource, if the issuer CA certificate of the host is not installed.

Figure 1.5 shows an overview of the required keys and certificates, and also the process of creating a client proxy
certificate using the user’s credentials, and optionally collecting more information about the Virtual Organization
(VO) the user belongs by connecting to a Virtual Organization Membership Service (VOMS).

1.6 Handling jobs

A job is described as a set of input files (which may include executables), a main executable and a set of output
files. The job’s life cycle (its session) starts with the arrival of the job description to the Computing Element
(CE), next comes the gathering of the input files, then follows the execution of the job, then the handling of the
output files and finally job ends with the removal of the session contents by either the user or after a specified
amount of days by the CE.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The
job may also produce new data files in the SD. The A-REX does not guarantee the availability of any other
places accessible by the job other than SD (unless such a place is part of a requested Runtime Environment, see
section X.Y.).

Each job gets a globally unique identifier (jobid). This jobid is effectively a URL, and can be used to access the
session directory (to list, download and even upload files into the SD) from outside, either through the HTTP(S)
interface or through the GridFTP Server.

1.6.1 A sample job processing flow

The jobs in the ARC Computing Element usually go through these steps:

1. The client (such as the ARC command line tools [?]) connects to the job submission interface (either to
the web service interface of A-REX or to the GridFTP Server).

2. Using the well-established processes of the X.509 Public-Key Infrastructure [?], the client and the server
both authenticate each other, based on the trusted CA credentials which were previously installed on both
ends.

9

client server

user cert host cert

host keyuser key

client
proxy

CA certCA cert CA certCA cert CA certCA cert

client verifies
host certificate

client
delegates

proxy

CA CA
CA signs
certifi cate

CA certCA cert CA certCA cert CA certCA cert

server verifies
client proxy

client
tools

A-REX

CA signs
certifi cate

client
proxy

Figure 1.6: The client delegates the client proxy to the Computing Element, while both parties verifies that the credentials
are signed by a trusted Certificate Authority (CA)

3. The A-REX authorizes the user based on configurable rules, and maps the grid identity to a local username
which should be available also on all the worker nodes.

4. The client tool delegates user’s credentials to the A-REX to enable it to act on behalf of the user when
transferring files. (See Figure 1.6.)

5. A job description written in one of the supported languages (XRSL [?] or JSDL [?]) is sent from the
client to the server. (The client itself understands the JDL [?] language also, and it translates it to either
XRSL or JSDL for the A-REX to understand.)

6. The job is accepted and a directory (the session directory, SD) is created which will be the home of the
session. Metadata about the job is written into the control directory of the A-REX.

7. The client tool receives the location of the session directory (SD), and if there are local input files, those
will be uploaded into the SD through the file access interface (either through the HTTP(S) interface of
the A-REX, or through the GridFTP Server).

8. If the job description specifies input files on remote locations, the A-REX fetches the needed files and puts
them into the SD. If the caching is enabled, the A-REX checks first if the file was already downloaded
recently, and uses the cached version if possible.

9. When all the files prescribed in the job description are present (either uploaded by the client tool or
downloaded by the A-REX), a suitable job script is created for and submitted to the configured batch
system (LRMS).

10. During this time, the SD of the job is continuously accessible by the client tool, thus any intermediate
result can be checked.

11. The information provider scripts periodically monitor the job status, updating the information in the
control directory.

12. When the job in the LRMS is finished, the A-REX uploads, keeps or removes the resulted output files
according to the job description.

13. The client tool may also download the output files through the file access interface, and remove the job
from the Computing Element (CE).

During the whole lifetime of the job, its status can be queried through the information query interface (either
through the LDAP interface or through the LIDI web service interface).

Figure 1.7 and Figure 1.8 shows the staging process.

10

ARC CE

external
storage

external
storage

metadata
A-REX

downloader

control
directory

session
directoryclient

tools

file
s

collects fi les
local
cache

Figure 1.7: The process of staging in the input files of a job

1.7 The runtime environments

The following text was taken from the following site: http://gridrer.csc.fi/intro.phtml.

Grid Runtime Environments (REs) provide user interfaces to application software (and some other) resources in
a way that is independent of the details of the local installation of the application and computing platform (OS,
hardware, etc.). This page introduces Runtime Environments as regarded by NorduGrid ARC middleware.

Runtime environments are typically required by large research groups or user bases, dealing with a common set
of software. Whether a particular application should be implemented as a RE or not, depends on the existence
of large enough user base, RE Homepage maintainer and site administrators able/willing to install the RE.

The actual implementation of particular RE may differ from site to site as necessary. However, it should be
designed so that resource providers with different accounting, licence or other site-specific implementation details
can advertise the same application interface (RE) for all users. It is always up to the local system administrators
to take a decision whether to install and enable a particular runtime environment or not.

We hope that using REs will provide an additional benefit for site administrators by reducing work of maintaining
applications.

Runtime Environment is composed of two parts:

1. RE Homepage

• describes the users’ application interface

• provides application installation instructions for the site administrators

• links to the application support information

2. RE itself

• is a shell environment initialization script

• is installed on computing resources

• initializes variables that point to the application software

Let’s have an example from the user perspective:

A user has a script written in python 2.6 that she wishes to execute in some remote computing node in Grid.
She requests PYTHON-2.6 Runtime Environment in the job-description file and passes that file to the her local
Grid User Interface (arcsub), i.e. submits the job.

11

http://gridrer.csc.fi/intro.phtml

ARC CE

external
storage

external
storage

local
cache

fi le
s

control
directory

session
directory

A-REX

client
tools

uploader

uploads results

metadata

Figure 1.8: The process of staging out the output files of a job

After the submission arcsub parses the job description, notices the RE request and submits the job only to
clusters advertising that RE. The remote cluster’s grid-manager initializes the environment in the computing
node before the execution. It initializes the environment so that python interpreter and standard libraries are in
the PATH and executable/readable by the user as described in the RE Homepage.

What does this give to the users:

• easier access to a large software resource base

• identical interface to applications independent of the computing platform

What does this do for resource providers and application developers:

• opens the application to a large user base

• reduces overlapping work with application support

Please follow this URL for more information: http://gridrer.csc.fi/admins.phtml

1.8 The local information

In order to create a Grid infrastructure using ARC-enabled computing resources, information description and
aggregation services need to be deployed. ARIS is coupled to a computing resource and collects information
about it. EGIIS keeps a list of ARIS instances, and eventually, of other EGIIS instances lower down in hierarchy.
Top-level EGIIS instances thus serve as an entry point to the Grid, allowing to discover all the resources.

While ARIS is coupled to a resource, EGIIS is an independent service. A typical Grid resource owner always
has to deploy ARIS1. EGIIS servers, on the other hand, are normally deployed by the overall Grid infrastructure
operators.

A system effectively created by ARIS and EGIIS services is called the ARC Information System. Being based on
OpenLDAP [?], it can be accessed in a standard manner by a variety of LDAP clients, giving a full overview of
the infrastructure resources.

ARIS instances are responsible for resource (e.g. computing or storage) description and characterization. The
local information is generated on the resource, and it can be cached. Upon client requests it is presented via
LDAP interface.

1Without ARIS, a resource is still functional, but is not a Grid resource

12

http://gridrer.csc.fi/admins.phtml

1.8.1 Overview of ARC LDAP Infosys schemas

ARC information system currently can present information in three different formats, or schemas. These can be
enabled simultaneously. The schemas are:

1. NorduGrid-ARC schema – this is the NorduGrid default schema, described in detail in this document. It
was inspired by Globus MDS, but has been improved a lot over the years and due to incompatible changes
was moved into the NorduGrid LDAP namespace. If you want standard NorduGrid clients to submit jobs
to your resource, you want to publish this schema.

2. Glue 1.2 – This is the schema that is used by gLite [?]. Currently, gLite support Glue 1.3 schema, but
Glue 1.2 is sufficient to be compatible. If you configure ARC to publish information in the Glue 1.2 format,
you will first produce data in NorduGrid-ARC schema which will then be translated to Glue 1.2. If you
want to allow gLite clients to submit to your resource, you want to publish this schema. Please note,
that you will also need to hook in your ARC cluster into the gLite information system in order to get this
interoperability to work.

3. Glue 2.0 – This is the schema that will become the common schema for the EMI [?]. This schema can
be published both through LDAP and XML interfaces of ARC Compute Element.

ARIS is the information service that is installed on the ARC Compute Element. It publishes via LDAP interface
information about the local computing cluster, like: operating system, amount of main memory, computer
architecture, information about running and finished jobs, users allowed to run and trusted certificate authorities.
The information can be published in either NorduGrid-ARC schema, Glue 1.2 schema or Glue 2.0 schema.

The dynamic resource state information is generated on the resource. Small and efficient programs, called
information providers, are used to collect local state information from the batch system, from the local Grid
layer (e.g. A-REX, Grid Manager or GridFTP server) or from the local operating system (e.g. information
available in the /proc area). Currently, ARC is capable interfacing to the following batch systems (or local
resource management system LRMS in the ARC terminology): UNIX fork, the PBS-family (OpenPBS, PBS-Pro,
Torque), Condor, Sun Grid Engine, IBM LoadLeveler and SLURM.

The output of the information providers (generated in LDIF format) is used to populate the local LDAP tree.
This OpenLDAP back-end implements two things: it is capable caching the providers output and upon client
query request it triggers the information providers unless the data is already available in its cache. The caching
feature of the OpenLDAP back-end provides protection against overloading the local resource by continuously
triggering the information providers.

1.9 LRMS, Queues and execution targets

Usually the A-REX is installed on top of an existing local resource management system (LRMS). The A-REX
has to interfaced to the LRMS in order to be able to submit jobs and query their information. Currently, ARC is
capable interfacing to the following batch systems: UNIX fork, the PBS-family (OpenPBS, PBS-Pro, Torque),
Condor, LFS, Sun Grid Engine, IBM LoadLeveler and SLURM.

The A-REX assumes that the LRMS has one or more queues, which is a couple of (usually homogeneous)
worker nodes grouped together. These queues should not overlap. The different LRMSes has different concept
of queues (or has no queues at all). Nevertheless, in the A-REX configuration, the machines of the LRMS should
be mapped to A-REX queues. The details can be found in Section 4.4.2, Connecting to the LRMS.

The client side job submission tools query the information system for possible places to submit the jobs, where
each queue on a CE represented as an execution target, and treated separately.

13

Chapter 2

Requirements

To properly configure an ARC CE the following prerequisites are needed:

• Administrators installing ARC CE must have access to network firewall configuration: Several
ports will need to be open for the ARC services to work (see 4, Configuration and 4.1.4, Firewalls

• Time Syncronization of the system that will run an ARC CE must be setup, by using the NTP protocol
[] or similar. The grid relies on syncronization for the jobs to be correctly submitted and for the security
infrastructure to work properly.

The following is optional but suggested to be on the machines running an ARC CE:

• A networked filesystem such as NFS or similar, to connect storage and share job data between the ARC
middleware and the LRMS system behind it.

2.1 Software Requirements

ARC services can be built mainly for GNU/Linux and Unix systems.

Table 2.1 shows the current officially supported ones.

Operating System Version/Distribution Supported Architectures

GNU/Linux

Scientific Linux 5.5+ i386, x86 64
RedHat 5+ i386, x86 64
Debian 6+ i386, x86 64
Ubuntu 10.04+ i386, x86 64

Table 2.1: Supported operating systems

For a detailed list of the software libraries needed to compile and install ARC services, please refer to the
README included in the source tarball. See Chapter 3, Installation for details.

2.2 Hardware Requirements

The NorduGrid middleware does not impose heavy requirements on hardware. The choice is only bound to the
computational needs of your organization.

Table 2.2 shows the minumum requirements.

14

Architecture 32 or 64 bits
CPU families ≥ i386 , PowerPC
CPU Speed ≥ 300 MHz

Memory Size ≥ 128MB
Disk space for binaries ≤ 30MB

Disk space including development files 160MB
Disk space including external software (such as Globus Toolkit 5) +10MB

Network connectivity

a public IP on the front-end clus-
ter is strongly encouraged. Worker
nodes can be on a private or local
network.

Table 2.2: Hardware Requirements

2.3 Certificates

To run an ARC CE and have it servicing the grid, a host certificate provided by a Certificate Authority (CA)
is needed.

A request for such a certificate must be sent to the National Grid Infrastructure organization or to any local
organization entitled to provide grid services.

The CA certificate is needed as well, this is public and can be usually obtained from either the CA itself, of fetched
from EMI repository, IGTF repository, NorduGrid yum/apt repositories, or from the NorduGrid Downloads area.
These are needed to verify that the service and the users connecting to it have valid credentials, to perform
mutual authentication.

If this is the first time the reader sets up an ARC CE, we suggest to obtain temporary test certificates
for hosts, users and a temporary CA via the InstantCA service:

https://arc-emi.grid.upjs.sk/instantCA/instantCA

Such certificates cannot be used in production environments and can only be used for testing purposes.
Once the system administrator feels comfortable with an ARC CE setup, InstantCA certificates can be
substituted with actual ones from trusted production CAs.

Installation of certificates is discussed in Section 3.3, Installation of certificates.

15

https://arc-emi.grid.upjs.sk/instantCA/instantCA

Chapter 3

Installation

3.1 Installation for commom GNU/Linux Distributions

The preferred installation method for ARC middleware is by installing packages from repositories. The currently
supprted distributions are those based on YUM-RPM (Redhat, CentOS, Fedora, Scientific Linux) and those
based on APT (Debian, Ubuntu).

The packaging systems will automatically download additional libraries and dependencies for all the ARC middle-
ware components to work properly. You can choose to install single packages one by one and add functionalities
in a step-by-step fashion. Please refer to table 3.1 if you plan to do so.

ARC provides also meta-packages that are shortcuts to install a group of packages that provide a single func-
tionality. It is strongly recommended to use this functionality for a quick start.

3.1.1 Setting up the repositories

The current repository is the official Nordugrid one. To configure nordugrid repositories please follow the up-to-
date instructions at:

http://download.nordugrid.org/repos.html

If ARC CE is to be used together with other european grid products, for example to join european scientific
experiments such as ATLAS or ALICE, then the suggested repository is the EMI repository.

The EMI consortia provides also official production level customer support for distributions such as Scientific
Linux 5.5 and Debian 6 and above, so it is strongly recommended to install from EMI if you are planning to use
and ARC CE on these systems.

To install such repositories, please follow the instructions at EMI official website at this link:

http://emisoft.web.cern.ch/emisoft/index.html

3.1.2 Performing the installation

To perform the installation, follow these steps:

1. Configure a repository (see above for details)

2. Install the ARC CE using meta-packages: issue the following command as root:
For RPM-Based distros:

yum install nordugrid-arc-compute-element

For APT-Based distros:

apt-get install nordugrid-arc-compute-element

16

http://download.nordugrid.org/repos.html
http://emisoft.web.cern.ch/emisoft/index.html

This will install the packages marked with * in table 3.1.

3. (optional) if you want to customize your setup with individual packages, issue:
For RPM-Based distros:

yum install <packagename>

For APT-Based distros:

apt-get install <packagename>

3.2 Installation for other systems and distributions

Packages are not provided for platforms other than GNU/Linux, so for the moment being the only way of
installing ARC services is by compiling from source. Please refer to the README file1 in the source code
repository for more details.

3.3 Installation of certificates

A description of what certificates are and why are needed can be found in Section 1.5, Security on the Grid.

Information about reading the contents of the certificates, changing their formats and more can be found in the
ARC certificate mini how-to document2.

In case ARC was installed using packages (see Chapter 3, Installation) all the required CAs are already installed
and a script will automatically update them together with system updates.

If you want to install or remove specific CAs, NorduGrid repositories contain packaged CAs for ease of installation.
By installing these packages, all the CA credentials will get updated by system updates. These packages are
named in this format:

ca_<CA name>

Example:

ca_nordugrid

You can install them as you would install any package by APT or YUM.

In case your resource is in a Nordic country (Denmark, Finland, Norway, Iceland or Sweden), install the
certrequest-config package from the NorduGrid Downloads area. It is also in the nordugrid repositories
with name ca-nordugrid-certrequest-config. This contains the default configuration for generating
certificate requests for Nordic-based services and users. If you are located elsewhere, contact your local CA for
details.

For example, in Nordic countries, generate a host certificate request with

grid-cert-request -host <my.host.fqdn>

and a LDAP certificate request with

grid-cert-request -service ldap -host <my.host.fqdn>

and send the request(s) to the NorduGrid CA for signing.

1http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/README
2http://www.nordugrid.org/documents/certificate_howto.html

17

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/README
http://www.nordugrid.org/documents/certificate_howto.html

P
a

ck
a

g
e

C
o

n
te

n
t

Is
m

a
n

d
a

to
ry

?
C

o
m

p
o

n
en

t

n
or

d
u

gr
id

-a
rc

*
A

R
C

A
ll

m
an

d
at

or
y

n
or

d
u

gr
id

-a
rc

-a
re

x*
A

R
C

R
em

ot
e

E
X

ec
u

ti
on

se
rv

ic
e

m
an

d
at

or
y

A
R

C
C

E

n
or

d
u

gr
id

-a
rc

-h
ed

*
A

R
C

H
os

ti
n

g
E

n
vi

ro
n

m
en

t
D

ae
m

on
m

an
d

at
or

y
n

or
d

u
gr

id
-a

rc
-p

lu
gi

n
s-

n
ee

d
ed

*
A

R
C

b
as

e
p

lu
gi

n
s

m
an

d
at

or
y

n
or

d
u

gr
id

-a
rc

-g
ri

d
ft

p
d

*
A

R
C

gr
id

ft
p

se
rv

er
m

an
d

at
or

y
n

or
d

u
gr

id
-a

rc
-p

lu
gi

n
s-

gl
ob

u
s*

A
R

C
G

lo
b

u
s

p
lu

gi
n

s
op

ti
on

al
n

or
d

u
gr

id
-a

rc
-p

yt
h

on
A

R
C

P
yt

h
on

w
ra

p
p

er
op

ti
on

al
n

or
d

u
gr

id
-a

rc
-j

av
a

A
R

C
Ja

va
w

ra
p

p
er

op
ti

on
al

n
or

d
u

gr
id

-a
rc

-c
ac

h
e-

se
rv

ic
e

A
R

C
ca

ch
e

se
rv

ic
e

op
ti

on
al

n
or

d
u

gr
id

-a
rc

-j
an

it
or

*
A

R
C

d
yn

am
ic

in
st

al
la

ti
on

of
ru

n
ti

m
e

en
vi

ro
n

m
en

ts
op

ti
on

al
n

or
d

u
gr

id
-a

rc
-a

ri
s*

+
A

R
C

L
D

A
P

in
fo

rm
at

io
n

se
rv

ic
e

op
ti

on
al

n
or

d
u

gr
id

-a
rc

-i
si

s
A

R
C

is
is

se
rv

ic
e

op
ti

on
al

n
or

d
u

gr
id

-a
rc

-c
h

el
on

ia
A

R
C

ch
el

on
ia

se
rv

ic
e

op
ti

on
al

A
R

C
S

E
n

or
d

u
gr

id
-a

rc
-h

op
i

A
R

C
h

op
i

se
rv

ic
e

op
ti

on
al

n
or

d
u

gr
id

-a
rc

-e
gi

is
+

A
R

C
E

G
II

S
se

rv
ic

e
m

an
d

at
or

y
A

R
C

IS
n

or
d

u
gr

id
-a

rc
-g

ri
d

m
ap

-u
ti

ls
*

N
or

d
u

G
ri

d
au

th
or

iz
at

io
n

to
ol

s
m

an
d

at
or

y
A

R
C

C
E

,
A

R
C

S
E

S
ec

u
ri

ty
n

or
d

u
gr

id
-a

rc
-c

a-
u

ti
ls

*
N

or
d

u
G

ri
d

au
th

en
ti

ca
ti

on
to

ol
s

m
an

d
at

or
y

n
or

d
u

gr
id

-a
rc

-l
d

ap
-m

on
it

or
A

R
C

L
D

A
P

m
on

it
or

se
rv

ic
e

op
ti

on
al

M
on

it
or

in
g

n
or

d
u

gr
id

-a
rc

-w
s-

m
on

it
or

A
R

C
W

S
m

on
it

or
se

rv
ic

e
op

ti
on

al
n

or
d

u
gr

id
-a

rc
-d

o
c

A
R

C
d

o
cu

m
en

ta
ti

on
op

ti
on

al
A

ll

T
a

b
le

3
.1

:
A

R
C

p
a

ck
a

g
es

:
th

e
ta

b
le

sh
ow

s
a

br
ie

f
d

es
cr

ip
ti

o
n

o
f

ea
ch

p
ac

ka
g

e,
th

e
co

m
p

o
n

en
ts

th
ey

b
el

o
n

g
to

,
an

d
st

at
es

w
h

ic
h

o
f

th
em

ar
e

m
an

d
at

or
y

to
h

av
e

a
w

or
ki

n
g

fu
n

ct
io

n
al

it
y.

P
ac

ka
g

es
m

ar
ke

d
w

it
h

*
ar

e
au

to
m

at
ic

al
ly

in
st

al
le

d
by

A
R

C
-C

E
n

or
d

u
g

ri
d

-a
rc

-c
o

m
p

u
te

-e
le

m
en

t
m

et
ap

ac
ka

g
e,

p
ac

ka
g

es
m

ar
ke

d
w

it
h

+
ar

e
au

to
m

at
ic

al
ly

in
st

al
le

d
by

A
R

C
In

fo
sy

s
n

or
d

u
g

ri
d

-a
rc

-i
n

fo
rm

at
io

n
-i

n
d

ex
m

et
ap

ac
ka

g
e

18

3.3.1 Installing host certificates

Once an host certificate is obtained from a CA, it has to be installed for the CE to use it.

When generating a certificate, two files will be created: a certificate file (public), tipically hostcert.pem; and
a key file (private), tipically hostkey.pem.

Installation is as follows:

1. Copy the two files hostcert.pem and hostkey.pem into the standard ARC location: /etc/grid-security.

2. Both files must be owned by root.

3. The private key (hostkey.pem) must be readable only by root.

4. The two files MUST NOT have executable permissions.

5. The key file MUST NOT be password protected. This is especially important if a tool other than
grid-cert-request was used.

If the ARC services will be run as a different user than root, then these files should be owned and accessible by
this other user.

3.3.2 Installing custom CA certificates

If you’re planning to install custom certificates such as the one provided by InstantCA (See 2.3, Certificates)
then the files must usually be copied into the /etc/grid-security/certificates/ directory.

3.3.3 Authentication Policy

The credential-level authentication policy is just a decision on which certificates the computing element will
accept. Only those users will be able to connect to the CE whose CAs are installed. (This does not mean
they will be authorized to submit jobs, but at least they can establish the connection.) It is strongly advised to
obtain a certificate from each CA by contacting it. To simplify this task, the NorduGrid Downloads area has
a non-authoritative collection of CA credentials approved by EUGridPMA. As soon as you decide on the list of
trusted certificate authorities, you simply download and install the packages containing their public keys and
certificates. Before installing any CA package, you are advised to check the credibility of the CA and verify its
policy!

Example If your host certificate is issued by the NorduGrid CA, and your user has a certificate
issued by the Estonian CA, and she is going to transfer files between your site and Slovakia, you
need the NorduGrid, Estonian and Slovak CA credentials.

3.3.4 Revocation lists

The Certificate Authorities are responsible for maintaining lists of revoked personal and service certificates, known
as CRL (Certificate Revocation List). It is the CE administrator responsibility to check the CRLs regularly and
deny access to Grid users presenting a revoked certificate. Outdated CRL will render your site unuseable.
NorduGrid provides an automatic tool for regular CRL check-up. We recommend to install the nordugrid-arc-ca-
utils from the NorduGrid Downloads or EMI Repository. The utility periodically keeps track of the CA revocation
lists.

3.3.5 Authorization policy

The authorization policy is a decision on which grid users or groups of grid users (Virtual Organizations) are
allowed to use your resource. Configuration of this will be discussed in the following sections: Section 4.4.1,
Access control: users, groups, VOs and Section 6.12, Structure of the grid-mapfile.

19

Chapter 4

Configuration

This section leads through the following steps:

1. Prepare the system to run ARC services (Section 4.1, Preparing the system)

2. Configure a basic CE (Section 4.2, Configuration file formats and Section 4.3, Setting up a basic CE)

3. Make it production-ready (Section 4.4, Production CE setup)

4. Add optional features (Section 4.5, Enhancing CE capabilities)

4.1 Preparing the system

4.1.1 Users and groups

ARC services are run by the root user by default, and this is the most convenient way for normal operation.
But it is also possible to run it as a non-privileged user (see Section 4.1.3, Permissions).

Users accessing the grid have a grid identity (see Section 1.5, Security on the Grid) and will submit and run
jobs on different physical machines. In ARC, each grid identity is mapped to a local UNIX user on the front-end
machine (the one that runs A-REX) and eventually on the machine actually performing the job (worker nodes,
managed by the LRMS). Hence, one or more local UNIX users need to be created in the system, to run the jobs
submitted by grid clients.

It is possible to map all grid users to the same local user. For a basic CE setup, this will be sufficient. Later
however for security reasons it is better to have a pool of local users to choose from, or the have actual local
users for each grid user. To anticipate more users in the future, it is a good practice to create a dedicated local
group for these mapped users, so that is possible to use local UNIX authorization methods to restrict the grid
accounts.

For the basic CE setup, let’s create a new group called grid and new user called griduser1 that belongs to this
group. Later more users can be created.

More advanced user configuration setups are discussed in Section 4.4.1, Access control: users, groups, VOs.

4.1.2 Disk, partitioning, directories

The ARC CE uses separate directories to store the data files of the jobs, the metadata about the jobs, and the
cached input files. It also requires a directory with the installed CA certificates and optionally can use a directory
of runtime environments.

Figure 4.1 shows these directories, Table 4.1 summarizes how these directories should be configured.

Some of these directories are suggested to be local to the front-end, other can be on shared or networked
filesystems on external storage. The following is a description of the important directories for ARC CE. Note:
some of them are Required for the ARC CE to work.

Control Directory (CD) [Required] contains all the informations about jobs handled by the A-REX, such as job
specification files and LRMS submission scripts. The information provider scripts also uses this directory
to get information about jobs. This directory is heavily accessed by the A-REX, hence it should not be on
a slow remote storage.

20

ARC CE

A-REX

local
cache

control
directory

session
directory

cert
directory

RTE
directory

job
metadata

cached
input files

job
working dir

trusted
CA certs

runtime
environments

Figure 4.1: The directories on an ARC CE

Session Directory (SD) [Required] contains the executable and data files of the jobs. This is where the jobs
run, and this is the only area where they can produce results. Each job is assigned a unique directory
within the session directory. This is usually shared among the worker nodes and the frontend, and can be
remote for the frontend also. (See also Section 6.14, Using a scratch area.)

Grid Certificates Directory [Required] contains the certificates of and other information about the trusted
CAs. It is usually located at /etc/grid-security/certificates. (For setup instructions, see
Section 3.3, Installation of certificates.)

Cache Directory [Optional] can be used to cache downloaded input files, so if a new job requires the same
file, it doesn’t have to be downloaded again. Can reside on a shared filesystem. Caching is discussed in
sections Section 4.4.3, Enabling the cache and Section 6.5, Cache.

Runtime Environments Scripts directory [Optional] contains special scripts that setup a particular runtime
enviroment for a job to access. These include environment variables and software selections. Can reside
on a shared filesystem. Runtime Environments are explained in Section 4.5.2, Runtime Environments.

When partitioning disks and connecting shared storage, keep in mind the following things:

• The control directory (CD) is frequently accessed by the CE, so it is strongly advised to have it on a local
hard disk. It can, however, grow pretty much with the number of jobs, so it is better to allocate a separate
partition for it. The amount of data per job is around 50-100kb.

• The session directory (SD) stores all the executables, input and output files, and intermediate results of
the jobs. It should be on a separate partation or even on a remote storage.

For more details please refer to sections Section 6.14, Using a scratch area, Section 4.4.3, Enabling the cache.

The ARC suggested setup for these directories is summarized in table 4.1.

4.1.3 Permissions

By default, the ARC services are run by root. In this case the control directory (CD) and the session directory
(SD) should be writable, readable and executable by the root user, and then the A-REX will set all the other
permissions as needed.

In case the ARC services should be run as a non-privileged (non-root) user, they cannot modify permissions of
directories as easily. After the grid users are mapped to local users, they have to be able to access the job’s
session directory, hence the suggested setup is:

21

Directory Suggested Location Example Required?

sessions directory
NFS or shared FS, can be also on
a separate disk partition

/var/spool/arc/session Required

control directory
local to the front-end, also in a
separate disk partition

/var/spool/arc/control Required

CA certificates local to the front-end /etc/grid-security/certificates Required
RTE scripts NFS or shared FS /SOFTWARE/runtime Optional

cache directory
local, NFS, local and published via
NFS

/var/spool/arc/cache Optional

Table 4.1: Summary of ARC CE directories setup

• put all the local users into the same group (e.g. grid)

• to set group ownership of the SD to this group

• the SD has to be writable, readable and executable by members of this group

• the SD and the CD has to be writable, readable and executable by the user running the ARC services

The host credentials need to have special permissions (see Section 3.3, Installation of certificates).

4.1.4 Networking

DNS Requirements For the ARC middleware, the frontend has to have a public IP and a Fully Qualified
Domain Name (FQDN) in order to join an indexing service and thus the grid (more on this on chapter Sec-
tion 4.4.4, How to join the grid: registering to an index service). This means that a reverse DNS lookup for the
frontend’s IP has to return the FQDN.

Basic networking recommendations are the following:

• Make sure your frontend has a FQDN. Issuing hostname -f should print it.

• In the /etc/hosts file, make sure that the FQDN of your machine comes first, before other network
names. Example: if 130.235.185.195 is the IP address and gridtest.hep.lu.se is the FQDN
assigned to it, /etc/hosts should look like:

130.235.185.195 gridtest.hep.lu.se gridtest

while the following could lead to problems:

wrong!
130.235.185.195 gridtest gridtest.hep.lu.se

Firewalls ARC-CE needs the following incoming and outgoing ports to be opened:

• For the web service interface: HTTP(s), default 80 and 443

• For MDS-LDAP infopublishing, default 2135 (see also Section 4.3.5, The [infosys] section: the local
information system)

• For the pre-web service interface: GridFTP,

– default 2811

– a range of ports for GridFTP data channels, typically 9000-9300

• For HTTPg, default 8443 (outgoing only)

• For SMTP, default 25 (outgoing only)

• For NTP, default 123 (outgoing only, in case NTP is used for time synchronisation, see 2, Requirements)

22

Most ports, including 2135 and 2811, are registered with IANA and should normally not be changed. The ports
for GridFTP data channels can be chosen arbitrary, based on following considerations: gridftpd by default handles
100 connections simultaneously; each connection should not use more than 1 additional TCP port. Taking into
account that Linux tends to keep ports allocated even after the handle is closed for some time, it is a good
idea to triple that amount. Hence about 300 data transfer ports should be enough for the default configuration.
Typically, the range of ports from 9000 to 9300 is being opened. Remember to specify this range in the ARC
configuration file (see Section 4.2, Configuration file formats, globus_tcp_port_range attribute) later on.

For using legacy Globus components it is also worth to read information at this URL: http://dev.globus.
org/wiki/FirewallHowTo

Other network related Internal cluster nodes (i.e. LRMS nodes) are NOT required to be fully available on
the public internet (however, user applications may require it). For information about publishing nodes network
connectivity please refer to Section 4.3.5.1, The [cluster] section: information about the host machine.

4.1.5 Security considerations

SELinux If the system uses SELinux, the startup script should be usually able to create profiles for the services.
If any problem in connectiong or starting up services arises, please set SELinux in permissive mode.

AppArmor On Ubuntu and Debian machines AppArmor profiles have been reported to prevent infosystem to
start. AppArmor profiles are currently not shipped for ARC components. Therefore for the moment being:

• Remove /etc/apparmor.d/usr.sbin.slapd and restart AppArmor.

• If the above doesn’t exist or doesn’t help, disable AppArmor completely or put all the profiles in complain
mode1.

4.2 Configuration file formats

Configuration of ARC can be done with a single configuration file usually located at /etc/arc.conf.

This configuration file format is fully compatible with the one for ARC middleware version 0.8.x.

? If you have a legacy file from an ARC 0.8.x version,
you can directly use that file for the new A-REX-based ARC CE.

Using the the arc.conf is sufficient for the majority of use cases, however there is a possibility to use a
lower-level XML-based configuration format (and a corresponding higher-level INI format) in special cases. For
more details, see Section 6.9, The XML and the INI configuration formats.

4.2.1 Structure of the arc.conf configuration file

An ARC legacy configuration file is a text file containing sections and related commands.

Each section identifies one or more components/features of ARC, and commands are used to modify the
behaviour of these component/features.

A section name is sourrounded by square brackets and can contain slashes. Names after the slashes identify
subsections. Examples:

[cluster]
[infosys]
[infosys/glue12]
[queue/fork]
[infosys/cluster/registration/toPGS1]

As a general rule, a section name containing a subsection has to appear after its section. Examples in Figure 4.2.

A configuration command is a one-line command="value" expression. Examples:

1https://help.ubuntu.com/community/AppArmor

23

http://dev.globus.org/wiki/FirewallHowTo
http://dev.globus.org/wiki/FirewallHowTo
https://help.ubuntu.com/community/AppArmor

...
[infosys]
...
[infosys/glue12]
...
[queue/fork]
...
[infosys/cluster/registration/toPGS1]
...

Correct

...
[infosys/cluster/registration/toPGS1]
...
[infosys/glue12]
...
[infosys]
...
[queue/fork]
...

Wrong

Figure 4.2: Ordering of section names.

hostname="gridtest.hep.lu.se"
nodecpu="2"
resource_location="Lund, Sweden"
mail="gridmaster@hep.lu.se"

Comments can be added one per line by putting a # at the beginning of the line.

A section starts with a section name and ends at another section name or if the end of the configuration file is
reached. Configuration commands always belong to one section.

Here is an overall example:

this is a comment, at the beginning of the [common] section
[common]
hostname="piff.hep.lu.se"
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"
lrms="fork"

since there is a new section name below, the [common] section ends
and the grid-manager section starts
[grid-manager]
user="root"
controldir="/tmp/control"
sessiondir="/tmp/session"
cachedir="/tmp/cache"
debug="3"

other commands...

[queue/fork]

other commands till the end of file.
This ends the [queue/fork] section.

4.2.2 Description of configuration items

In the descriptions of commands, the following notation will be used:

command=value [value] – where the values in square brackets [...] are optional. They should be
inserted without the square brackets!

A pipe ,,|” indicates an exclusive option. Example:

securetransfer=yes|no – means that the value is either yes or no.

For a complete list and description of each configuration item, please refer to Section 6.1, Reference of the
arc.conf configuration commands.

The configuartion commands are organized in sections. The following is a description of the main mandatory
sections and of the components and functionalities they apply to, in the order they should appear in the
configuration file. These are needed for a minimal and basic functionalities (see Section 4.3, Setting up a basic
CE).

24

[common] Common configuration affecting networking, security, LRMS. These commands define defaults for
all the ARC components (A-REX, GridFTPd, ARIS), which can be overridden by the specific sections of the
components later. Always appears at the beginning of the config file.

Discussed in Section 4.3.2, The [common] section.

[group] This section and its subsections define access control mappings between grid users and local users.
Applies to all ARC components. Usually follows the [common] section. If there are [vo] sections, they should
come before the [group] section.

Discussed in Section 4.4.1, Access control: users, groups, VOs.

If no access control is planned (for example for tests) this section can be omitted but the administrator must
manually edit the grid-mapfile (see Section 6.12, Structure of the grid-mapfile)

[grid-manager] This section configures the A-REX, including job management behavior, directories, file
staging and logs.

Discussed in Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched.

[gridftpd] This section configures the GridFTPd, which is the server process running the GridFTP protocol.
Its subsections configure the different plugins of the GridFTPd, in particular the job submission interface:
[gridftpd/jobs].

Discussed in Section 4.3.4, The [gridftpd] section: the job submission interface.

[infosys] This section configures the local information system (ARIS) and the information provider scripts.
(This section also can be used to configure an information index server, see [?].) The commands affects the
data published by the information system, the behaviour of the publishing server and its networking options. The
subsections configure registration to information index servers, and extra informations for different information
schemas.

Discussed in Section 4.3.5, The [infosys] section: the local information system.

[cluster] Configures the A-REX information provider scripts. The commands here affects the data pub-
lished by the local information system, mostly regarding the front-end machine. Must appear after the [infosys]
section.

Discussed in Section 4.3.5.1, The [cluster] section: information about the host machine

[queue/queuename] Configures the A-REX information provider scripts. At least [queue/...] section must
exist. The commands here affects the data published by the information system, mostly regarding the LRMS
queues A-REX is serving. Must appear after the [infosys] section.

Discussed in Section 4.3.5.2, The [queue/fork] section: configuring the fork queue.

Generic commands These commands specify common defaults in the [common] section, and also can be
used to set different values per component in the following sections: [grid-manager], [gridftpd] and
its subsections and [infosys].

logfile=path – where the logs will be written.

pidfile=path – where the PID of the process will be written.

debug=number – specifies the level of logging from 5 (DEBUG) to 0 (FATAL).

25

ARC pre-WS CE

HED

GridFTP Server
(GFS)

GFS job
interface

A-REX
downloader
uploader

LRMS job
management
scripts

infoprovider
scriptsARIS (LDAP + BDII)

GridFTP

jobs
inf

o

fi les

client
tools

proxy

4.3 Setting up a basic CE

A basic CE is the starting point of every ARC setup. A basic CE is a stand-alone machine ready to accept job
submission. A basic CE will not be connected to an information index, so clients will have to explicitly specify its
job submission interface URL to connect to. This chapter will show a basic configuration of the main sections
seen in chapter Section 4.2.2, Description of configuration items.

Please make sure all the steps in chapter Section 4.1, Preparing the system are done before proceeding.

The basic CE will have fork as an LRMS, which will allow the machine to process jobs in the environment provided
by the operating system of the front-end machien. Connection to real LRMSes are discussed in Section 4.4.2,
Connecting to the LRMS.

4.3.1 Creating the arc.conf file

ARC will by default search for its configuration file in the following location:

/etc/arc.conf

The minimal configuration file described in the following is usually installed here:

/usr/share/arc/example/arc_computing_element.conf

or it can be downloaded from the ARC Configuration Examples web page2.

Copy this file into /etc with the name arc.conf, then modify its contents following the instructions below.

4.3.2 The [common] section

The [common] section maintains informations that will be used by any subsystem of the CE. It has to appear
as the first item in the configuration file.

A minimal configuration for this section is shown here:

[common]
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"
lrms="fork"
2http://www.nordugrid.org/arc/configuration-examples.html

26

http://www.nordugrid.org/arc/configuration-examples.html

Here we specify the path of the host’s private key and certificate, the directory where the certificates of the
trusted Certificate Authorities (CAs) are located, the path of the grid map file, which defines mapping of grid
users to local users, and the name of the default lrms, which is ,,fork” in the basic case, when we only want to
use the frontend as a worker node, not a real cluster.

For details about these configuration commands, please see Section 6.1.1, Generic commands in the [common]
section

For the basic CE, let’s create a ,,grid map file” which looks like this:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3" griduser1

4.3.3 The [grid-manager] section: setting up the A-REX and the arched

The [grid-manager] section configures A-REX and arched. Its commands will affect the behaviour of the
startup scripts and the A-REX and arched processes.

A sample section would look like this:

[grid-manager]
user="root"
controldir="/tmp/jobstatus"
sessiondir="/tmp/grid"
debug="3"
logfile="/tmp/grid-manager.log"
pidfile="/tmp/grid-manager.pid"
mail="grid.support@somewhere.org"
joblog="/tmp/gm-jobs.log"

Here we specify which user the A-REX should be run as, where should be the directory for the job’s metadata
(the control dir) and data (the session dir), what level of log message we want, where should be the log file and
where should the process ID of the arched daemon be written. We also specify an e-mail contact address and
the path of the ,,joblog” file, which will contain informations about the job’s lifecycle.

For details about these configuration commands, please see Section 6.1.8, Commands in the [grid-manager]
section

4.3.4 The [gridftpd] section: the job submission interface

Currently, the production level job submission interface uses the gridftp protocol which is served by the GridFTP
Server (GFS) running on the frontend.

The [gridftpd] section configures the behaviour of the gridftpd daemon and its startup scripts.

A sample section for a basic CE is the following:

[gridftpd]
user="root"
debug="3"
logfile="/tmp/gridftpd.log"
pidfile="/tmp/gridftpd.pid"
port="2811"
allowunknown="no"

Here we specify which user the GridFTP server should run as, the verbosity of the log messages, the path of the
logfile and the pidfile, the port of the GridFTP server, and that only ,,known” users (specified in the grid map
file) should be allowed to connect.

For a minimal ARC CE to work, we need the configure the job interface with setting up the ,,job plugin” of the
GridFTP server in a configuration subsection:

[gridftpd/jobs] controls how the virtual path /jobs for job submission will behave. These paths can be
thought as those of a UNIX mount command. The name jobs itself is not relevant, but the contents of the
section and especially the plugin command determine the path behaviour.

For a minimal CE to work, it is sufficient to configure the following:

27

[gridftpd/jobs]
path="/jobs"
plugin="jobplugin.so"
allownew="yes"

Here we specify the virtual path where the job plugin will sit, the name of the library of the plugin, and that
new jobs can be submitted (turning allownew to ,,no” would stop accepting new jobs, but the existing jobs
would still run.)

For details about these configuration commands, please see Section 6.1.4, Commands in the [gridftpd] section

As GridFTPd interface is planned to be phased out and replaced by the web service interface, no big changes will
be done in the future. For a detailed description of GridFTPd configuration, please refer to the official nordugrid
manual [?].

4.3.5 The [infosys] section: the local information system

The [infosys] section and its subsections control the behaviour of the information system. This includes:

• configuration of ARIS and its infoproviders

• customization of the published information

• configuration of the slapd server to publish information via LDAP

• configuration of BDII to generate ldif trees for LDAP

• selection of the LDAP schema(s) to publish

• registration to an EGIIS index service (see Section 4.4.4, How to join the grid: registering to an index
service)

• running a EGIIS IS (not covered in this manual, please refer to [])

After this section, several subsections will appear as well as some other sectons which are related to the
information system, such as [cluster] and [queue/...] sections. More on these will be explained later.

A sample configuration for a basic CE would be the following:

[infosys]
user="root"
overwrite_config="yes"
port="2135"
debug="1"
slapd_loglevel="0"
registrationlog="/tmp/inforegistration.log"
providerlog="/tmp/infoprovider.log"
provider_loglevel="2"

Here we specify which user the slapd server, the infoproviders, the BDII and the registration scripts should run,
then we specify that we want the low-level slapd configs to be regenerated each time, then the port number, the
debug verbosity of the startup script, the slapd server and the infoproviders, and the logfiles for the registration
messages and the infoprovider messages.

For details about these configuration commands, please see Section 6.1.5, Commands in the [infosys] section.

4.3.5.1 The [cluster] section: information about the host machine

This section has to follow the [infosys] section and it is used to configure the information published about
the host machine running ARC CE.

A sample configuration can be seen below:

28

[cluster]
cluster_alias="MINIMAL Computing Element"
comment="This is a minimal out-of-box CE setup"
homogeneity="True"
architecture="adotf"
nodeaccess="inbound"
nodeaccess="outbound"

Here we specify the alias of the cluster, a comment about it, that the worker nodes are homogenious, that we
want infoprovider scripts to determine the architecture automatically on the frontend (,,adotf”), and that the
worker nodes has inbound and outbound network connectivity.

For details about these configuration commands, please see Section 6.1.6, Commands in the [cluster] section.

4.3.5.2 The [queue/fork] section: configuring the fork queue

Each [queue/queuename] section configures the information published about computing queues. At least
one queue must be specified for a CE to work. In this chapter a configuration for the fork backend will be
shown.

The fork backend is just a simple execution environment provided by the means of the underlying operating
system, that is,usually a shell with the standard linux environment variables provided to the mapped UNIX user.

A special section name [queue/fork] is used to configure such information, some of its commands can be used
for any queue section, some are specific for the fork queue. More about this will be explained in Section 4.4.2,
Connecting to the LRMS.

A minimal CE configuration for this section would look like this:

[queue/fork]
name="fork"
fork_job_limit="cpunumber"
homogeneity="True"
scheduling_policy="FIFO"
comment="This queue is nothing more than a fork host"
nodecpu="adotf"
architecture="adotf"

Here we specify that this is a ,,fork” queue, that the number of allowed concurent jobs should equal the number
of CPUs, that the queue is homogenious, the scheduling policy, an informative comment, and that the type of the
cpu and the architecture should be determined automatically on the frontend. The only fork-specific command
is the fork_job_limit command, the others are for the other backends also. See sections Section 4.4.2,
Connecting to the LRMS and Section 6.1.7, Commands in the [queue] subsections.

4.3.6 A basic CE is configured. What’s next?

A basic CE is now set. To test its functionality, it must be started first. Please refer to Section 5.1.2, Starting
the CE to start the CE. If none of the startup scripts give any error, the testing can be started. Please follow
the testing suggestions in Section 5.2, Testing a configuration.

If everything works as expected, the next step is the turn the basic CE into a production level CE: connecting
it to the LRMS, turning on input file caching, and register it to an information index service. Please follow the
instructions in Section 4.4, Production CE setup.

For some additional (optional) features, please proceed to Section 4.5, Enhancing CE capabilities.

4.4 Production CE setup

Once a basic CE is in place and its basic functionalities have been tested, these things are usually needed to
make it production-ready:

Configure access control to streamline the maintenance of the authentication and authorization of users, VOs
and authorization groups should be defined and the nordugridmap tool should be utilized to generate
the grid map file automatically. See Section 4.4.1, Access control: users, groups, VOs.

29

ARC CE

A-REX
client
tools

proxy
jobs

maps to
local user

client
tools

proxy

jobs

local usersgrid users

DN

VO

default

based on

Figure 4.3: The A-REX maps the grid users to local users based on information about their identity and Virtual Orga-
nization membership. It’s also possible to do default mapping.

Enable a LRMS to improve performance and load balancing of batch job execution, ARC support several
famous clustering and load balancing systems such as Torque/PBS, Sun Grid Engine, LSF, and others.
See Section 4.4.2, Connecting to the LRMS.

Register to an index service NorduGrid provides an index service that will publish the CE to all the grid clients
that have access to the NorduGrid network. In this way the CE will be part of the GRID. See Section 4.4.4,
How to join the grid: registering to an index service/

4.4.1 Access control: users, groups, VOs

The grid mappings between grid users and local unix accounts are listed in the so-called grid map file,
usually located in the directory /etc/grid-security/. While this text file can be edited by hand this is not
advisible in production environments. To ease the security administrator job, NorduGrid provides a collection of
scripts and cron jobs that automatically keeps the local grid map files synchronized to a central user database. If
the CE has to join NorduGrid, it is suggested to install the nordugrid-arc-gridmap-utils package from
the NorduGrid Downloads area or EMI repository, see Chapter 3, Installation for details. If you installed the pack-
age, then you should edit the [groups] and [vo] sections in the configuration file and optionally the location
of the file representing local list of mappings (usually /etc/grid-security/local-grid-mapfile).
For the description of the grid map file, please refer to Section 6.12, Structure of the grid-mapfile.

The two sections [group] and [vo] configure automatic mapping of GRID identities to local UNIX users and
basic access control policies:

[vo] defines Virtual Organizations (VOs). A VO is a simple way of mapping sets of users belonging to different
(real) organizations and, for example, willing to use the same set of software. A common use of this section
is to include users published by VOMS servers [?]. [vo] sections can be referred by [group] sections.
If this happens, it is important that the [vo] definition appears before the [group] section that refers
to it.

[group] defines authorization rules to access the CE for users or set of users defined by [vo] sections.

The configuration presented here is sufficient for a simple production setup where the identities are known or
are already contained in a file or a collection of files, eventually located and updated remotely.

30

4.4.1.1 [vo] configuration commands

The following is a sample [vo] section for a minimal CE:

[vo]
id="vo_1"
vo="TestVO"
source="file:///etc/grid-security/local-grid-mapfile"
mapped_unixid="griduser1"
require_issuerdn="no"

We define a VO here with the name of TestVO and the id of vo_1, the list of members comes from a URL
(which here points to a local file, see example below), and all members of this VO will be mapped to the local
user griduser1.

Here’s an example of the file with the list of members:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo4"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo5"

For more configuration options, please see Section 6.1.2, Commands in the [vo] section.

To generate the actual grid map file from these [vo] settings, we need the nordugridmap utility, described
below.

4.4.1.2 Automatic update of the mappings

The package nordugrid-arc-gridmap-utils contains a script (usually located in /usr/sbin/nordugridmap)
to automatically update user mappings. It does that by fetching all the sources in the source commands and
writing their contents adding the mapped user mapped unixid in the grid-mapfile and each file specified by
the file command. The script is executed from time to time as a cron job.

4.4.1.3 [group] configuration commands

[group] defines authorizations for users accessing the grid.

There can be more than one group in the configuration file, and there can be subsections identified by the group
name such as [group/users].

For a minimal CE with no authorization rules, it is sufficient to have something like the following, preceeded
with the [vo] section previously defined in this chapter:

[group/users]
name="users"
vo="TestVO"

where the name could be omitted and then would be automatically taken from the subsection name.

For more about authorization, please read Section 6.1.3, Commands in the [group] section.

4.4.2 Connecting to the LRMS

One of the features of Grid Middleware is that leverages the user from learning all the different commands
needed to submit a job to a queue, thus still taking advantage of all the features load levelling and clustering
system provide. A-REX supports several Local Resource Management Systems, with which it interacts by several
backend scripts.

Connecting A-REX to one of these LRMS involves the following steps:

1. creation of shared directories between A-REX, the LRMS frontend and its working nodes. It might involve
setup of shared filesystems such as NFS or similar.

31

LRMS frontend LRMS node

LR
M

S
no

de

LR
M

S
no

de

LR
M

S
no

de

LR
M

S
no

de

LRMS

control
directory

session
directory

session
directory

job script

local users

A-REX

Figure 4.4: The LRMS frontend and the nodes sharing the session directory and the local users

2. configuration of the behaviour of a-rex with respect to the shared directories in the [grid-manager]
section.

3. configuration of the following arc.conf sections: [common], [grid-manager], [queue/*].

In the [common] section the name of the LRMS has to be specified:

lrms=default lrms name [default queue name] – specifies the name of the LRMS and option-
ally the queue.

The following [grid-manager] configuration commands affect how A-REX interacts with the LRMS:

gnu time=path – path to time utility.

tmpdir=path – path to directory for temporary files. Default is /tmp.

runtimedir=path – path to directory which contains runtimenvironment scripts.

shared filesystem=yes|no – if computing nodes have an access to session directory through a
shared file system like NFS. if set to “no”, this means that the computing node does not share a
filesystem with the frontend. In this case the content of the SD is moved to a computing node using
means provided by the LRMS. Results are moved back after the job’s execution in a similar way. Sets
the environment variable RUNTIME_NODE_SEES_FRONTEND

scratchdir=path – path on computing node where to move session directory before execution. If
defined should contain the path to the directory on computing node which can be used to store a job’s
files during execution. Sets the environment variable RUNTIME_LOCAL_SCRATCH_DIR .

shared scratch=path – path on frontend where scratchdir can be found. if defined should contain
the path corresponding to that set in scratchdir as seen on the frontend machine. Sets the
environment variable RUNTIME_FRONTEND_SEES_NODE .

nodename=command – command to obtain hostname of computing node.

For additional details, see Section 6.1.8.6, Substitutions in the command arguments and Section 6.14, Using a
scratch area.

Each LRMS has his own peculiar configuration options.

4.4.2.1 PBS

The Portable Batch System (PBS) is one of the most popular batch systems. PBS comes in many flavours such
as OpenPBS (unsupported), Terascale Open-Source Resource and QUEue Manager (TORQUE) and PBSPro
(currently owned by Altair Engineering). ARC supports all the flavours and versions of PBS.

32

Recommended batch system configuration PBS is a very powerful LRMS with dozens of configurable
options. Server, queue and node attributes can be used to configure the cluster’s behaviour. In order to
correctly interface PBS to ARC (mainly the information provider scripts) there are a couple of configuration
REQUIREMENTS asked to be implemented by the local system administrator:

1. The computing nodes MUST be declared as cluster nodes (job-exclusive), at the moment time-shared
nodes are not supported by the ARC setup. If you intend to run more than one job on a single processor
then you can use the virtual processor feature of PBS.

2. For each queue, you MUST set one of the max user run or max running attributes and its value SHOULD
BE IN AGREEMENT with the number of available resources (i.e. don’t set the max running = 10 if you
have only six (virtual) processors in your system). If you set both max running and max user run then
obviously max user run has to be less or equal to max running.

3. For the time being, do NOT set server limits like max running, please use queue-based limits instead.

4. Avoid using the max load and the ideal load directives. The Node Manager (MOM) configuration file
(<PBS home on the node>/mom priv/config) should not contain any max load or ideal load
directives. PBS closes down a node (no jobs are allocated to it) when the load on the node reaches the
max load value. The max load value is meant for controlling time-shared nodes. In case of job-exclusive
nodes there is no need for setting these directives, moreover incorrectly set values can close down your
node.

5. Routing queues are now supported in a simple setup were a routing queue has a single queue behind it.
This leverages MAUI work in most cases.
Other setups (i.e. two or more execution queues behind a routing queue) cannot be used within ARC.

Additional useful configuration hints:

• If possible, please use queue-based attributes instead of server level ones (for the time being, do not use
server level attributes at all).

• You may use the ,,acl user enable = True” with ,,acl users = user1,user2” attribute to enable user access
control for the queue.

• It is advisory to set the max queuable attribute in order to avoid a painfully long dead queue.

• You can use node properties from the <PBS home on the server>/server priv/nodes file
together with the resources default.neednodes to assign a queue to a certain type of node.

Checking your PBS configuration:

• The node definition can be checked by <PBS installation path>/bin/pbsnodes -a. All the
nodes MUST have ntype=cluster.

• The required queue attributes can be checked as <PBS installation path>/bin/qstat -f -Q
queuename. There MUST be a max user run or a max running attribute listed with a REASONABLE
value.

Configuration commands in arc.conf Below the PBS specific configuration variables are collected.

lrms="pbs" – in the [common] section enables the PBS batch system back-end. No need to specify
the flavour or the version number of the PBS, simply use the "pbs" keyword as LRMS configuration
value.

For each grid-enabled (or grid visible) PBS queue a corresponding [queue/queuename] subsection must be
defined. queuename should be the PBS queue name.

pbs bin path=path – in the [common] section should be set to the path to the qstat,pbsnodes,qmgr
etc. PBS binaries.

pbs log path=path – in the [common] sections should be set to the path of the PBS server logfiles
which are used by A-REX to determine whether a PBS job is completed. If not specified, A-REX will
use the qstat command to find completed jobs.

For additional configuration commands, please see Section 6.1.9, PBS specific commands.

33

Known limitations Some of the limitations are already mentioned under the PBS deployment requirements.
No support for routing queues, difficulty of treating overlapping queues, the complexity of node string specifica-
tions for parallel jobs are the main shortcomings.

4.4.2.2 Condor

The Condor [?] system, developed at the University of Wisconsin-Madison, was initially used to harness free
cpu cycles of workstations. Over time it has evolved into a complex system with many grid-oriented features.
Condor is available on a large variety of platforms.

Recommended batch system configuration Install Condor on the Grid Manager (GM) node and configure
it as a submit machine. Next, you must add the following to the node’s Condor configuration (CONDOR IDS
can also be an environment variable):

MAIL = <ARC_install_prefix>/libexec/finish-condor-job
CONDOR_IDS = 0.0

The MAIL attribute will instruct Condor to run the specified program on job completion. The default on Condor
is to run /bin/mail to notify the user, but in this case, it is A-REX that needs the notification. Therefore,
/bin/mail is replaced with a program especially written for talking to A-REX.

CONDOR IDS has to be 0.0, so that the above notification program can access the Grid job’s session directories
(needed to extract the job exit code from the Condor log).

Make sure that no normal users are allowed to submit Condor jobs from this node. For one thing, it would not
work for the user, since Condor will try to notify A-REX instead of the job owner on job completion. If you don’t
allow normal user logins on the A-REX machine, then you don’t have to do anything. If you for some reason
want to allow users to log into the A-REX machine, simply don’t allow them to execute the condor submit
program. This can be done by putting all local Unix users allocated to the Grid in a single group, e.g. ’griduser’,
and then setting the file ownership and permissions on condor submit like this:

chgrp griduser $condor_location/bin/condor_submit
chmod 750 $condor_location/bin/condor_submit

Configuration commands in arc.conf The Condor-specific configuration commands:

lrms="condor" – in the [common] section enables the Condor batch system back-end.

condor location=path – in the [common] section should be set to the Condor install prefix (i.e.,
the directory containing Condor’s bin, sbin, etc).

For additional configuration commands, please see Section 6.1.10, Condor specific commands.

Known limitations Only Vanilla universe is supported. MPI universe (for multi-CPU jobs) is not supported.
Neither is Java universe (for running Java executables). ARC can only send jobs to Linux machines in the
Condor pool, therefore excluding other unixes and Windows destinations. The session directory must be on a
network shared directory, visible from all worker nodes.

4.4.2.3 LoadLeveler

LoadLeveler(LL), or Tivoli Workload Scheduler LoadLeveler in full, is a parallel job scheduling system developed
by IBM.

Recommended batch system configuration The back-end should work fine with a standard installation
of LoadLeveler. For the back-end to report the correct memory usage and cputime spent, while running.
LoadLeveler has to be set-up to show this data in the llq command. Normally this is turned off for performance
reasons. It is up to the cluster administrator to decide whether or not to publish this information. The back-end
will work whether or not this is turned on.

Configuration commands in arc.conf Only the two basic LRMS config options are relevant for LoadLeveler:

lrms="ll" – in the [common] section enables the LoadLeveler batch system.

ll bin path=path – in the [common] section must be set to the path of the LoadLeveler binaries.

34

Known limitations There is at the moment no support for parallel jobs on the LoadLeveler back-end.

4.4.2.4 Fork

The Fork back-end is a simple back-end that interfaces to the local machine, i.e.: there is no batch system
underneath. It simply forks the job, hence the name. The back-end then uses standard posix commands (e.g.
ps or kill) to manage the job.

Recommended batch system configuration Since fork is a simple back-end and does not use any batch
system, there is no specific configuration needed for the underlying system.

Configuration commands in arc.conf Only these commands are applied:

lrms="fork" – in the [common] section enables the Fork back-end. The queue must be named "fork"
in the [queue/fork] subsection.

fork job limit=cpunumber – sets the number of running grid jobs on the fork machine, allowing a
multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

Known limitations Since Fork is not a batch system, many of the queue specific attributes or detailed job
information is not available. The support for the ,,Fork batch system” was introduced so that quick deployments
and testing of the middleware can be possible without dealing with deployment of a real batch system since
fork is available on every UNIX box. The ,,Fork back-end” is not recommended to be used in production. The
back-end by its nature, has lots of limitations, for example it does not support parallel jobs.

4.4.2.5 LSF

Load Sharing Facility (or simply LSF) is a commercial computer software job scheduler sold by Platform Com-
puting. It can be used to execute batch jobs on networked Unix and Windows systems on many different
architectures

Recommended batch system configuration Set up one or more LSF queues dedicated for access by grid
users. All nodes in these queues should have a resource type which corresponds to the one of the the frontend and
which is reported to the outside. The resource type needs to be set properly in the lsb.queues configuration
file. Be aware that LSF distinguishes between 32 and 64 bit for Linux. For a homogeneous cluster, the
type==any option is convenient alternative.

Example: In lsb.queues set one of the following:

RES_REQ = type==X86_64
RES_REQ = type==any

See the -R option of the bsub command man page for more explanation.

Configuration commands in arc.conf The LSF back-end requires that the following options are specified:

lrms="lsf" – in the [common] section enables the LSF back-end

lsf bin path=path – in the [common] section must be set to the path of the LSF binaries

lsf profile path=path – must be set to the filename of the LSF profile that the back-end should
use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because the
architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture to match
the chosen queue. LSF’s standard behaviour is to assume the same architecture as the frontend. This will fail
for instance if the frontend is a 32 bit machine and all the cluster resources are 64 bit. If this is not done the
result will be jobs being rejected by LSF because LSF believes there are no useful resources available.

Known limitations Parallel jobs have not been tested on the LSF back-end.

The back-end does not at present support reporting different number of free CPUs per user.

35

4.4.2.6 SGE

Sun Grid Engine (SGE, Oracle Grid Engine, Codine) is an open source batch system maintained by Sun (Oracle).
It is supported on Linux, and Solaris in addition to a numerous other systems.

Recommended batch system configuration Set up one or more SGE queues for access by grid users. Queues
can be shared by normal and grid users. In case you want to set up more than one ARC queue, make sure that
the corresponding SGE queues have no shared nodes among them. Otherwise the counts of free and occupied
CPUs might be wrong. Only SGE versions 6 and above are supported.

Configuration commands in arc.conf The SGE back-end requires that the following options are specified:

lrms="sge" – in the [common] section enables the SGE batch system back-end.

sge root=path – in the [common] section must be set to SGE’s install root.

sge bin path=path – in the [common] section must be set to the path of the SGE binaries.

sge jobopts=options – in the [queue/queuename] section can be used to add custom SGE
options to job scripts submitted to SGE. Consult SGE documentation for possible options. Example:

lrms="sge"
sge_root="/opt/n1ge6"
sge_bin_path="/opt/n1ge6/bin/lx24-x86"

...

[queue/long]
sge_jobopts="-P atlas -r yes"

For additional configuration commands, please see Section 6.1.14, SGE specific commands.

Known limitations Multi-CPU support is not well tested. All users are shown with the same quotas in the
information system, even if they are mapped to different local users. The requirement that one ARC queue maps
to one SGE queue is too restrictive, as the SGE’s notion of a queue differs widely from ARC’s definition. The
flexibility available in SGE for defining policies is difficult to accurately translate into NorduGrid’s information
schema. The closest equivalent of nordugrid-queue-maxqueuable is a per-cluster limit in SGE, and the value of
nordugrid-queue-localqueued is not well defined if pending jobs can have multiple destination queues.

4.4.2.7 SLURM

SLURM is an open-source (GPL) resource manager designed for Linux clusters of all sizes. It is designed to
operate in a heterogeneous cluster with up to 65,536 nodes. SLURM is actively being developed, distributed and
supported by Lawrence Livermore National Laboratory, Hewlett-Packard, Bull, Cluster Resources and SiCortex

Recommended batch system configuration The backend should work with a normal installation using only
SLURM or SLURM+moab/maui. Do not keep nodes with different amount of memory in the same queue.

Configuration commands in arc.conf The SLURM back-end requires that the following options are spec-
ified:

lrms="sge" – in the [common] section enables the SLURM batch system back-end.

slurm bin path=path – in the [common] section must be set to the path of the SLURM binaries.

Known limitations If you have nodes with different amount of memory in the same queue, this will lead to
misscalculations. If SLURM is stopped, jobs on resource will get canceled, not stalled. The SLURM backend is
only tested with SLURM 1.3, it should however work with 1.2 as well.

36

4.4.3 Enabling the cache

The A-REX can cache input files, so that subsequent jobs requiring the same file don’t have to wait for down-
loading it again: the cached file will be symlinked (or copied) into the session directory of the job (but only after
the permissions of this user and the modification date of the file are checked).

Enabling caching is as simple as providing a directory path with the cachedir configuration command in the
[grid-manager] section and turning on the cache cleaning mechanism with the cachesize command:

cachedir=path
cachesize=high_mark [low_mark]

Here path points to a directory which will be used by the A-REX to store the cached files. A-REX will create
this directory when the first job is submitted, it should be owned by the same user as which the A-REX is
running. The size of the cache directory is maintained by removing the least recently accessed files. If the cache
size exceeds a given percentage (,,high mark”) of the available space, the oldest files will be removed until the
size goes below another given percentage (,,low mark”).

A sample section is shown here:

[grid-manager]
user="root"
controldir="/tmp/control"
sessiondir="/tmp/session"
mail="grid.support@somewhere.org"
joblog="/tmp/gm-jobs.log"
securetransfer="no"
cachedir="/tmp/cache"
cachesize="80 70"

It is possible to use more than one cache directory by simply specifing more than one cachedir command in
the configuration file. When multiple caches are used, a new cache file will go to a randomly selected cache
where each cache is weighted according to the size of the file system on which it is located (e.g. if there are
two caches of 1TB and 9TB then on average 10% of input files will go to the first cache and 90% will go to
the second cache).

By default the files will be linked into the session directory of the job. If we prefer to copy them (because e.g.
the cache directory is not accessible from the worker nodes), we should add a dot (.) after the path:

cachedir=path "."

If the cache directory is accessible from the worker nodes but on a different path, then we can specify this path
also:

cachedir=path link_path

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache cleaning
can become slow, leading to caches filling up beyond their configured limits. For performance reasons it may
be advantageous to disable cache cleaning by the A-REX (by removing the cachesize command from the
config), and run the cache-clean tool independently on the machine hosting the file system. (Please refer to
Section 5.1.5, Cache administration.)

Caches can be added to and removed from the configuration as required without affecting any cached data, but
after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and all data
erased, it is recommended that the cache be put in a draining state until all currently running jobs possibly
accessing files in this cache have finished. This can be done by putting the word ,,drain” as the link path:

cachedir=path "drain"

For more details about the mechanisms of the cache, please refer to Section 6.5, Cache.

37

information system

information

information

information

client
tools

EGIIS

ARIS

EGIIS

EGIIS

ARISARIS

Figure 4.5: The components of the ARC information system: the ARIS which sits next to a computing element (or a
storage resource) and advertises information about it; and the EGIIS which indexes the location of ARISes
and other EGIIS, creating a hierarchical information mash, where querying the top nodes would provide
information about all the resources.

4.4.4 How to join the grid: registering to an index service

Once a cluster is setup, it needs to communicate to some index service to join the grid. Joining an index will
let client query the index to find the CE without specifying the CE hostname on the command line.

In the grid world, this is crucial as the user is agnostic about the server his/her jobs will run.

Connection to an index will enable resource sharing in a federated way, among users accepted by the rules in
the [group] and [vo] sections.

NGI usually run their own index, NorduGrid runs several ones:

ldap://index1.nordugrid.org:2135

ldap://index2.nordugrid.org:2135

ldap://index3.nordugrid.org:2135

To connect to an index, add the following to a basic CE configuration file, after all the other existing [infosys]
related sections:

...
[infosys/cluster/registration/toPGS1]
targethostname="quark.hep.lu.se"
targetport="2135"
targetsuffix="mds-vo-name=PGS,o=grid"
regperiod="300"
...

The special section name [infosys/cluster/registration/toIndex] is used to configure registration
of a cluster (a CE) to an index service (an IS[]).

Registration commands explained:

targethostname=FQDN – The FQDN of the host running the target index service.

targetport=portnumber – Port where the target Index Service is listening. Defaults to 2135.

targetsuffix=ldapsuffix – ldap suffix of the target index service. This has to be provided by a
manager of the index service, as it is a custom configuration value of the Index Service. Usually is a
string of the form "mds-vo-name=<custom value>,o=grid"

38

regperiod=seconds – the registration script will be run each number of seconds. Defaults to 120.

These commands will affect the way the registration script is run. Logs about registration information can be
found by looking at the file configured by the registrationlog command in the [infosys] section (see
Section 4.3.5, The [infosys] section: the local information system). For information on how to read the logs see
Section 5.3, Log files

The registration script is called grid-info-soft-register. Once registration to an index is configured,
parameters of this script can be checked on the system by issuing at the shell:

[root@piff tmp]# ps aux | grep reg
root 29718 0.0 0.0 65964 1316 pts/0 S 14:36 0:00 /bin/sh /usr/share/arc/grid-info-soft-register -log
/var/log/arc/inforegistration.log -f /var/run/arc/infosys/grid-info-resource-register.conf -p 29710
root 29725 0.0 0.0 66088 1320 pts/0 S 14:36 0:00 /bin/sh /usr/share/arc/grid-info-soft-register
-log /var/log/arc/inforegistration.log -register -t mdsreg2 -h quark.hep.lu.se -p 2135 -period 300
-dn Mds-Vo-Op-name=register, mds-vo-name=PGS,o=grid -daemon -t ldap -h piff.hep.lu.se -p 2135 -ttl 600
-r nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-name=local,o=Grid -T 45 -b ANONYM-ONLY -z 0 -m cachedump -period 0
root 29794 0.0 0.0 61192 756 pts/0 S+ 14:37 0:00 grep reg

Other less relevant options are available for registration, please refer to Section 6.1.5, Commands in the [infosys]
section.

If the registration is successful, the cluster will be shown on the index. To find out that, please refer to the Index
Service documentation [].

4.5 Enhancing CE capabilities

Once a basic CE is in place and its basic functionalities have been tested, is possible to add more features to it.

These include:

Enable glue1.2/1,3, GLUE2 LDAP schemas To be compliant with other grid systems and middlewares, ARC
CE can publish its information in these other schemas. In this way its information can show up also in
information systems compliant with gLite [?]. ARC CE can act as a resource-BDII, to be part of a
site-BDII and join the european grid.
See Section 4.5.1, Enabling other LDAP schemas

Enable file caching In grid environments is likely for people to work on the same data set. Downloading an
uploading this data can be a time and space consuming task. Hence ARC provides means of caching and
hashing data already downloaded and offer it to all the users allowed to run on the cluster, in a completely
transparent way.
See Section 4.4.3, Enabling the cache

Provide customized execution environments on-demand As every experiment can have its own libraries,
dependencies, tools, ARC provides a mean of creating such environments on demand for each user. This
feature is called Runtime Environment (RTE)

Use web services instead/together with of GridFTPd/LDAP Next generation ARC Client and servers are
Web Service ready. Job submission and Information System can now be run as a single standardized service
using the https protocol, leveraging most of the system administrator’s configuration job and increasing
performance.

4.5.1 Enabling other LDAP schemas

ARIS, the cluster information system, can publish information in three schemas and two protocols. Information
published via the LDAP protocol can follow the following three schemas:

NorduGrid Schema The default NorduGrid schema, mostly used in Nordic countries and within all the Nor-
duGrid Members. Definition and technical information can be found in [?].

Glue 1.2 / 1.3 schema Default currently used by gLite middleware[?] and the european grids. Specification
can be found here: []

GLUE 2 schema Next generation glue schema with better granularity. Not yet used in production environ-
ments. Specification can be found here: [?]

39

The benefits of enabling these schemas are the possibility to join grids different from the nordugrid one, for
example to join machines allotted to do special e-Science experiments jobs, such as the ATLAS experiment[?].

To enable or disable schema publishing, the first step is to insert the enable commands in the [infosys]
section as explained in 4.3.5, The [infosys] section: the local information system. For nordugrid schema and
GLUE 2 it is enough set the command to enable.

Glue 1.2/1.3 schema carries geographycal information and have to be configured in a separate section, [infosysglue12].

Two arc.conf examples are available on svn at these links:

Glue 1.2/1.3 http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_
element_glue12.conf

Glue 2 http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_
element_glue2.conf

An example configuration of the [infosys/glue12] section is given in Figure 4.6.

[infosys/glue12]
resource_location="Somewhere, Earth"
resource_latitude="54"
resource_longitude="25"
cpu_scaling_reference_si00="2400"
processor_other_description="Cores=1,Benchmark=9.8-HEP-SPEC06"
glue_site_web="http://www.eu-emi.eu"
glue_site_unique_id="MINIMAL Infosys configuration"
provide_glue_site_info="true"

Figure 4.6: An example [infosysglue12] configuration section

Explanation of the commands follows:

resource location=City, Country – The fiels is free text but is a common agreement to have
the City and the Country where the CE is located, separated by comma.

resource latitude=latitudevalue – latitude of the geolocation where the CE is, expressed as
degrees, e.g. 55.34380

resource longitude=longitudevalue – latitude of the geolocation where the CE is, expressed as
degrees, e.g. 12.41670

cpu scaling reference si00=number – number represent the scaling reference number wrt si00.
Please refer to the GLUE schema specification [] to know which value to put.

processor other description=string – String representing information on the processor, i.e.
number of cores, becnhmarks.... Please refer to the GLUE schema specification [] to know which value
to put. Example: Cores=3,Benchmark=9.8-HEP-SPEC06

glue site web=url – full url of the website of the site running the CE. Example: http://www.ndgf.org

glue site unique id =siteID – Unique ID of the site where the CE runs. Example: NDGF-T1

provide glue site info=true|false – This variable decides if the GlueSite should be published,
in case a more complicated setup with several publishers of data to a GlueSite is needed. See also []

4.5.1.1 Applying changes

Once arc.conf is modified, restart the infosystem as explained in Section 5.1, Starting and stopping CE services.

To test information is being published, follow the instructions in Section 5.2.1, Testing the information system.

4.5.2 Runtime Environments

RTE configuration documentation is being updated. For the moment being, please follow the guide here:

http://gridrer.csc.fi/

40

http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_element_glue12.conf
http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_element_glue12.conf
http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_element_glue2.conf
http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/arc_computing_element_glue2.conf
http://gridrer.csc.fi/

4.5.3 Enabling the Web Services interface

A-REX provides a standard-compliant Web Service (WS) interface to handle job submission/management. The
WS interface of A-REX is however disabled by default in ARC and EMI distributions as of 2011. If you
are interested to experiment with A-REX advanced features, setting the option arex_mount_point in the
[grid-manager] section of arc.conf enables the web service interface, e.g.

arex_mount_point="https://your.host:60000/arex"

Then you can submit jobs through this new WS interface with the arcsub command (available in the ARC
client package) and manage jobs with other arc* commands.

IMPORTANT: this web service interface does not accept legacy proxies created by default by voms-proxy-init.
RFC proxies must be used, which can be created by specifying voms-proxy-init -rfc or using arcproxy.

The WS interface can run alongside the GridFTP interface. Enabling the WS interface as shown above does
not disable the GridFTP interface - if desired ,,gridftpd” service must be explicitly stopped.

4.5.4 VOMS

In order to identify VOs system wide they should be listed in the file /etc/vomses. Each VO should be
written on one line in the format:

"alias" "machine address" "tcp port" "host dn" "official vo name"

It is advised to have alias the same as official vo name: several VOMS client versions mix them.

You have to make sure that certificates of trusted VOMS servers are installed in /etc/grid-security/vomsdir
(preferably, named by their hashes, for backward compatibility). If you happened to get the certificate file named
differently, rename it to its hash as displayed by

openssl x509 -in cert-filename -hash -noout

appended with the suffix of .0, e.g. 96a311cb.0. If you use a reasonably new VOMS client, certificates can
have any name.

Currently, there is no easy way to obtain such certificates, except of asking VO managers. Some VOMS Admin
Web interfaces can be helpful, but not older versions. From the NorduGrid Web site you can get some VOMS
server certificates, see http://www.nordugrid.org/documents/voms-notes.html

Please always contact the respective VO managers to obtain the latest certificates. In particular, WLCG VOMS
server (ATLAS, ALICE etc) certificates are distributed as lcg-vomscerts package with gLite.

If you are desperate still, there is a way to get any certificate as long as you know server address. The procedure
has three steps:

1. fetch the certificate

2. calculate its hash

3. copy it with the correct name to /etc/grid-security/vomsdir

as shown below:

openssl s_client -CApath /etc/grid-security/certificates \
-status -cert $X509_USER_CERT -key $X509_USER_KEY \
-connect <server:port> 2>/dev/null | openssl x509 > tmp.0
openssl x509 -in tmp.0 -noout -hash
mv tmp.0 /etc/grid-security/vomsdir/<hashvalue>.0

41

http://www.nordugrid.org/documents/voms-notes.html

Here <port> is typically the standard VOMS https interface port, 8443 (port listed in vomses file can also be
used).

Note that you may place VOMS server certificates in any arbitrary place, provided it is defined in the X509_VOMS_DIR
environment variable

The information from the VOMS server should also be used to implement VO-based user mapping in the
arc.conf file or analogous configuration file of other grid midlewares. Typically, the necessary contact strings
are available via ,,Configuration Information” option in VOMS Web interface. Different mapping utilities use
such contact srtings in slightly different manner.

In file /etc/arc.conf, inside [vo] blocks, one can then use following constructions to map entire VO, a
group or a role to a local user::

#get all members of vo knowarc.eu
source="vomss://arthur.hep.lu.se:8443/voms/knowarc.eu"
#get all members of vo knowarc.eu that are members of the group testers
source="vomss://arthur.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu/testers"
#get all members of vo knowarc.eu that have the role VO-Admin
source="vomss://arthur.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu/Role=VO-Admin"

Note that e.g. the group testers should be written /knowarc.eu/testers even though some might
construe this as an unnecessary redundancy.

Example of some useful [vo] blocks making use of VOMS are such:

[vo]
id="vo_1"
vo="nordugrid.org"
source="vomss://voms.ndgf.org:8443/voms/nordugrid.org"
mapped_unixid="griduser"
file="/etc/grid-security/grid-mapfile"

[vo]
id="vo_3"
vo="testers.knowarc.eu"
source="vomss://arthur.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu/testers"
mapped_unixid="tester"
file="/etc/grid-security/grid-mapfile"

[vo]
id="vo_5"
vo="admin.knowarc.eu"
source="vomss://arthur.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu/Role=VO-Admin"
mapped_unixid="master"
file="/etc/grid-security/grid-mapfile"

Make sure there are no more than one block with a given id!

To test your configuration, run

nordugridmap --test

42

Chapter 5

Operations

5.1 Starting and stopping CE services

5.1.1 Overview

The scripts needed for a production level CE to work are three:

• gridftpd : Starts the gridftpd interface. Brings up the server (configured in the [gridftpd] block) and
all the services related to it (configured in all the [gridftpd/subsection] blocks).
Usually located in /etc/init.d/
See Section 4.3.4, The [gridftpd] section: the job submission interface for configuration details.

• a-rex : Starts A-REX, the grid manager (configured in the [grid-manager] block). It prepares the
configfiles and starts the arched hosting environment process.
Starts the Web Services interface only if it has been enabled. See Section 4.5.3, Enabling the Web
Services interface
Starts LRMS scripts. See Section 4.4.2, Connecting to the LRMS for configuration details.
Usually located in /etc/init.d/
See Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched for configuration
details.

• grid-infosys : Starts the LDAP server and the infosystem scripts (configured in the [infosys]
configuration block and its subsections).
Usually located in /etc/init.d/
See Section 4.3.5, The [infosys] section: the local information system for configuration details.

5.1.2 Starting the CE

To start a CE, issue the following commands with root rights in the following order:

1. # service gridftpd start

2. # service a-rex start

3. # service grid-infosys start

Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/gridftpd start

2. # /etc/init.d/service a-rex start

3. # /etc/init.d/service grid-infosys start

43

5.1.3 Stopping the CE

To stop a CE, issue the following commands with root rights in the following order:

1. # service grid-infosys stop

2. # service a-rex stop

3. # service gridftpd stop

Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/service grid-infosys stop

2. # /etc/init.d/service a-rex stop

3. # /etc/init.d/gridftpd stop

5.1.4 Verifying the status of a service

To check the status of a service, issue the command:

service <servicename> status

Alternatively the exact same procedure can be used calling the scripts directly:

/etc/init.d/<servicename> status

where <servicename> is one of gridftpd, a-rex, grid-infosys

Depending on the security configuration, root permissions might be needed to execute these commands.

A CE is fully funtional when all the three scripts return and OK status with a process PID of each service process.

5.1.5 Cache administration

The following tools exist to help with administration of the cache:

• cache-clean - This tool is used periodically by the A-REX to keep the size of each cache within the con-
figured limits.
cache-clean -h gives a list of options. The most useful option for administrators is -s, which does not
delete anything, but gives summary information on the files in the cache, including information on the
ages of the files in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to tem-
porarily clean up the cache with different size limits to those specified in the configuration, or to improve
performance by running it on the file system’s local node as mentioned above.

• cache-list - This tool is used to list all files present in each cache or, given a list of URLs as arguments,
shows the location of each URL in the cache if present. In the first case it simply reads through all the
.meta files and prints to stdout a list of all URLs stored in each cache and their corresponding cache
filename, one per line. In the second case the cache filename of each URL is calculated and then each
cache is checked for the existence of the file.

44

5.2 Testing a configuration

This chapter will give instructions on how to test and troubleshoot that a given configuration is correct, and
that everything is running properly.

Things to check are, in order of importance:

1. The information system is running and publishing the correct information. Without a properly
configured information systems, the clients will not be able to query the cluster for its resources and do
an efficient brokering.
See Section 5.2.1, Testing the information system

2. A-REX is running with valid certificates installed.
See Section 5.2.2, Testing whether the certificates are valid

3. The job submission interface is listening and accepting for jobs.
See Section 5.2.3, Testing the job submission interface

4. LRMS configuration is correct and a job can be executed on the queues.
See Section 5.2.4, Testing the LRMS

5.2.1 Testing the information system

ARC-CE information system publishes in LDAP and WebServices/XML format.

To test if the LDAP information system is running, ldap tools must be installed. In particular the tool called
ldapsearch [?].

To test if the WS information system is running, ARC suggests its own tool called arcwsrf [?].

5.2.1.1 Check NorduGrid Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’mds-vo-name=local,o=grid’

and the result should be something like the one in Figure 5.1.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the same
query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’mds-vo-name=local,o=grid’

The result must be the similar to the one in Figure 5.1.

All the values must be consistent with you setup. For example, nordugrid-cluster-name must be the machine’s
hostname.

5.2.1.2 Check Glue 1.x Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’mds-vo-name=resource,o=grid’

and the result should be something like the one in Figure 5.2.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the same
query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’mds-vo-name=resource,o=grid’

The result must be the similar to the one in Figure 5.2.

45

extended LDIF
#
LDAPv3
base <mds-vo-name=local,o=grid> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

local, Grid
dn: Mds-Vo-name=local,o=Grid
objectClass: Mds
objectClass: MdsVo
Mds-Vo-name: local
Mds-validfrom: 20110811172014Z
Mds-validto: 20110811182014Z

piff.hep.lu.se, local, grid
dn: nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-name=local,o=grid
nordugrid-cluster-totalcpus: 2
nordugrid-cluster-homogeneity: TRUE
nordugrid-cluster-name: piff.hep.lu.se
nordugrid-cluster-lrms-version: 0.9
nordugrid-cluster-middleware: nordugrid-arc-1.0.1
nordugrid-cluster-middleware: globus-5.0.3
nordugrid-cluster-trustedca: /O=Grid/O=NorduGrid/CN=NorduGrid Certification Au
thority
nordugrid-cluster-cpudistribution: 2cpu:1
nordugrid-cluster-sessiondir-lifetime: 10080
nordugrid-cluster-issuerca: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
nordugrid-cluster-credentialexpirationtime: 20110807141455Z
nordugrid-cluster-lrms-type: fork
nordugrid-cluster-sessiondir-free: 129566
nordugrid-cluster-sessiondir-total: 143858
nordugrid-cluster-architecture: x86_64
nordugrid-cluster-prelrmsqueued: 0
nordugrid-cluster-comment: This is a minimal out-of-box CE setup
nordugrid-cluster-contactstring: gsiftp://piff.hep.lu.se:2811/jobs
nordugrid-cluster-issuerca-hash: 8050ebf5
nordugrid-cluster-totaljobs: 0
nordugrid-cluster-aliasname: MINIMAL Computing Element
nordugrid-cluster-usedcpus: 0
objectClass: Mds
objectClass: nordugrid-cluster
Mds-validfrom: 20110811172104Z
Mds-validto: 20110811172204Z

fork, piff.hep.lu.se, local, grid
dn: nordugrid-queue-name=fork,nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-nam
e=local,o=grid
nordugrid-queue-running: 0

Figure 5.1: Output of an ldapsearch on a CE

46

ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’mds-vo-name=resource,o=grid’
extended LDIF
#
LDAPv3
base <mds-vo-name=resource,o=grid> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

resource, Grid
dn: Mds-Vo-name=resource,o=Grid
objectClass: Mds
objectClass: MdsVo
Mds-Vo-name: resource
Mds-validfrom: 20110822130627Z
Mds-validto: 20110822140627Z

piff.hep.lu.se, resource, grid
dn: GlueClusterUniqueID=piff.hep.lu.se,Mds-Vo-name=resource,o=grid
objectClass: GlueClusterTop
objectClass: GlueCluster
objectClass: GlueSchemaVersion
objectClass: GlueInformationService
objectClass: GlueKey
GlueClusterUniqueID: piff.hep.lu.se
GlueClusterService: piff.hep.lu.se
GlueSchemaVersionMinor: 2
GlueForeignKey: GlueCEUniqueID=piff.hep.lu.se:2811/nordugrid-fork-arc
GlueForeignKey: GlueSiteUniqueID=MINIMAL Infosys configuration
GlueSchemaVersionMajor: 1
GlueClusterName: MINIMAL Infosys configuration

MINIMAL Infosys configuration, resource, grid
dn: GlueSiteUniqueID=MINIMAL Infosys configuration,Mds-Vo-name=resource,o=grid
GlueSiteDescription: ARC-This is a minimal out-of-box CE setup
GlueSiteSecurityContact: mailto: -1
objectClass: GlueTop
objectClass: GlueSite
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSiteSysAdminContact: mailto: -1
GlueSiteName: MINIMAL Infosys configuration
GlueSiteUniqueID: MINIMAL Infosys configuration
GlueSchemaVersionMinor: 2
GlueSiteLongitude: 25
GlueSiteLatitude: 54
GlueSchemaVersionMajor: 1
GlueForeignKey: None
GlueSiteOtherInfo: Middleware=ARC
GlueSiteUserSupportContact: mailto: -1
GlueSiteWeb: http://www.eu-emi.eu
GlueSiteLocation: Somewhere, Earth

piff.hep.lu.se:2811/nordugrid-fork-arc, resource, grid
dn: GlueCEUniqueID=piff.hep.lu.se:2811/nordugrid-fork-arc,Mds-Vo-name=resource
,o=grid
GlueCEStateStatus: Production
GlueCEStateTotalJobs: 0
GlueCEInfoJobManager: arc
GlueCEInfoHostName: piff.hep.lu.se
GlueCEUniqueID: piff.hep.lu.se:2811/nordugrid-fork-arc
GlueCEStateFreeJobSlots: 2
GlueForeignKey: GlueClusterUniqueID=piff.hep.lu.se

...

search result
search: 2
result: 0 Success

numResponses: 9
numEntries: 8

Figure 5.2: Sample glue 1.x infosystem output on a ldap query. The output has been shortened with ··· for ease of
reading.

47

5.2.1.3 Check LDAP GLUE2 Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’o=glue’

and the result should be something like the one in Figure 5.3.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the same
query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’o=glue’

The result must be the similar to the one in Figure 5.3.

5.2.1.4 Check WS/XML GLUE2 Schema publishing

First you will need to generate a proxy certificate and your grid ID must be allowed on the CE to test, see [].

Call the arcwsrf test tool:

$ arcwsrf https://<hostname>:<a-rex port>/<a-rex path>

where <a-rex port> <a-rex path> are those specified in Section 4.5.3, Enabling the Web Services in-
terface.

The output should look like in Figure 5.4

5.2.1.5 Further testing hints

If nothing is published or the query hangs, then there can be something wrong with ldap or A-REX.

Check slapd logs to find out the problem in the former case, A-REX logs in the latter. Please see also
Section 5.3, Log files.

5.2.2 Testing whether the certificates are valid

While A-REX is running, check the logfile specified with the logfile option in the [grid-infosys] block
in /etc/arc.conf:

[grid-infosys]
...
logfile="/tmp/grid-manager.log"
...

It will contain information on expired certificates or certificates about to expire, see Figure 5.5.

While ARIS is running, is possible to get that information as well from its logfiles specified with the providerlog
option in the [infosys] block in /etc/arc.conf :

[infosys]
...
providerlog="/tmp/infoprovider.log"
...

It will contain information about expired certificates, see Figure 5.6.

You can inspect the certificates dates by using openssl commands. Please refer to the certificate mini How-to

To understand how to read the logs please refer to Section 5.3, Log files

48

http://www.nordugrid.org/documents/certificate_howto.html

$ ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’o=glue’
extended LDIF
#
LDAPv3
base <o=glue> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

glue
dn: o=glue
objectClass: top
objectClass: organization
o: glue

urn:ogf:AdminDomain:hep.lu.se, glue
dn: GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue
objectClass: GLUE2Domain
objectClass: GLUE2AdminDomain
GLUE2EntityName: hep.lu.se
GLUE2DomainID: urn:ogf:AdminDomain:hep.lu.se

urn:ogf:ComputingService:hep.lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue
dn: GLUE2ServiceID=urn:ogf:ComputingService:hep.lu.se:piff,GLUE2DomainID=urn:o
gf:AdminDomain:hep.lu.se,o=glue
GLUE2ComputingServiceSuspendedJobs: 0
GLUE2EntityValidity: 60
GLUE2ServiceType: org.nordugrid.execution.arex
GLUE2ServiceID: urn:ogf:ComputingService:hep.lu.se:piff
objectClass: GLUE2Service
objectClass: GLUE2ComputingService
GLUE2ComputingServicePreLRMSWaitingJobs: 0
GLUE2ServiceQualityLevel: development
GLUE2ComputingServiceWaitingJobs: 0
GLUE2ServiceComplexity: endpoint=1,share=1,resource=1
GLUE2ComputingServiceTotalJobs: 0
GLUE2ServiceCapability: executionmanagement.jobexecution
GLUE2ComputingServiceRunningJobs: 0
GLUE2ComputingServiceStagingJobs: 0
GLUE2EntityName: piff
GLUE2ServiceAdminDomainForeignKey: urn:ogf:AdminDomain:hep.lu.se
GLUE2EntityCreationTime: 2011-08-22T13:23:24Z

urn:ogf:ComputingEndpoint:piff.hep.lu.se:443, urn:ogf:ComputingService:hep.
lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue
dn: GLUE2EndpointID=urn:ogf:ComputingEndpoint:piff.hep.lu.se:443,GLUE2ServiceI
D=urn:ogf:ComputingService:hep.lu.se:piff,GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue
GLUE2ComputingEndpointRunningJobs: 0
GLUE2ComputingEndpointStaging: staginginout
GLUE2EntityValidity: 60
GLUE2EndpointQualityLevel: development
GLUE2EndpointImplementor: NorduGrid
GLUE2EntityOtherInfo: MiddlewareName=EMI
GLUE2EntityOtherInfo: MiddlewareVersion=1.1.2-1
GLUE2EndpointCapability: executionmanagement.jobexecution
GLUE2EndpointHealthState: ok
GLUE2EndpointServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff
GLUE2EndpointTechnology: webservice
GLUE2EndpointWSDL: https://piff.hep.lu.se/arex/?wsdl
GLUE2EndpointInterfaceName: ogf.bes
GLUE2ComputingEndpointWaitingJobs: 0
GLUE2ComputingEndpointComputingServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff
GLUE2EndpointURL: https://piff.hep.lu.se/arex
GLUE2ComputingEndpointSuspendedJobs: 0
GLUE2EndpointImplementationVersion: 1.0.1
GLUE2EndpointSemantics: http://www.nordugrid.org/documents/arex.pdf
GLUE2ComputingEndpointPreLRMSWaitingJobs: 0
GLUE2EndpointIssuerCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29
GLUE2EndpointServingState: production
GLUE2ComputingEndpointStagingJobs: 0
objectClass: GLUE2Endpoint
objectClass: GLUE2ComputingEndpoint
GLUE2EndpointInterfaceVersion: 1.0
GLUE2EndpointSupportedProfile: http://www.ws-i.org/Profiles/BasicProfile-1.0.html
GLUE2EndpointSupportedProfile: http://schemas.ogf.org/hpcp/2007/01/bp
GLUE2EndpointImplementationName: ARC
GLUE2EndpointTrustedCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29
GLUE2EndpointTrustedCA: /O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority
GLUE2ComputingEndpointJobDescription: ogf:jsdl:1.0
GLUE2ComputingEndpointJobDescription: nordugrid:xrsl
GLUE2EndpointID: urn:ogf:ComputingEndpoint:piff.hep.lu.se:443
GLUE2EntityCreationTime: 2011-08-22T13:23:24Z

...
search result
search: 2
result: 0 Success

numResponses: 6
numEntries: 5

Figure 5.3: Sample ldap search output on GLUE2 enabled infosystem. The output has been shortened with ··· for ease
of reading.

49

$ arcwsrf https://piff.hep.lu.se:60000/arex
<wsrf-rp:GetResourcePropertyDocumentResponse><InfoRoot>

<Domains xmlns="http://schemas.ogf.org/glue/2008/05/spec_2.0_d41_r01" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.ogf.org/glue/2009/03/spec/2/0 pathto/GLUE2.xsd">
<AdminDomain BaseType="Domain">

<ID>urn:ogf:AdminDomain:hep.lu.se</ID>
<Name>hep.lu.se</Name>
<Services>

<ComputingService BaseType="Service" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingService:hep.lu.se:piff</ID>
<Name>piff</Name>
<Capability>executionmanagement.jobexecution</Capability>
<Type>org.nordugrid.execution.arex</Type>
<QualityLevel>development</QualityLevel>
<Complexity>endpoint=1,share=1,resource=1</Complexity>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<ComputingEndpoint BaseType="Endpoint" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ID>
<OtherInfo>MiddlewareName=EMI</OtherInfo>
<OtherInfo>MiddlewareVersion=1.1.2-1</OtherInfo>
<URL>https://piff.hep.lu.se:60000/arex</URL>
<Capability>executionmanagement.jobexecution</Capability>
<Technology>webservice</Technology>
<InterfaceName>ogf.bes</InterfaceName>
<InterfaceVersion>1.0</InterfaceVersion>
<WSDL>https://piff.hep.lu.se:60000/arex/?wsdl</WSDL>
<SupportedProfile>http://www.ws-i.org/Profiles/BasicProfile-1.0.html</SupportedProfile>
<SupportedProfile>http://schemas.ogf.org/hpcp/2007/01/bp</SupportedProfile>
<Semantics>http://www.nordugrid.org/documents/arex.pdf</Semantics>
<Implementor>NorduGrid</Implementor>
<ImplementationName>ARC</ImplementationName>
<ImplementationVersion>1.0.1</ImplementationVersion>
<QualityLevel>development</QualityLevel>
<HealthState>ok</HealthState>
<ServingState>production</ServingState>
<IssuerCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</IssuerCA>
<TrustedCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</TrustedCA>
<TrustedCA>/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority</TrustedCA>
<Staging>staginginout</Staging>
<JobDescription>ogf:jsdl:1.0</JobDescription>
<JobDescription>nordugrid:xrsl</JobDescription>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<Associations>
<ComputingShareID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ComputingShareID>

</Associations>
<ComputingActivities>
</ComputingActivities>

</ComputingEndpoint>
<ComputingShare BaseType="Share" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ID>
<Name>fork</Name>
<Description>This queue is nothing more than a fork host</Description>
<MappingQueue>fork</MappingQueue>

...

<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<FreeSlots>2</FreeSlots>
<FreeSlotsWithDuration>2</FreeSlotsWithDuration>
<UsedSlots>0</UsedSlots>
<RequestedSlots>0</RequestedSlots>
<Associations>
<ComputingEndpointID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ComputingEndpointID>
<ExecutionEnvironmentID>urn:ogf:ExecutionEnvironment:hep.lu.se:piff:fork</ExecutionEnvironmentID>

</Associations>
</ComputingShare>
<ComputingManager BaseType="Manager" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingManager:hep.lu.se:piff</ID>

...

</ComputingManager>
</ComputingService>

</Services>
</AdminDomain>

</Domains>
</InfoRoot>
</wsrf-rp:GetResourcePropertyDocumentResponse>

Figure 5.4: Sample ARC WS information system XML output. The output has been shortened with ··· for ease of
reading.

50

...
[2011-08-05 11:12:53] [Arc] [WARNING] [3743/406154336] Certificate /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12

will expire in 2 days 5 hours 2 minutes 1 second
[2011-08-05 11:12:53] [Arc] [WARNING] [3743/406154336] Certificate /DC=eu/DC=KnowARC/O=Lund University/CN=demo1
will expire in 2 days 5 hours 2 minutes 1 second

...

Figure 5.5: A sample certificate information taken from A-REX logs.

...
[2011-08-12 10:39:46] HostInfo: WARNING: Host certificate is expired in file: /etc/grid-security/hostcert.pem
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.79
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.44
[2011-08-12 10:39:46] HostInfo: WARNING: Issuer CA certificate is expired in file: /etc/grid-security/certificates/8050ebf5.0
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
[2011-08-12 10:39:46] HostInfo: WARNING: Issuer CA certificate is expired in file: /etc/grid-security/certificates/917bb2c0.0
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.79
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.44
...

Figure 5.6: A sample certificate information taken from ARIS logs.

5.2.3 Testing the job submission interface

To test the job submission interface an ARC Client is needed, such as the ng* and arc* tools.

To install an ARC Client refer to http://www.nordugrid.org/documents/arc-client-install.
html.

Once the clients are installed, the arctest utility can be used to submit test jobs.

Usage of this tool is out of the scope of this manual. Refer to [?] for further information.

To test basic job submission try the following command:

arctest -c <hostname fqdn> -J 1

The job should at least be submitted succesfully.

5.2.4 Testing the LRMS

Each LRMS has his own special setup. Nevertheless is good practice to follow this approach:

1. submit a job that includes at least these two lines:

("stderr" = "stderr")
("gmlog" = "gmlog")

The first one will pipe all standard errors to a file called stderr, while the second will generate all the
needed debugging information in a folder called gmlog.

2. retrieve the job with arcget -a.

3. In the job session folder just downloaded, check the gmlog/errors file to see what the job submission
script was and if there are some LRMS related errors.

THe rest of LRMS troubleshooting is LRMS dependent, so please refer to each LRMS specific guide and logs.

51

http://www.nordugrid.org/documents/arc-client-install.html
http://www.nordugrid.org/documents/arc-client-install.html

5.3 Log files

ARC CE log files paths are configured in arc.conf for each component according to the following table:

Component Configuration section More information
A-REX [grid-manager] in subsection 4.3.3

gridftpd interface [gridftpd] in subsection 4.3.4
infoproviders [infosys] in subsection 4.3.5

infoproviders ldap server [infosys] in subsection 4.3.5

5.3.1 The format of the log files

The format of arc log files is the following:

A-REX [Date] [Component name] [error level] [pid/?] Message
gridftpd [Date] [Component name] [error level] [pid/?] Message

infoproviders [Date] infprovider script name: error level: Message
infoprovider registration Date pid file of script process Message

52

Chapter 6

Technical Reference

6.1 Reference of the arc.conf configuration commands

6.1.1 Generic commands in the [common] section

x509 user key=path – sets the path to the host private key, usually /etc/grid-security/hostkey.pem

x509 user cert=path – sets the path to the host public certificate, usually /etc/grid-security/hostcert.pem

x509 cert dir=path – sets the path to the CA certificates, usually /etc/grid-security/certificates

gridmap=path – the path of the ,,grid map file”, which maps grid users to local unix accounts. This has
to be set even if the mappings are dynamically created using the nordugrid-arc-gridmap-utils
package is installed (see sections Section 4.4.1, Access control: users, groups, VOs and Section 6.12,
Structure of the grid-mapfile for a brief explanation).

hostname=hostname – sets the hostname of the front-end. hostname is just a FQDN string. If not
specified, hostname will be the one returned by the shell command hostname -f. Make sure this
hostname is the same listed in /etc/hosts (see also Section 4.1.4, Networking). This hostname
has to be the same FQDN in the host certificates (see also Section 3.3, Installation of certificates).

6.1.2 Commands in the [vo] section

vo=vo name – specifies name of VO. It is required.

id=unique id – defines an unique id for the VO.

file=path – path to file which contains list of users’ DNs belonging to VO and their mappings. This
file follows the format stated in Section 6.12, Structure of the grid-mapfile

source=URL – specifies the URL from which a list of users may be obtained. There can be more than
one source entries in the same [vo] section. URL is in the form < protocolname : // < path >
where < protocolname > is one of: vomss, http, https, ldap, file and < path > is a path in the
form accepted by the protocol standard. In production environments, this URL to source files can be
requested to the grid organization who hosts the CA or the grid computing organizations the CE is
meant to be part of.

Some examples:

source="http://www.nordugrid.org/community.dn"
source="vomss://sample.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu"
source="file:///etc/grid-security/local-grid-mapfile"

mapped unixid=uid – This is the local UNIX user account to which the DNs contained in the source
command will be mapped. Only one mapped unixid can be defined per [vo] section!

require issuerdn=[yes|no] – yes would map only those DNs obtained from the urls which have
the corresponding public CA packages installed. Default is no.

53

6.1.3 Commands in the [group] section

The [group] sections and subsections define authorization groups.

name=group name – group name specifies the name of an authorization group within a [group/subsection].
It has to be the same as the subsection name. If this command is omitted, name will implicitly taken
from the subsection name.

Authorization is performed by applying a set of rules to users credentials. Credentials are certificates or certificates
content (DN subject name, VO the user belongs to, CA that released the certificate...) Rules have the same
< command >=< value > format as rest of configuration file, with the difference that each rule command is
prepended with optional modifiers: [+|-][!].
A rule is said to match a credential if the credential ,,satisfies” the value specified by the command. A negative
matching can be obtained by using the modifier !. In this case the rule is said to negative match if the credential
,,does NOT satisfy” the value specified by the command.

Examples:

vo=TESTVO – This rule matches all the users belonging to the TESTVO Virtual Organization.

vo=!TESTVO – This rule matches all the users NOT belonging to the TESTVO Virtual Organization.

A credential (and therefore the user presenting it) can be accepted or rejected.

Accepted means that the credential has clearance to proceed, and A-REX will try to fulfill the user’s request.

Rejected means that the credential has no clearance to proceeed, and A-REX will notify the client that the user
request cannot be processed.

Examples:

+vo=TESTVO – all the users belonging to the TESTVO Virtual Organization are Accepted. It can also be
written as vo = TESTVO

-vo=TESTVO – all the users belonging to the TESTVO Virtual Organization are Rejected.

+vo=!TESTVO – all the users NOT belonging to the TESTVO Virtual Organization are Accepted. It can
also be written as vo = !TESTVO

-vo=!TESTVO – all the users NOT belonging to the TESTVO Virtual Organization are Rejected.

Note that -vo = TESTVO and +vo = !TESTVO do the exact same thing: a user not belonging to TESTVO
cannot access the cluster.

A summary of the modifiers is on 6.1, Commands in the [group] section.

! invert matching. Match is treated as non-match. Non-match is treated as match, either positive (“+” or
nothing) or negative (“-”).

+ accept credential if matches following rule (positive match, default action);

- reject credential if matches following rule (negative match);

Figure 6.1: Basic Access Control modifiers and their meaning

Whenever a GRID user submits a job to or requests information from the CE, A-REX will try to find a rule that
matches that credential, for every [group...] section. Groups and rules will be processed in the order they appear
in the arc.conf file.

Processing of rules in every group stops after the first positive or negative match, or when failure is reached. If
a rule does not match, processing continues to the next group (if any). Failures are rule-dependent and may be
caused by conditions like missing files, unsupported or mistyped rule, etc.

The following rule words and arguments are supported:

subject=subject [subject [...]] – match user with one of specified subjects

file=[filename [...]] – read rules from specified files (format of file similar to Globus grid-mapfile
with user names ignored)

remote=[ldap://host:port/dn [...]] – match user listed in one of specified LDAP directories
(uses network connection hence can take time to process)

54

voms=vo group role capabilities – accept user with VOMS proxy with specified vo, group, role
and capabilities. ’*’ can be used to accept any value.

vo=[vo [...]] – match user belonging to one of specified Virtual Organizations as defined in vo
configuration section (see [vo] above).

group=[groupname [groupname [...]]] – match user already belonging to one of specified
groups.

plugin=timeout plugin [arg1 [arg2 [...]]] – run external plugin (executable or function in
shared library) with specified arguments. Execution of plugin may not last longer than timeout seconds.
If plugin looks like function@path then function int function(char*,char*,char*,...)
from shared library path is called (timeout has no effect in that case). Rule matches if plugin or exe-
cutable exit code is 0. Following substitions are applied to arguments before plugin is started:

• %D - subject of users’s cerificate,

• %P - name of credentials’ proxy file.

lcas=library directory database – - call LCAS functions to check rule. Here library is path
to shared library of LCAS, either absolute or relative to directory; directory is path to LCAS instal-
lation directory, equivalent of LCAS DIR variable; database is path to LCAS database, equivalent
to LCAS DB FILE variable. Each arguments except library is optional and may be either skiped or
replaced with ’*’.

all accept any user

Here is an example of authorization group:

[group/admins]
-subject="/O=Grid/OU=Wrong Place/CN=Bad Person" (1)
file="/etc/grid-security/internal-staff" (2)
vo="nordugrid * * admin" (3)

The processing will work in the following way:

Let credential be /O=Grid/OU=Wrong Place/CN=Bad Person. Then, DN matches (1) and the credential
is Rejected, processing will stop.

Let credential be /O=Grid/OU=Internal-Staff/CN=Good Person, and let this DN be inside the file
/etc/grid-security/internal-staff. Then, (1) doesn’t match, processing continues to (2). Since
DN is present inside the file specified by the filecommand, then the credential is Accepted and the processing
stops.

Let credential be /O=Grid/OU=SomeoneNotStaffButInnordugridVO/CN=Loyal Person, Good Per-
son being admin of the nordugrid VO. Let this credential be NOT present in the /etc/grid-security/internal-staff
file. Then, neither (1) nor (2) match and processing passes to (3). Since the credential DN belongs to that VO,
the credential is Accepted and processing stops.

Let credential be /O=Grid/OU=SomeOrg/CN=UN Known, not present in the file neither belonging to VO,
Processing passes through (1),(2),(3) and starts processing the next group.

If there is no other group, then ARC checks if the credential is present in /etc/grid-security/grid-mapfile.
If not, the credential is Rejected. If yes, the credential is Accepted.

6.1.4 Commands in the [gridftpd] section

port=number – specifies TCP/IP port number. Default is 2811.

include=path – include contents of another config file

pidfile=path – file containing the PID of the gridftpd process. Default is not to create such file.

allowunknown=yes|no – if set to yes, clients are not checked against the grid-mapfile. Hence only
access rules specified in this configuration file will be applied.

Configuring the GridFTP plugins in a [gridftpd/subsection] subsection:

path=path – virtual path to which the service will be associated

plugin=library name – use plugin library name to serve virtual path.

55

The GFS comes with 3 plugins: fileplugin.so, gaclplugin.so and jobplugin.so.

For the computing element, only the jobplugin.so will be considered. It supports the following options:

configfile=path – defines non-standard location of the arc.conf file

allownew=yes|no – specifies if new jobs can be submitted. Default is yes

unixgroup/unixvo/unixmap=unixgroup/unixvo/unixmap – - same options as in the top-level
GFS configuration. If the mapping succeeds, the obtained local user will be used to run the submitted
job.

remotegmdirs=control dir session dir [drain] – specifies control and session directories
under the control of another A-REX to which jobs can be assigned (see [?], section 5) Remote
directories can be added and removed without restarting the GFS. However, it may be desirable to
drain them prior to removal by adding the “drain” option. In this case no new jobs will be assigned to
these directories but their contents will still be accessible.

maxjobdesc=size – specifies maximal allowed size of job description in bytes. Default value is 5MB. If
value is missing or set to 0 no limit is applied.

6.1.5 Commands in the [infosys] section

The user command here defines the UNIX user ID with which the slapd server, the infoproviders, BDII and
registration scripts will run.

oldconfsuffix=.suffix – sets the suffix of the backup files of the low-level slapd config files in case
the they are regenerated. Default is ,,.oldconfig”.

overwrite config=yes|no – determines if the grid-infosys startup script should generate new low-
level slapd configuration files. By default the low-level configuration files are regenerated with every
server startup making use of the values specified in the arc.conf.

hostname=FQDN – the hostname of the machine running the slapd service.

port=port number – the port number where the slapd service runs. Default infosys port is 2135.

debug=0|1 – sets the debug level/verbosity of the startup script. Default is 0.

slapd loglevel=verbosity level – sets the native slapd syslog loglevel (see man slapd for ver-
bosity level values). The default is set to no-logging (0) and it is RECOMMENDED not to be changed
in a production environment. Non-zero slap loglevel value causes serious performance decrease.

slapd hostnamebind=*| – may be used to set the hostname part of the network interface to which
the slapd process will bind. Most of the cases no need to set since the hostname config parameter is
already sufficient. The default is empty, but this can lead to problems in systems where slapd is set by
security policies to be run only on the localhost interface. The wildcard will bind the slapd process to
all the network interfaces available on the server. However, this is not recommended in clusters with
many network interfaces. The recommended setting is the hostname assigned to the interface that will
be publicly accessible.

threads=num threads – the native slapd threads parameter, default is 32. If you run an Index Service
too (see []) you should modify this value.

timelimit=seconds – the native slapd timelimit parameter. Maximum number of seconds the slapd
server will spend answering a search request. Default is 3600.

providerlog=path – Specifies log file location for the information provider scripts. Default is /var/log/infoprovider.log.

provider loglevel=[0-2] – loglevel for the infoprovider scripts (0, 1, 2). The default is 1 (critical
errors are logged).

registrationlog=path – specifies the logfile for the registration processes initiated by your machine.
Default is /var/log/inforegistration.log. For registration configuration, see Section 4.4.4,
How to join the grid: registering to an index service.

limit core=num – shell limits for the slapd process set via ulimit -c.

limit nofile=num – shell limits for the slapd process set via ulimit -n.

infosys nordugrid=enable|disable – Activates or deactivates NorduGrid infosys schema [?]
data generation and publishing. Default is enabled. This schema doesn’t need further configuration.

infosys glue12=enable|disable – Activates or deactivates Glue 1.x[] infosys schema data genera-
tion and publishing. Default is disabled. For configuration of this schema, see Section 4.5.1, Enabling
other LDAP schemas.

56

infosys glue2 ldap=enable|disable – Activates or deactivates Glue 2[?] infosys schema data
generation and publishing. Default is disabled. For configuration of this schema, see Section 4.5.1,
Enabling other LDAP schemas.

6.1.6 Commands in the [cluster] section

For a decent brokering, at least architecture, nodecpu, nodememory and opsys should be published.

cluster alias=name – an arbitrary alias name of the cluster, optional

comment=text – a free text field for additional comments on the cluster in a single line, no newline
character is allowed!

lrmsconfig=description – an optional free text field to describe the configuration of your Local
Resource Management System (batch system).

homogeneity=True|False – determines whether the cluster consists of identical NODES with respect
to cputype, memory, installed software (opsys). The frontend is NOT needed to be homogeneous
with the nodes. In case of inhomogeneous nodes, try to arrange the nodes into homogeneous groups
assigned to a queue and use queue-level attributes. Default is True.

architecture=string|adotf – sets the hardware architecture of the NODES. The ”architecture” is
defined as the output of the ”uname -m” (e.g. i686). Use this cluster attribute if only the NODES are
homogeneous with respect to the architecture. Otherwise the queue-level attribute may be used for
inhomogeneous nodes. If the frontend’s architecture agrees to the nodes, the ”adotf” (Automatically
Determine On The Frontend) can be used to request automatic determination.

opsys=string|adotf – this multivalued attribute is meant to describe the operating system of the
computing NODES. Set it to the opsys distribution of the NODES and not the frontend! opsys can
also be used to describe the kernel or libc version in case those differ from the originally shipped ones.
The distribution name should be given as distroname-version.number, where spaces are not allowed.
Kernel version should come in the form kernelname-version.number. If the NODES are inhomogeneous
with respect to this attribute do NOT set it on cluster level, arrange your nodes into homogeneous
groups assigned to a queue and use queue-level attributes.

nodecpu=string|adotf – this is the cputype of the homogeneous nodes. The string is constructed
from the /proc/cpuinfo as the value of ”model name” and ”@” and value of ”cpu MHz”. Do NOT
set this attribute on cluster level if the NODES are inhomogeneous with respect to cputype, instead
arrange the nodes into homogeneous groups assigned to a queue and use queue-level attributes. Setting
the nodecpu=”adotf” will result in Automatic Determination On The Frontend, which should only be
used if the frontend has the same cputype as the homogeneous nodes. String can be like: ”AMD
Duron(tm) Processor @ 700 MHz”

nodememory=number MB – this is the amount of memory (specified in MB) on the node which can
be guaranteed to be available for the application. Please note in most cases it is less than the
physical memory installed in the nodes. Do NOT set this attribute on cluster level if the NODES are
inhomogeneous with respect to their memories, instead arrange the nodes into homogeneous groups
assigned to a queue and use queue-level attributes.

defaultmemory=number MB – If a user submits a job without specifying how much memory should be
used, this value will be taken first. The order is: job specification -¿ defaultmemory -¿ nodememory
-¿ 1GB. This is the amount of memory (specified in MB) that a job will request(per rank).

nodeaccess= |inbound|outbound – determines how the nodes can connect to the internet. Not
setting anything means the nodes are sitting on a private isolated network. ”outbound” access means
the nodes can connect to the outside world while ”inbound” access means the nodes can be connected
from outside. inbound & outbound access together means the nodes are sitting on a fully open network.

cluster location=XX-postalcode – The geographycal location of the cluster, preferably specified
as a postal code with a two letter country prefix, like ”DK-2100”

cluster owner=name – it can be used to indicate the owner of a resource, multiple entries can be used

clustersupport=email – this is the support email address of the resource, multiple entries can be
used

57

6.1.7 Commands in the [queue] subsections

fork job limit=number|cpunumber – sets the allowed number of concurrent jobs in a fork system,
default is 1. The special value cpunumber can be used which will set the limit of running jobs to
the number of cpus available in the machine. This parameter is used in the calculation of freecpus in
a fork system.

name=queuename – The name of the grid-enabled queue, it must also be in the queue section name[queue/queuename].
Use ”fork” for the fork LRMS.

homogeneity=True|False – - determines whether the queue consists of identical NODES with respect
to cputype, memory, installed software (opsys). In case of inhomogeneous nodes, try to arrange the
nodes into homogeneous groups and assigned them to a queue. Default is True.

scheduling policy=FIFO|MAUI – this optional parameter tells the scheduling policy of the queue,
PBS by default offers the FIFO scheduller, many sites run the MAUI. At the moment FIFO & MAUI is
supported. If you have a MAUI scheduller you should specify the ”MAUI” value since it modifies the
way the queue resources are calculated. BY default the ”FIFO” sceduller is assumed. More about this
in chapter Section 4.4.2, Connecting to the LRMS.

comment=text – a free text field for additional comments on the queue in a single line, no newline
character is allowed!

6.1.8 Commands in the [grid-manager] section

6.1.8.1 Commands affecting the A-REX process and logging

pidfile=path – specifies file where process id of A-REX process will be stored. Defaults to /var/run/arched-
arex.pid if running as root and $HOME/arched.pid otherwise.

logfile=path – specifies name of file for logging debug/informational output. Defaults to /var/log/arc/grid-
manager.log. Note: if installed from binary packages, ARC comes with configuration for logrotate log
management utility and A-REX log is managed by logrotate by default.

logsize=size number – restricts log file size to size and keeps number archived log files. This
command enables log rotation by ARC and should only be used if logrotate or other external log
rotation utility is not used. Using ARC log rotation and external log management simultaneously may
result in strange behaviour.

logreopen=yes|no – specifies if log file must be opened before writing each record and closed after
that. By default log file is kept open all the time (default is no).

debug=number – specifies level of debug information. More information is printed for higher levels.
Currently the highest effective number is 5 (DEBUG) and lowest 0 (FATAL). Defaults to 2 (WARNING).

user=username – specifies username to which the A-REX must switch after reading configuration.
Defaults to not switch.

6.1.8.2 Commands affecting the A-REX Web Service communication interface

voms processing=relaxed|standard|strict|noerrors – specifies how to behave if failure
happens during VOMS processing.

• relaxed – use everything that passed validation.

• standard – same as relaxed but fail if parsing errors took place and VOMS extension is marked as critical.
This is a default.

• strict – fail if any parsing error was discovered.

• noerrors – fail if any parsing or validation error happened.

Default is standard. This option is effective only if A-REX is started using startup script.

arex mount point=URL – specifies URL for accessing A-REX through WS interface. This option is
effective only if A-REX is started using startup script.

max job control requests=number – specifies maximal number of simultaneously processed job
control requests. Requests above that threshold are put on hold. Default value is 100. Setting value
to -1 turns this limit off. This option is effective only if A-REX is started using startup script.

58

max infosys requests=number – specifies maximal number of simultaneously processed job control
requests. Requests above that threshold are put on hold. Default value is 1. Setting value to -1 turns
this limit off. This option is effective only if A-REX is started using startup script.

max data transfer requests=number – specifies maximal number of simultaneously processed job
control requests. Requests above that threshold are put on hold. Default value is 100. Setting value
to -1 turns this limit off. This option is effective only if A-REX is started using startup script.

6.1.8.3 Commands setting limits and options for how the A-REX handles jobs and files

joblog=path – specifies where to store log file containing information about started and finished jobs.

jobreport=URL ... number – specifies that A-REX has to report information about jobs being
processed (started, finished) to a centralized service running at the given URL. Multiple entries and
multiple URLs are allowed. number specifies how long (in days) old records have to be kept if failed
to be reported. The last specified value becomes effective.

jobreport credentials=key file [cert file [ca dir]] – specifies the credentials for ac-
cessing the accounting service.

jobreport options=options – specifies additional options for Usage Reporter and/or accounting
service. The options string is interpreted by Usage Reporter, its format is described in the corresponding
technical document.

securetransfer=yes|no – specifies whether to use encryption while transferring data. Currently
works for GridFTP only. Default is no. It is overridden by values specified in URL options.

passivetransfer=yes|no – specifies whether GridFTP transfers are passive. Setting this option to
yes can solve transfer problems caused by firewalls. Default is no.

localtransfer=yes|no – specifies whether to pass file downloading/uploading task to computing
node. If set to yes the A-REX will not download/upload files but compose script submitted to the
LRMS in order that the LRMS can execute file tranfer. This requires installation of A-REX and all
related software to be accessible from computing nodes and environment variable ARC LOCATION to
be set accordingly. Default is no.

maxjobs=[max processed jobs [max running jobs [max jobs per dn [max jobs total]]]]
– specifies maximum number of jobs being processed by the A-REX at different stages:
max processed jobs – maximum number of concurrent jobs processed by A-REX. This does not limit
the amount of jobs which can be submitted to the cluster.
max running jobs – maximum number of jobs passed to Local Resource Management System
max jobs per dn – maximum number of concurrent jobs processed by A-REX per user DN. If this
option is used the total maximum number of jobs processed is still max processed jobs.
max jobs total – total maximum number of jobs associated with service. It is advised to use this limit
only inexceptional case because it also accounts for finished jobs.

Missing value or -1 means no limit.

maxload=[max frontend jobs [emergency frontend jobs [max transferred files]]]
– specifies maximum load caused by jobs being processed on frontend:
max frontend jobs – maximum number of jobs in PREPARING and FINISHING states (downloading
and uploading files). Jobs in these states can cause a heavy load on the A-REX host. This limit is
applied before moving jobs to PREPARING and FINISHING states.
emergency frontend jobs – if limit of max frontend jobs is used only by PREPARING or by FINISHING
jobs, aforementioned number of jobs can be moved to another state. This is used to avoid the case
where jobs cannot finish due to a large number of recently submitted jobs.
max transferred files – maximum number of files being transferred in parallel by every job. Used to
decrease load on not so powerful frontends.
Missing value or -1 means no limit.

maxloadshare=max share share type – specifies a sharing mechanism for data transfer. max share
is the maximum number of processes that can run per transfer share and share type is the scheme
used to assign jobs to transfer shares. See Section 6.6, Transfer shares for possible values and more
details.

share limit=name limit – specifies a transfer share that has a number of processes different from
the default value in maxloadshare. name is the name of the share and limit is the number of processes
for this share. In the configuration should appear after maxloadshare. Can be repeated several times

59

for different shares. See Section 6.6, Transfer shares for how to compose shares’ names and more
details.

wakeupperiod=time – specifies how often the A-REX checks for job state changes (like new arrived
job, job finished in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3
minutes. The A-REX may also be woken up by external processes such as LRMS scripts before this
time period expires.

authplugin=state options plugin – specifies plugin (external executable) to be run every time
job is about to switch to state. The following states are allowed: ACCEPTED, PREPARING, SUBMIT,
FINISHING, FINISHED and DELETED. If exit code is not 0 job is canceled by default. Options consists
of name=value pairs separated by commas. The following names are supported:
timeout – specifies how long in seconds execution of the plugin allowed to last (mandatory, ,,timeout=”
can be skipped for backward compatibility).
onsuccess, onfailure and ontimeout – defines action taken in each case (onsuccess happens if exit code
is 0). Possible actions are:
pass – continue execution,
log – write information about result into log file and continue execution,
fail – write information about result into log file and cancel job.

localcred=timeout plugin – specifies plugin (external executable or function in shared library)
to be run every time job has to do something on behalf of local user. Execution of plugin may
not last longer than timeout seconds. If plugin looks like function@path then function int func-
tion(char*,char*,char*,...) from shared library path is called (timeout is not functional in that case).
If exit code is not 0 current operation will fail.

norootpower=yes|no – if set to yes all processes involved in job management will use local identity
of a user to which Grid identity is mapped in order to access file system at path specified in session
command (see below). Sometimes this may involve running temporary external process.

speedcontrol=min speed min time min average speed max inactivity – specifies how
long/slow data transfer is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is
lower than min speed for at least min time seconds, or if average rate is lower than min average speed,
or no data is received for longer than max inactivity seconds. To allow statistics to build up, no transfers
will be stopped within the first 3 minutes.

preferredpattern=pattern – specifies how to order multiple replicas of an input file according to
preference. It consists of one or more patterns (strings) separated by a pipe character (|) listed in order
of preference. Input file replicas will be matched against each pattern and then ordered by the earliest
match. If the dollar character ($) is used at the end of a pattern, the pattern will be matched to the
end of the hostname of the replica.

newdatastaging=yes|no – turns on or off the new data staging framework1, which replaces the
downloader and uploader utilities. Default is no.

delivery service=URL – specifies a remote delivery service to be used by the new data staging
framework.

local delivery=yes|no – in case remote delivery services are configured using the previous option,
this option specifices whether or not delivery should also be done locally on the A-REX host. Default
is no.

copyurl=template replacement – specifies that URLs starting from template should be accessed
at replacement instead. The template part of the URL will be replaced with replacement. This option
is useful when for example a grid storage system is accessible as a local file system on the A-REX host.
replacement can be either a URL or a local path starting from ’/’. It is advisable to end template with
’/’.

linkurl=template replacement [node path] – mostly identical to copyurl but file will not be
copied. Instead a soft-link will be created. replacement specifies the way to access the file from the
frontend, and is used to check permissions. The node path specifies how the file can be accessed from
computing nodes, and will be used for soft-link creation. If node path is missing, local path will be
used instead. Neither node path nor replacement should be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other URLs. That means
if A-REX has to choose between several URLs from which should it download input file, these will be tried first.

1see http://wiki.nordugrid.org/index.php/Data Staging

60

6.1.8.4 Per UNIX user commands and setting the control directory

The A-REX can serve multiple UNIX users with separate control directories, or it can serve all of them with the
same control directory. The per UNIX user commands can be different for each UNIX user served. For each
control directory the per UNIX user commands should come first, then finally the control command which
starts serving a UNIX user based on the commands preceding it.

mail=e-mail address – specifies an email address from which notification mails are sent.

defaultttl=ttl [ttr] – specifies the time in seconds for the SD to be available after job finishes
(ttl). Second number (ttr) defines time since removal of the SD till all information about job is
discarded. Time is specified in seconds. Defaults are 7 days for ttl and 30 days for ttr. The minumum
value for both parameters is 2 hours.

lrms=default lrms name default queue name – specifies names for the LRMS and queue. Queue
name can also be specified in the JD (currently it is not allowed to override LRMS by using the JD).

sessiondir=path [drain] – specifies the path to the directory in which the SD is created. Multiple
session directories may be specified by specifying multiple sessiondir commands. In this case jobs are
spread evenly over the session directories. If the path is * the default sessiondir is used - $HOME/.jobs.
When adding a new session directory, ensure to restart the A-REX so that jobs assigned there are
processed. A session directory can be drained prior to removal by adding the “drain” option (no restart
is required in this case). No new jobs will be assigned to this session directory but running jobs will
still be accessible. When all jobs are processed and the session directory is empty, it can be removed
and the A-REX should be restarted.

cachedir=path [link path] – specifies a directory to store cached data (see Section Section 6.5,
Cache). Multiple cache directories may be specified by specifying multiple cachedir commands. Cached
data will be distributed over multiple caches according to free space in each. Specifying no cachedir
command or commands with an empty path disables caching. The optional link path specifies the
path at which path is accessible on computing nodes, if it is different from the path on the A-REX
host. If link path is set to ’.’ files are not soft-linked, nor are per-job links created, but files are copied
to the session directory. If a cache directory needs to be drained, then cachedir should specify “drain”
as the link path.

remotecachedir=path [link path] – specifies caches which are under the control of other A-
REXs, but which this A-REX can have read-only access to (see Section 6.5.3). Multiple remote cache
directories may be specified by specifying multiple remotecachedir commands. If a file is not available
in paths specified by cachedir, the A-REX looks in remote caches. link path has the same meaning as
in cachedir, but the special path “replicate” means files will be replicated from remote caches to local
caches when they are requested.

cachesize=high mark [low mark] – specifies high and low watermarks for space used on the file
system on which the cache directory is located, as a percentage of total file system capacity. When
the max is exceeded, files will be deleted to bring the used space down to the min level. It is a good
idea to have each cache on its own separate file system. If no cachesize is specified, or it is specified
without parameters, no cleaning is done. These cache settings apply to all caches specified by cachedir
commands.

cachelifetime=lifetime – if cache cleaning is enabled, files accessed less recently than the lifetime
time period will be deleted. Example values of this option are 1800, 90s, 24h, 30d. When no suffix is
given the unit is seconds.

cachelogfile=path – specifies the filename where output of the cache-clean tool should be logged.
Defaults to /var/log/arc/cache-clean.log.

cacheloglevel=number – specifies the level of logging by the cache-clean tool, between 0 (FATAL)
and 5 (DEBUG). Defaults to 3 (INFO).

cachecleantimeout=timeout – the timeout in seconds for running the cache-clean tool. If using a
large cache or slow file system this value can be increased to allow the cleaning to complete. Defaults
to 3600 (1 hour).

maxrerun=number – specifies maximal number of times job will be allowed to rerun after it failed at
any stage. Default value is 5. This only specifies a upper limit. The actual number is provided in job
description and defaults to 0.

maxtransfertries=number – specifies the maximum number of times download and upload will be
attempted per job (retries are only performed if an error is judged to be temporary, for example a
communication error with a remote service). This number must be greater than 0 and defaults to 10.

61

All per-user commands should be put before the control command which initiates serviced user.

control=path username [username [...]] – This option initiates UNIX user as being serviced
by the A-REX. The path refers to the control directory. If the path is * the default one is used –
$HOME/.jobstatus. The username stands for UNIX name of the local user. Multiple names can
be specified. If the name starts from @ rest is treated as path to file containing list serviced users.
Usernames are specified one per line and may be optionally prepended with Grid identity of user - last
one is ignored. That is done for compatibility with so-called grid-mapfile (for more information please
see the description of Globus project [?]). Also the special name ’.’(dot) can be used. Corresponding
control directory will be used for any user. This option should be the last one in the configuration file.

controldir=path – This is identical to ,,control=path .” It presumes special username ’.’ and is
always executed last independent of its placement in file.

helper=username command [argument [argument [...]]] – associates an external pro-
gram with the local UNIX user. This program will be kept running under account of the user specified
by username. Special names can be used: ’*’ – all names from /etc/grid-security/grid-mapfile, ’.’ –
root user. The user should be already configured with control option (except root, who is always
configured). command is an executable and arguments are passed as arguments to it.

6.1.8.5 Global commands specific to communication with the underlying LRMS

gnu time=path – path to time utility.

tmpdir=path – path to directory for temporary files.

runtimedir=path – path to directory which contains runtimenvironment scripts.

shared filesystem=yes|no – if computing nodes have an access to session directory through a shared
file system like NFS. Corresponds to an environment variable RUNTIME NODE SEES FRONTEND
(See Section 6.13, Environment variables set for the job submission scripts).

nodename=command – command to obtain hostname of computing node.

scratchdir=path – path on computing node where to move session directory before execution.

shared scratch=path – path on frontend where scratchdir can be found.

6.1.8.6 Substitutions in the command arguments

In the command arguments (paths, executables, ...) following substitutions can be used:

%R – session root – see command sessiondir

%C – control dir – see command control

%U – username (as specified in configuration, hence empty for ’.’ control directories)

%u – userid – numerical

%g – groupid – numerical

%H – home dir – home of username as specified in /etc/passwd

%Q – default queue – see command lrms

%L – default lrms – see command lrms

%W – installation path – ${ARC LOCATION}

%F – path to configuration file of this instance

%I – job ID (for plugins only, substituted in runtime)

%S – job state (for authplugin plugins only, substituted in runtime)

%O – reason (for localcred plugins only, substituted in runtime). Possible reasons are:

new – new job, new credentials

renew – old job, new credentials

write – write/delete file, create/delete directory

read – read file, directory, etc.

extern – call external program

62

6.1.9 PBS specific commands

For each grid-enabled (or grid visible) PBS queue a corresponding [queue/queuename] subsection must be
defined. queuename should be the PBS queue name.

lrms="pbs" – enables the PBS batch system back-end

pbs bin path=path – in the [common] section should be set to the path to the qstat,pbsnodes,qmgr
etc. PBS binaries.

pbs log path=path – in the [common] sections should be set to the path of the PBS server logfiles
which are used by A-REX to determine whether a PBS job is completed. If not specified, A-REX will
use the qstat command to find completed jobs.

lrmsconfig=text – in the [cluster] block can be used as an optional free text field to describe fur-
ther details about the PBS configuration (e.g. lrmsconfig="single job per processor").

dedicated node string=text – in the [cluster] block specifies the string which is used in the
PBS node config to distinguish the grid nodes from the rest. Suppose only a subset of nodes are
available for grid jobs, and these nodes have a common node property string, this case the
dedicated node string should be set to this value and only the nodes with the corresponding
PBS node property are counted as grid enabled nodes. Setting the dedicated node string
to the value of the PBS node property of the grid-enabled nodes will influence how the totalcpus,
user freecpus is calculated. No need to set this attribute if the cluster is fully available for the grid
and the PBS configuration does not use the node property method to assign certain nodes to grid
queues.

scheduling policy=FIFO|MAUI – in the [queue/queuename] subsection describes the schedul-
ing policy of the queue. PBS by default offers the FIFO scheduler, many sites run the MAUI. At the
moment FIFO & MAUI are supported values. If you have a MAUI scheduler you should specify the
"MAUI" value since it modifies the way the queue resources are calculated. By default the "FIFO"
scheduler type is assumed.

maui bin path=path – in the [queue/queuename] subsection sets the path of the MAUI commands
like showbf when "MAUI" is specified as scheduling policy value. This parameter can be set
in the [common] block as well.

queue node string=text – in the [queue/queuename] block can be used similar to the dedicated node string.
In PBS you can assign nodes to a queue (or a queue to nodes) by using the node property PBS node
configuration method and assigning the marked nodes to the queue (setting the resources default.neednodes
= queue node string for that queue). This parameter should contain the node property string
of the queue-assigned nodes. Setting the queue node string changes how the queue-totalcpus,
user freecpus are determined for this queue.

6.1.10 Condor specific commands

lrms="condor" – in the [common] section enables the Condor batch system back-end.

condor location=path – in the [common] section should be set to the Condor install prefix (i.e.,
the directory containing Condor’s bin, sbin, etc).

condor config=text – in the [common] section should be set to the value the environment variable
CONDOR CONFIG should have (but don’t try to use the environment variable directly as $CONDOR CONFIG,
since it will probably not be defined when arc.conf is parsed!)

condor rank=ClassAd float expression – in the [common] section, if defined, will cause the
Rank attribute to be set in each job description submitted to Condor. Use this option if you are not
happy with the way Condor picks out nodes when running jobs and want to define your own ranking
algorithm. condor rank should be set to a ClassAd float expression that you could use in the Rank
attribute in a Condor job description. For example:

condor_rank="(1-LoadAvg/2)*(1-LoadAvg/2)*Memory/1000*KFlops/1000000"

condor requirements=constraint string – in the [queue/queuename] section defines a
subpool of condor nodes. Condor does not support queues in the classical sense. It is possible,
however, to divide the Condor pool in several sub-pools. An ARC ,,queue” is then nothing more than
a subset of nodes from the Condor pool.

63

Which nodes go into which queue is defined using the condor requirements configuration option in the
corresponding [queue/queuename] section. It’s value must be a well-formed constraint string that is ac-
cepted by a condor status -constraint ’...’ command. Internally, this constraint string is used to
determine the list of nodes belonging to a queue. This string can get quite long, so, for readability reasons it is
allowed to split it up into pieces by using multiple condor requirements options. The full constrains string
will be reconstructed by concatenating all pieces.

Queues should be defined in such a way that their nodes all match the information available in ARC about
the queue. A good start is for the condor requirements attribute to contain restrictions on the following:
Opsys, Arch, Memory and Disk. If you wish to configure more than one queue, it’s good to have queues
defined in such a way that they do not overlap. In the following example disjoint memory ranges are used to
ensure this:

[queue/large]
condor_requirements="(Opsys == "linux" && (Arch == "intel" || Arch == "x86_64")"
condor_requirements=" && (Disk > 30000000 && Memory > 2000)"
[queue/small]
condor_requirements="(Opsys == "linux" && (Arch == "intel" || Arch == "x86_64")" condor_requirements=" && (Disk > 30000000 && Memory <= 2000 && Memory > 1000)"

Note that nodememory attribute in arc.conf means the maximum memory available for jobs, while the Memory
attribute in Condor is the physical memory of the machine. To avoid swapping (and these are probably not
dedicated machines!), make sure that nodememory is smaller than the minimum physical memory of the
machines in that queue. If for example the smallest node in a queue has 1Gb memory, then it would be sensible
to use nodememory="850" for the maximum job size.

In case you want more precise control over which nodes are available for grid jobs, using pre-defined ClassAds
attributes (like in the example above) might not be sufficient. Fortunately, it’s possible to mark nodes by using
some custom attribute, say NORDUGRID RESOURCE. This is accomplished by adding a parameter to the node’s
local Condor configuration file, and then adding that parameter to STARTD EXPRS:

NORDUGRID_RESOURCE = True
STARTD_EXPRS = NORDUGRID_RESOURCE, $(STARTD_EXPRS)

Now queues can be restricted to contain only ,,good” nodes. Just add to each [queue/queuename] section
in arc.conf:

condor_requirements=" && NORDUGRID_RESOURCE"

6.1.11 LoadLeveler specific commands

lrms="ll" – in the [common] section enables the LoadLeveler batch system.

ll bin path=path – in the [common] section must be set to the path of the LoadLeveler binaries.

6.1.12 Fork specific commands

lrms="fork" – in the [common] section enables the Fork back-end. The queue must be named "fork"
in the [queue/fork] subsection.

fork job limit=cpunumber – sets the number of running grid jobs on the fork machine, allowing a
multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

6.1.13 LSF specific commands

lrms="lsf" – in the [common] section enables the LSF back-end

lsf bin path=path – in the [common] section must be set to the path of the LSF binaries

lsf profile path=path – must be set to the filename of the LSF profile that the back-end should
use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because the
architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture to match
the chosen queue. LSF’s standard behaviour is to assume the same architecture as the frontend. This will fail
for instance if the frontend is a 32 bit machine and all the cluster resources are 64 bit. If this is not done the
result will be jobs being rejected by LSF because LSF believes there are no useful resources available.

64

6.1.14 SGE specific commands

lrms="sge" – in the [common] section enables the SGE batch system back-end.

sge root=path – in the [common] section must be set to SGE’s install root.

sge bin path=path – in the [common] section must be set to the path of the SGE binaries.

sge cell=cellname – in the [common] section can be set to the name of the SGE cell if it’s not the
default

sge qmaster port=port – in the [common] section can be set to the qmaster port if the sge command
line clients require the SGE QMASTER PORT environment variable to be set

sge execd port=port – in the [common] section can be set to the execd port if the sge command
line clients require the SGE EXECD PORT environment variable to be set

sge jobopts=options – in the [queue/queuename] section can be used to add custom SGE
options to job scripts submitted to SGE. Consult SGE documentation for possible options.

6.1.15 SLURM specific commands

lrms="sge" – in the [common] section enables the SLURM batch system back-end.

slurm bin path=path – in the [common] section must be set to the path of the SLURM binaries.

6.2 Handling of the input and output files

One of the most important tasks of the A-REX is to take care of processing of the input and output data
(files) of the job. Input files are gathered in the session directory (SD) or in the associated cache area. If
caching is enabled, then the A-REX checks the cache whether a requested input file is already present (with
proper authorization checks and timely invalidation of cached data), and links (or copies) it to the SD of the
job without re-downloading it.

There are two ways to put a file into the SD:

• If a file is specified in the job description as an input file with a remote source location: the A-REX contacts
the remote location (using the user’s delegated credentials) and downloads the file into the session directory
using one of the supported protocols (GridFTP, FTP, HTTP, HTTPS, and also communicating with grid
file catalogs is supported).

• If a file is specified in the job description as an input file without a remote source location: the A-REX
expects the client tool to upload the file to the session directory (SD) using the URL of the jobid. The
client tools should do this step automatically.

The A-REX does not provide any other reliable way to obtain input data.

After the job finishes, the files in the session directory are treated in three possible ways:

• If a file is specified in the job description as an output file with a remote target location: the A-REX
uploads the results to the remote storage (optionally register the file to a catalog), then it will remove the
file from the session directory. If the job execution fails, these files will not be uploaded (but they will be
kept for the user to download).

• If a file is specified in the job description as an output file without a target location: the A-REX will keep
the files, and the user can download them by accessing the session directory. The client tools usually
support downloading these files.

• If a file is not specified in the job description as an output file: the A-REX will remove the file from the
session directory after the job finished.

It is possible to specify in job description an option to keep a whole directory, but if a file is not specified in the
job description as an output file and it is not in a directory which is requested to be kept, it will be removed
when the job is finished.

65

Figure 6.2: The architecture of the new data stating framework

6.3 The new data staging framework

After a growing number of issues with the current ARC data management model, it was decided that an entirely
new framework should be designed. The new data staging framework uses a three-layer architecture, shown in
Figure 6.2.

The Generator uses user input of tasks to construct a Data Transfer Request (DTR) per file that needs to be
transferred. These DTRs are sent to the Scheduler for processing. The Scheduler sends DTRs to the Pre-
processor for anything that needs to be done up until the physical transfer takes place (e.g. cache check, resolve
replicas) and then to Delivery for the transfer itself. Once the transfer has finished the Post-processor handles
any post-transfer operations (e.g. register replicas, release requests). The number of slots available for each
component is limited, so the Scheduler controls queues and decides when to allocate slots to specific DTRs,
based on the prioritisation algorithm implemented. This layered architecture allows any implementation of a
particular component to be easily substituted for another, for example a GUI with which users can enter DTRs
(Generator) or an external point to point file transfer service (Delivery).

To enable the new framework the following option should be present in the [grid-manager] section of
arc.conf:

newdatastaging=yes

All other configuration can remain the same and will be used by the new framework. The maximum number of
delivery, pre-processor and post-processor slots is taken from the ”maxload” option (max frontend jobs * max
transferred files). As before, per-job logging information is in the <control_dir>/job.id.errors files.

Transfer shares are defined using the same options in the [grid-manager] section arc.conf as in the old
framework, but rather than a set number of slots per share, a priority is specified. In the following example
VO roles are used to assign shares, the atlas slow_prod role is assigned a low priority share and the atlas
validation role is assigned a higher priority share. Note that the first number in maxloadshare no longer
has any effect (this option name and form will likely be changed in the future):

maxloadshare="1 voms:role"
share_limit="atlas:slow-prod 20"
share_limit="atlas:validation 90"

Example: a user wants their job to be high (but not top) priority and specifies (”priority” = ”80”) in the job
description. The user has a VOMS proxy with no role defined and submits the job to a site with the above
configuration. The job is assigned to the default share and DTRs have priority 40 (50 x 80 / 100). The user

66

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

R
e
r
u
n

r
e
q
u
e
s
t

DELETED

PENDING

PENDING

PENDING

Figure 6.3: Job states

then creates a VOMS proxy with the ATLAS validation role and submits the same job to the same site. This
time the job goes to the configured atlas:validation share and the DTRs have priority 72 (90 x 80 / 100).

For more details please see the data staging page of the NorduGrid wiki2.

6.4 Job states

Figure 6.3 shows the internal states a job goes through, also listed here:

• Accepted: the job has been submitted to the CE but hasn’t been processed yet.

• Preparing: the input data is being gathered.

• Submitting: the job is being submitted to the local resource management system (LRMS).

• Executing (InLRMS): the job is queued or being executed in the LRMS.

• Killing (Canceling): the job is being canceled.

• Finishing: the output data is being processed (even if there was a failure).

• Finished: the job is in this state either it finished successfully or there was an error during one of the
earlier steps.

• Deleted: after specified amount of days the job gets deleted and only minimal information is kept about
it.

Limits can be configured on the CE for the number of jobs in some states. If the limit reached, new jobs would
stay in the preceding state (indicated by the Pending prefix). It is possible to re-run a job which is in the
Finished state because of a failure. In this case the job would go back to the state where the failure happened.

These are internal states which are translated into more user-friendly external states when presented to the users.
These external states take into account additional information, not just the internal state, so one internal state
can correspond to multiple external states. In this list every row starts with the internal state followed by a colon
and then the possible external states:

• ACCEPTED: ACCEPTING, ACCEPTED

• PREPARING: ACCEPTED, PREPARING, PREPARED

• SUBMITTING: PREPARED, SUBMITTING

2http://wiki.nordugrid.org/index.php/Data_Staging

67

http://wiki.nordugrid.org/index.php/Data_Staging

• INLRMS: INLRMS, EXECUTED

• FINISHING: EXECUTED, FINISHING

• FINISHED: FINISHED, FAILED, KILLED

• CANCELING: KILLING

• DELETED: DELETED

6.5 Cache

6.5.1 Structure of the cache directory

Cached files are stored in sub-directories under the data directory in each main cache directory. Filenames are
constructed from an SHA-1 hash of the URL of the file and split into subdirectories based on the two initial
characters of the hash. In the extremely unlikely event of a collision between two URLs having the same SHA-1
hash, caching will not be used for the second file.

When multiple caches are used, a new cache file goes to a randomly selected cache, where each cache is weighted
according to the size of the file system on which it is located. For example: if there are two caches of 1TB and
9TB then on average 10% of input files will go to the first cache and 90% will go to the second cache.

Some associated metadata including the corresponding URL and an expiry time, if available, are stored in a file
with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

lfc://atlaslfc.nordugrid.org//grid/atlas/file1
is mapped to

/cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3

and the file /cache/data/78/f607405ab1df6b647fac7aa97dfb6089c19fb3.meta contains the original URL and an
expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another download
process cannot write the same file simultaneously. This is done by creating a file with the same name as the
cache filename but with a .lock suffix. This file contains the process ID of the process and the hostname of the
host holding the lock. If this file is present, another process cannot do anything with the cache file and must
wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock has a timeout of one day, so
that stale locks left behind by a download process exiting abnormally will eventually be cleaned up. Also, if the
process corresponding to the process ID stored inside the lock is no longer running on the host specified in the
lock, it is safe to assume that the lock file can be deleted.

6.5.2 How the cache works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected cache
directory, and depending on the configuration, either the file is copied to the SD or a hard link is created in
a per-job directory and a soft link is created in the SD to there. The per-job directories are in the joblinks
subdirectory of the main cache directory. The former option is advised if the cache is on a file system which
will suffer poor performance from a large number of jobs reading files on it, or the file system containing the
cache is not accessible from worker nodes. The latter option is the default option. Files marked as executable
in the job will be stored in the cache without executable permissions, but they will be copied to the SD and the
appropriate permissions applied to the copy.

The per-job directory is only readable by the local user running the job, and the cache directory is readable only
by the A-REX user. This means that the local user cannot access any other users’ cache files. It also means
that cache files can be removed without needing to know whether they are in use by a currently running job.
However, as deleting a file which has hard links does not free space on the disk, cache files are not deleted until
all per-job hard links are deleted. IMPORTANT: If a cache is mounted from an NFS server and the A-REX is
run by the root user, the server must have the no root squash option set for the A-REX host in the /etc/exports
file, otherwise the A-REX will not be able to create the required directories. Note that when running A-REX
under a non-privileged user account, all cache files will be owned and accessible by the same user, and therefore
modifyable by running jobs. This is potentially dangerous and so cacheing should be used with caution in this
case.

68

If the file system containing the cache is full and it is impossible to free any space, the download fails and is
retried without using cacheing.

Before giving access to a file already in the cache, the A-REX contacts the initial file source to check if the
user has read permission on the file. In order to prevent repeated checks on source files, this authentication
information is cached for a limited time. On passing the check for a cached file, the user’s DN is stored in the
.meta file, with an expiry time equivalent to the lifetime remaining for the user’s proxy certificate. This means
that the permission check is not performed for this user for this file until this time is up (usually several hours).
File creation and validity times from the original source are also checked to make sure the cached file is fresh
enough. If the modification time of the source is later than that of the cached file, the file will be downloaded
again. The file will also be downloaded again if the modification date of the source is not available, as it is
assumed the cache file is out of date. These checks are not performed if the DN is cached and is still valid.

The A-REX checks the cache periodically if it is configured to do automatic cleaning. If the used space on the
file system containing the cache exceeds the high water-mark given in the configuration file it tries to remove
the least-recently accessed files to reduce size to the low water-mark.

6.5.3 Remote caches

If a site has multiple A-REXs running, an A-REX can be configured to have its own caches and have read-only
access to caches under the control of other A-REXs (remote caches). An efficient way to reduce network traffic
within a site is to configure A-REXs to be under control of caches on their local disks and have caches on other
hosts as remote caches. If an A-REX wishes to cache a file and it is not available on the local cache, it searches
for the file in remote caches. If the file is found in a remote cache, the actions the A-REX takes depends on the
policy for the remote cache. The file may be replicated to the local cache to decrease the load on the remote
file system caused by many jobs accessing the file. However, this will decrease the total number of cache files
that can be stored. The other policy is to use the file in the remote cache, creating a per-job directory for the
hard link in the remote cache. Then the link is created from the session dir to that directory, bypassing the
local cache completely. The usual permission and validity checks are performed for the remote file. Note that
no creation or deletion of remote cache data is done - cache cleaning is only performed on local caches.

6.5.4 Cache cleaning

The cache is cleaned automatically periodically (every 5 minutes) by the A-REX to keep the size of each cache
within the configured limits. Files are removed from the cache if the total size of the cache is greater than the
configured limit. Files which are not locked are removed in order of access time, starting with the earliest, until
the size is lower than the configured lower limit. If the lower limit cannot be reached (because too many files
are locked, or other files outside the cache are taking up space on the file system), the cleaning will stop before
the lower limit is reached.

Since the limits on cache size are given as a percentage of space used on the filesystem on which the cache is
located, it is recommended that each cache has its own dedicated file system. If the cache shares space with
other data on a file system, changes in the amount of non-cache data will result in changes in the available
cache space.

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache cleaning
can become slow, leading to caches filling up beyond their configured limits. For performance reasons it may
be advantageous to disable cache cleaning by the A-REX, and run the cache-clean tool independently on the
machine hosting the file system. Please refer to Section 5.1.5, Cache administration.

Caches can be added to and removed from the configuration as required without affecting any cached data, but
after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and all data
erased, it is recommended that the cache be put in a draining state until all currently running jobs possibly
accessing files in this cache have finished. In this state the cache will not be used by any new jobs, but the hard
links in the joblinks directory will be cleaned up as each job finishes. Once this directory is empty it is safe to
delete the entire cache

6.6 Transfer shares

For many jobs, large amounts of input and output data can mean significant time is spent in the PREPARING
and FINISHING states gathering input data and writing output data. With FIFO processing, this can lead to
one user or group of users blocking the queue for others. The A-REX implements a sharing system to avoid this
problem, by assigning each user or group of users to a “transfer share” and specifying a limit on the number of

69

data transfer processes per share. If one user’s jobs’ transfer share is using the maximum number of processes
and another user submits jobs which are assigned to a different share, the second user’s jobs can immediately
go to PREPARING, up to the same maximum limit of processes. This means that no matter how many jobs the
first user submits, the second user’s jobs are not blocked. Assuming the bandwidth from the sources of input
data for both users’ jobs is similar, the available throughput will then be split evenly between the two users’
jobs.

If a limit on the total number of data transfer processes is set in the maxload option, the maximum number of
processes per transfer share is set by splitting the total maximum evenly among all the shares with jobs in data
transfer states, up to the maximum allowed per share.

The scheme used to assign jobs to transfer shares can be set in the maxloadshare option. Possible values are:

• dn - each job is assigned to a share based on the DN of the user sumbitting the job.

• voms:vo - if the user’s proxy is a VOMS [?] proxy the job is assigned to a share based on the VO specified
in the proxy. If the proxy is not a VOMS proxy a default share is used.

• voms:role - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the role specified
in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is used.

• voms:group - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the group
specified in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is used.

It’s possible to distinguish some transfer shares and assign them a limit different from what’s specified in
maxloadshare. It’s done by share limit option. share limit can only be used if maxloadshare has been already
set before. Depending on the sharing mechanism used by maxloadshare, the proper name for the share should
be specified, as illustrated by the following examples (note, that in dn case spaces are allowed, the configuration
parser will take care of them):

• dn: /O=Grid/O=NorduGrid/OU=domainname.com/CN=Jane Doe

• voms:vo: voname

• voms:role: voname:rolename

• voms:group: /voname/groupname

The specific shares, specified in share limit, are processed differently from the other shares. A-REX reserves
an indicated number of processes for each specific share. The number of unreserved processes is then split
evenly between the ordinary shares, as determined by maxloadshare. So the specific shares have a strict, non-
decreaseable limit, unlike all the ordinary shares, whose limit can be decreased while A-REX tries to split the
load evenly. However, A-REX reserves processes only for active specific shares, i.e. shares to which at least one
active job on the resource belongs to. If the share is not active, its slots are used in overall splitting between
ordinary transfer shares.

A particular case is when A-REX reserves more processes than specified in maxjobs. A-REX will process jobs
from specific share at FIFO-basis and stop at reaching maxjobs number of processes, even if some specific shares
haven’t reached their limits. Also in this situation each ordinary share is allowed to launch only one upload and
download process.

If VOMS is not supported, the dn scheme is the only option that should be used, as using a VOMS-based scheme
will lead to all jobs being assigned to the default share. The current number of jobs processing and pending
processing for each share can be seen with the command gm-jobs -s.

Important: If a sharing mechanism based on VOMS is used, server certificates for each supported VO must
be installed. It is possible to either download the public key of each VOMS server, or create a special file
for each VO containing the server’s DN and its CA DN. Instructions are given on NorduGrid’s web site at
http://www.nordugrid.org/documents/voms-notes.html.

When XML file only is used to configure the A-REX, the transfer shares can be implemented by defining
maxLoadShare (the limit itself) and loadShareType (the scheme used) elements inside loadLimits block. For
defining the specific shares, shareLimit sub-blocks with name and limit elements can be used after maxLoadShare.

70

http://www.nordugrid.org/documents/voms-notes.html

6.7 Batch system back-ends implementation details

The batch system back-ends are what tie the ARC grid middleware (through the ARC Resource-coupled EXe-
cution service, A-REX to the underlying cluster management system or LRMS. The back-ends consist of set of
a shell and Perl scripts whose role are twofold:

1. to allow A-REX, to control jobs in the LRMS including job submit, status querying and cancel operations.

2. to collect information about jobs, users, the batch system and the cluster itself for the Information System.

The job control part of the LRMS interface is handled by the A-REX. It takes care of preparing a native batch
system submission script, managing the actual submission of the batch system job, cancellation of job on request
and scanning for completed batch jobs. Besides the LRMS job control interface it is also A-REX which provides
e.g. the data staging and communication with the grid client, provides RTE environments, arranges file staging
(to the node via LRMS capability), dealing with stdout/stderr, etc. The job control batch system interface of
A-REX requires three programs. These programs can be implemented any way the designer sees it fits, but
all the existing back-end interfaces use shell scripting for portability and ease of tailoring to a specific site.
A-REX will call the following programs: cancel-LRMS-job, submit-LRMS-job, and scan-LRMS-job where LRMS
is replaced with the short hand name for the LRMS; e.g. cancel-pbs-job. The scripts are described one by one
in the following subsections.

6.7.1 Submit-LRMS-job

The submit program is the most involved. It is called by A-REX once a new job arrives and needs to be submitted
to the LRMS. It is given the GRAMi file as argument on execution. The GRAMi file is a file in the job control
directory containing the job description in a flat list of key-value pairs. This file is created by A-REX and is based
on the JSDL job description. Submit-LRMS-job then has to set up the session directories, run-time environment
and anything else needed. Then it submits the job to the local LRMS. This is normally done by generating a
native job script for the LRMS and then running the local submit command, but it can also be done through
an API if the LRMS supports it.

6.7.2 Cancel-LRMS-job

If a grid user cancels his job, the message will reach the grid-manager. The manager will then call the cancel-
LRMS-job for the suitable back-end. The cancel script is called with the GRAMi file containing information
about the job such as the job id in the LRMS. Cancel-LRMS-job must then use that information to find the job
and remove it from the queue or actually cancel it if it is running in the LRMS.

6.7.3 Scan-LRMS-job

The scan-LRMS-job is run periodically. Its job is to scan the LRMS for jobs that have finished. Once it has
found a finished job it will write the exit-code of that job to the file job.{gridid}.lrms done in the ARC job status
directory3. Then it will call the gm-kick program to notify A-REX about the finished job. Subsequently, A-REX
starts finalizing the job.

Generally, two approaches are taken to find jobs which are finished in LRMS. One is to directly ask the LRMS.
Since all started grid jobs have its own status file4 found in the job status directory, this can be done by checking
if the status is ”INLRMS” in this file. If so, a call to the LRMS is made asking for the status of the job (or
jobs if several jobs have status ”INLRMS”). If it is finished, it is marked as such in the job status directory,
and the gm-kick program is activated. For most LRMSs the information about finished jobs are only available
for a short period of time after the job finished. Therefore appropriate steps have to be taken if the job has the
status ”INLRMS” in the job status directory, but is no longer present in the LRMS. The normal approach is to
analyze the job’s status output in the session directory.

The second approach is to parse the LRMSs log files. This method has some drawbacks like e.g.: A-REX has to
be allowed read access to the logs. The back-end will then have to remember where in the log it was last time
it ran. This information will have to be stored in a file somewhere on the front-end.

3normally /var/spool/nordugrid/jobstatus/, but can be set via the controldir variable of arc.conf
4job.{gridid}.status

71

6.7.4 PBS

The job control batch interface makes use of the qsub command to submit native PBS job scripts to the batch
system. The following options are used:

-l nodes, cput, walltime, pvmem, pmem,

-W stagein, stageout

-e, -j eo

-q

-A

-N

For job cancellation the qdel command is used. To find completed jobs, i.e. to scan for finished jobs the
qstat command or the PBS server log file is used.

The information system interface utilizes the qstat -f -Q queuename and qstat -f queuename com-
mands to obtain detailed job and queue information. qmgr -c "list server" is used to determine PBS
flavour and version. The pbsnodes command is used to calculate total/used/free cpus within the cluster. In
case of a MAUI scheduler the showbf command is used to determine user freecpu values. All these external
PBS commands are interfaced via parsing the commands’ output.

6.7.5 Condor

The job control part of the interface uses the condor submit command to submit jobs. Some of the options
used in the job’s ClassAd are:

Requirements – is used to select the nodes that may run the job. This is how ARC queues are implemented
for Condor.

Periodic remove – is used to enforce cputime and walltime limits.

Log – the job’s condor log file is parsed by the information scripts to find out whether the job was suspended.

The information system component uses the following Condor commands:

condor status -long – for collecting information about nodes

condor status -format "%s\n" Machine -constraint ’...’ – for listing nodes that make up
an ARC queue.

condor q -long -global – for monitoring running jobs.

condor history -l jobid – for collecting information about finished jobs. Further cues are taken from
the job’s condor log file and the body of the email sent by Condor when a job completes.

6.7.6 LoadLeveler

The LoadLeveler back-end uses LoadLeveler’s command line interface(CLI) commands to submit and cancel
jobs. All information in the information system is similarly parsed from the output of CLI commands. It does
not parse any log files, nor does it use the binary APIs. The reason that the back-end is completely based on
the CLI is that the log files are normally kept on another machine than the front end and that the binary API
for LL changes quite often. Often with each new version of LL.

6.7.7 Fork

The Fork back-end implements an interface to the “fork” UNIX command which is not a batch system. Therefore
the back-end should rather be seen as an interface to the operating system itself. Most of the “batch system
values” are determined from the operating system (e.g. cpu load) or manually set in the configuration file.

72

6.7.8 LSF

The LSF implementation of the back-end are based solely on parsing and running LSF’s command line interface
commands. No log files or other methods are used. To get the correct output o any output at all the back-end
needs to have an apropriate LSF profile. The path to this profile must be set in arc.conf. It will then be executed
by the back-end before running any of LSF’s CLI commands.

6.7.9 SGE

The SGE back-end’s commands are similar to the PBS commands. These commands are used in the code:

Submit job:

• qsub -S /bin/sh (specifies the interpreting shell for the job)

Get jobs status:

If the job state is not suspended, running or pending then its state is failed.

• qstat -u ’*’ -s rs (show the running and suspended jobs status)

• qstat -u ’*’ -s p (show the pending jobs status)

• qstat -j job id (long job information)

• qacct -j job id (finished job report)

Job terminating:

• qdel job id (delete Sun Grid Engine job from the queue)

Queue commands:

• qconf -spl (show a list of all currently defined parallel environments)

• qconf -sql (show a list of all queues)

• qconf -sep (show a list of all licensed processors/slots)

• qstat -g c (display cluster queue summary)

• qconf -sconf global (show global configuration)

• qconf -sq queue name (show the given queue configuration)

Other:

• qstat -help (show Sun Grid Engine’s version and type)

6.8 Clustering A-REX

For large clusters, using a single machine for all input and output file transfer, as well for the interaction with
the LRMS and Information System, can limit the job throughput of the cluster. Running several A-REXes on
separate hosts can help spread the hardware and network load. A single GFS can feed jobs to several A-REXes,
hence a cluster with many A-REXes still appears as a single site to the outside world. When a job is submitted,
the GFS jobplugin assigns a random control directory to use for the job from the main controldir specified in the
A-REX configuration and any extra remotegmdirs specified in the jobplugin configuration. Note that it is not
necessary to run an A-REX on the GFS host, in other words a configuration with only remotegmdirs is possible.

Each control directory is used by a separate A-REX, therefore for every remotegmdirs command in the GFS
configuration, there must be a A-REX running which defines the corresponding controldir and sessiondir in
its configuration file. Each A-REX can run independently on its own host, the only requirement is that the
control and session directories must be accessible on the GFS host, and the GFS user must have write access
to these directories. It is recommended that these directories are local to the GFS host and exported (via NFS

73

for example) to the other hosts, rather than being on a remote filesystem and exported to the GFS host. This
means that any glitches in the network do not cause the GFS host to hang. It is also important that the local
user accounts on each host must be synchronised with the GFS host. Any A-REX is not aware that any other
A-REXes are running, as they only see what the GFS decides should go into their own control directory. All
communication between the GFS and a A-REX is through the A-REX’s control directory. Note that in remote
control directories there is no way to specify control directories per user, as with the control command. Only
the controldir command can be used and all users will use the same control directory.

One feature of this design is that multiple A-REXes can share the same LRMS, and hence compete with each
other to submit jobs. Therefore any LRMS settings in the configuration files must be carefully matched in order
not to bias one A-REX over another. In most cases each host’s configuration file can be identical apart from
the control and session directories. Some configuration sections such as the GFS and infosys sections will be
ignored by the remote A-REX hosts as these services are not running.

Cacheing can be set up in a variety of different ways. Each A-REX can have its own cache, completely
independent from any other, which will lead to popular files being replicated in many caches. Or, all caches can
be shared with all A-REXes, which means no replication between caches but heavy intra-site network traffic if the
cache file systems are hosted on different hosts. Another option is to give each A-REX its own cache, but access
to the other caches as remote caches. This avoids replicating files and intra-site network traffic. Replication
can still be enabled by specifying “replicate” as the link path for remote cache dirs, and the advantage of this
is that files are copied from the remote cache rather than being downloaded again from source.

When setting up an extra A-REX, it is important that no other services (GFS, infosys) run on the host.
The instances of these services running on the “main” host take care of all the A-REXes. It is recom-
mended therefore that packages containing gridftpd and grid-infosys are not installed on these hosts, and if
they are, care should be taken to remove or disable scripts which could be started automatically (usually in
$ARC LOCATION/etc/init.d/). No host certificates are required for hosts which only run a A-REX instance
but CA certificates are needed for contacting remote services when downloading and uploading job input and
output files. Note that in this multiple A-REX set up, there is a one to one relationship between control and
session directories, hence multiple sessiondir commands cannot be used in a A-REX configuration.

If no A-REX service is run on the GFS host then the option infosys compat=“enable” must be set in the
[infosys] section of the GFS host configuration (the infosys and GFS must be on the same host). This means
the legacy infoproviders in the infosys are used instead of those in A-REX. If this option is not set then the
A-REX infoproviders must be used and A-REX started on the GFS host. However it is possible to start A-REX
without any (local) control directories defined - the grid-manager thread for processing jobs will exit straight
away but the thread running the infoproviders will continue and will collect information from all the remote
A-REXes.

When adding a new remotegmdirs option to the configuration, there is no need to restart the GFS, as the
configuration is read dynamically by the job plugin upon job submission. However the A-REX serving those new
directories must be started before adding them to the GFS configuration. If an A-REX is to be removed from
the system, it is best to set the remotegmdirs to a draining state (for how see description of this parameter in
configuration section), so that running jobs are still accessible but no new jobs will be assigned there. When the
A-REX has completed all jobs and all job output has been retrieved (for example there are no jobs found when
running gm-jobs), it is safe to remove from the GFS configuration.

The status of all A-REXes is monitored by the information system through heartbeat files in each control
directory. If all A-REXes are running ok then jobs can be submitted to the site. If some A-REXes are up and
some are down then the site will publish a “degraded” state and no new jobs can be submitted. If all A-REXes
are down then the site publishes a “critical” state and no new jobs can be submitted.

6.9 The XML and the INI configuration formats

This section clarifies the roles of the different configuration file formats used in ARC.

The main service of the ARC Computing Element is the A-REX, which runs in a service container called the HED.
The HED is part of the ARC middlware, it contains a daemon and several loadable modules. The configuration
of the HED can be done with an XML configuration file, which describes how to connect the several internal
components to eachother.

Administrators of the ARC CE usually only uses the arc.conf configuration file. The HED service container
does not understand the format of the arc.conf file, that’s why the init script of the A-REX has to parse the
arc.conf and generate a configuration file which is suitable for the HED service container.

The low-level configuration format of the HED service container is an XML-based format, which allows for very
fine-grained configuration of all the internal components and other services than the A-REX.

74

There is a higher-level configuration possibility, which has the INI format, and which is transformed into the
XML configuration when the HED service container is started. Putting configuration options of the INI config
enables and sets sections of an XML configuration profile.

Although the original arc.conf also has an INI-like format, it should not be confused with the high-level INI
configuration of the HED service container.

To summarize the three configuration formats:

arc.conf parsed by the A-REX init script and the A-REX itself. The init script generates an XML configuration
from it to configure the HED service container

XML is the low-level configuration format of the HED service container

INI is the high-level configuration format of the HED service container (and it has nothing to do with the
arc.conf)

For details on the XML and INI configuration, please see [?].

6.10 The internals of the service container of ARC (the HED)

This section describes the internal components of the ARC service container.

The main service of the ARC Computing Element is the A-REX, which runs in a service container called the HED.
The HED is part of the ARC middlware, it contains a daemon and several loadable modules. The configuration
of the HED can be done with an XML configuration file, which describes how to connect the several internal
components to eachother. Here follows a short description of these internal components.

6.10.1 The MCCs

The HED service container has zero or more message chains. A message chain can contain Message Chain
Components (MCCs), Plexers and Services. These components are passing messages to eachother, which
messages can have various extra attributes which also can be read and set by these components.

An MCC gets a message from a previous MCC, does something with it, passes it to the next MCC (or Plexer or
Service), then ,,waits” for the response of this next MCC, then it does something with the response and passes it
back to the previous MCC. (In case of the server-side TCP MCC, it is listening on a network port, and gets the
message from there, not from another MCC, and the response will be sent back to the network, not to another
MCC—the client-side TCP MCC is not listening but opening a connection to a host and port and sending the
message into it.)

The Plexer checks the path of the destination of the message, and based on the matching of regular expressions
it sends the message to one of the configured Services (or other MCCs or Plexers). The path checked by the
Plexer comes from a message attribute called ,,ENDPOINT”. The Plexer treats this as a URL, and uses the
,,path” part of it. This message attribute is set by the MCCs before the Plexer, usually by the HTTP MCC, which
puts the URL of the HTTP request there. (But it is possible that a SOAP request contains a WS-Addressing
information with an endpoint in it, then this will be set as ,,ENDPOINT” by the SOAP MCC.)

A Service processes the message and produces a result which it will pass back to the previous element (Plexer,
MCC). If we only have one web service in a chain which lives at the root HTTP path (e.g. https://hostname:port),
then we don’t need a Plexer. If we want to run a Service without any interface, then we don’t need MCCs, we
can have a chain with a single Service inside.

The XML configuration of the HED has ,,Chain” XML elements which contains the MCCs (in XML elements
called ,,Component”) and Plexers (,,Plexer”) and Services (,,Service”).

The MCCs:

TCP handles the external network communication (IPv4 and IPv6)

TLS handles the TLS/SSL connection, it is usually directly after the TCP MCC, it extracts information from
the message like the Subject Name (DN) of the client

HTTP handles HTTP communication, should be directly after the TLS MCC (or can be directly after the TCP
MCC, if we want HTTP without TLS security). The HTTP MCC can route the message to different
components depending on the HTTP method (POST, GET, PUT, HEAD). Usually the POST method
goes through the SOAP MCC, while the others skip the SOAP handling.

75

SOAP handles the SOAP communication. To use it, the HTTP MCC should directly route the POST message
to the SOAP MCC.

If there is a Plexer, a useful configuration could be the following: the HTTP MCC sends the POST messages
through the SOAP MCC to the Plexer, and sends the GET, PUT and HEAD messages directly to the Plexer.
Then there are several Services sitting after the Plexer, and the Plexer would route the message to a selected
service based on the configured regular expressions. The Plexer can handle messages from the HTTP MCC and
from the SOAP MCC as well (actually, from the TCP MCC also, but that’s currently not useful at all, because
there is no endpoint path in that case). This enables services like the A-REX to handle both SOAP messages
and non-SOAP requests (e.g. uploading input files through HTTP).

6.10.2 The SecHandlers

All MCCs and Services can have zero or more Security Handlers (SecHandlers) in one or more queues. Usually
an MCC (or a Service) has two queues, one for the incoming message, and the other for the outgoing response.
When the message comes into an MCC, the first SecHandler in the incoming queue gets it, and checks it. If it
says ,,denied” then the message will be discarded and an error message will be sent back as a respone. If it says
,,ok” then the next SecHandler in the queue gets it, etc.

The SecHandlers adds security attributes to the message, which can be used later by other SecHandlers or
Services (e.g. the A-REX can use them to figure out which user to map to).

In the XML configuration of the HED each MCC or Service element can have zero or more SecHandler elements,
which specifies the name of the SecHandler (based on this name, the binary plugin will be loaded) and the name
of the queue (called ,,event”: incoming or outgoing).

ARC has the following SecHandlers:

• ArgusPEP (arguspep.map)

• IdentityMap (identity.map)

• DelegationCollector (delegation.collector)

• ArcAuthZ (arc.authz)

• DelegationSH (delegation.handler)

• LegacyMap (arclegacy.map)

• LegacySecHandler (arclegacy.handler)

• SAML2SSO AssertionConsumerSH (saml2ssoassertionconsumer.handler)

• SAMLTokenSH (samltoken.handler)

• UsernameTokenSH (usernametoken.handler)

Each of them has an associated PluginDescriptor object, which are used the create the .apd files (Arc Plugin
Description) which can be found next the the loadable modules (libraries on linux) in the installed location (e.g.
/usr/local/lib/arc). The .apd files are generated by the arcplugin utility, and they are used by the
HED when it tries to find the plugin based on its name. (If there are no .apd files, then all the modules have
to be loaded in order to find the plugins, which takes more time.)

The names of the SecHandlers sometimes contains .map or .handler or .authz as a suffix. This is just a
naming convention, they are all Security Handlers.

The most important SecHandlers:

76

6.10.2.1 IdentityMap

This security handler tries to map the grid user (the DN which comes from the TLS MCC) to a local user. If it
finds a local user, it puts the username into a security attribute which can be used later by other components.
(This SecHandler never denies the message going forward, the worst thing can happen is that it doesn’t find a
local user, so the security attribute will be empty.)

It has three ways to do the mapping:

LocalName always maps to the specified local user regardless of the DN

LocalList uses the familiar grid map file format to find the local name

LocalSimplePool maps to a pool of local user in a way that only one DN should be mapped to one local user
(and a directory will contain the current mappings)

This SecHandler uses plugins called PDPs, see later.

6.10.2.2 ArcAuthZ

This is the main ARC security handler, which uses a couple of plugins (PDPs) to decide if a connection should
go through or should be stopped and denied. (This does not do any grid user – local user mapping.) So when a
message arrives to the ArcAuthZ SecHandler, it will run the configured PDPs, and if any of them says ,,denied”
then the message will be denied. If all the PDPs say ,,ok”, then the message can go forward (this behaviour can
be changed by configuration). About the PDPs, see later.

6.10.2.3 LegacyMap

This SecHandler does user mapping, it uses the arc.conf and does the mapping according to the unixgroup,
unixvo and unixmap configuration parameters.

6.10.2.4 LegacySecHandler

This SecHandler does not map to local user or deny messages, only collects information which will be used later
by the LegacyMap SecHandler (and by the Legacy PDP, see next section). It uses the arc.conf, and figures
out which VOs and Groups the user belongs to.

6.10.3 The PDPs

Some of the SecHandlers use another layer of plugins, which are called Policy Decision Points (PDPs). (Currently
only the IdentityMap and the ArcAuthZ SecHandlers use PDPs.) These SecHandlers have a queue of PDPs
and they run them one by one, doing different things based on the results. The IdentityMap plugin has a given
mapping policy (user, list, pool) for each PDP, and at the first PDP which returns ,,ok”, it will stop running
further PDPs and use the mapping policy configured for the given PDP. The ArcAuthZ runs all the PDPs, and
only accepts the message if all of them returns ,,ok”. (Although it can be configured differently, e.g. to accept
the message if at least one PDP says ,,ok”, or only accept a message if a PDPs says ,,deny”, etc.)

The current PDPs:

• * LegacyPDP (arclegacy.pdp)

• * SimpleListPDP (simplelist.pdp)

• * ArcPDP (arc.pdp)

• * XACMLPDP (xacml.pdp)

• * PDPServiceInvoker (pdpservice.invoker)

• * DelegationPDP (delegation.pdp)

• * AllowPDP (allow.pdp)

• * DenyPDP (deny.pdp)

The most important ones:

77

6.10.3.1 LegacyPDP

This one check the previously set (by the LegacySecHandler) Group and VO attributes, and it also checks the
arc.conf, and figures out if the given user is allowed or not.

6.10.3.2 SimpleListPDP

This one checks a given file with a list of DNs (can be a grid map file), and only accepts messages from DNs
listed in the file.

6.10.3.3 ArcPDP

This one parses policy file written in a general purpose policy language (developed by KnowARC) and makes a
decision based on it.

6.10.3.4 AllowPDP

This one always allows.

6.10.3.5 DenyPDP

This one always denies.

6.11 How the a-rex init script configures the HED

The a-rex init script extracts information from the arc.conf, and creates an XML configuration for the HED.
The A-REX service (living inside the HED) itself uses the arc.conf to configure itself, but there is a higher layer
of configuration options which has to be set in the HED directly (e.g. authentication of the TLS communication),
this configuration parameters has to be extracted from the arc.conf before the A-REX can even be started,
and a proper XML configuration has to be assembled to configure the HED itself.

The a-rex init script first decides if the A-REX would have a web service interface or not. If the web service
is disabled, then the XML configuartion of the HED would look like this:

<?xml version="1.0"?>
<ArcConfig
xmlns="http://www.nordugrid.org/schemas/ArcConfig/2007"
xmlns:arex="http://www.nordugrid.org/schemas/a-rex/Config">
<Server>

<PidFile>$PID_FILE</PidFile>
<Logger>

<File>$LOGFILE</File>
<Level>$LOGLEVEL</Level>
<Backups>$LOGNUM</Backups>
<Maxsize>$LOGSIZE</Maxsize>
<Reopen>$LOGREOPEN</Reopen>

</Logger>
</Server>
<ModuleManager>

<Path>$ARC_LOCATION/@pkglibsubdir@/</Path>
</ModuleManager>
<Plugins><Name>arex</Name></Plugins>
<Chain>

<Service name="a-rex" id="a-rex">
<arex:gmconfig>$ARC_CONFIG</arex:gmconfig>

</Service>
</Chain>
</ArcConfig>

78

The variables (names starting with a dollar sign) are substituted with values from the arc.conf. Here the
message chain contains only a single A-REX service, which has one single config parameter: ,,gmconfig”, which
points to the location of the arc.conf. In this case the A-REX does not have any HTTP or SOAP interfaces,
no SecHandlers, no PDPs, because everything is done by the GridFTP Server, which has a separate init script,
it is a separate process, and it has all the authentication and authorization mechanisms built-in.

When the web service interface is enabled, then the job submission through the web service interface would go
through through the following components:

• a TCP MCC listening on the given port:

<Component name="tcp.service" id="tcp">
<next id="tls"/>
<tcp:Listen><tcp:Port>$arex_port</tcp:Port></tcp:Listen>

</Component>

• a TLS MCC using the key and certificate and CA paths from the arc.conf, trusting all the VOMS servers,
having a specific VOMSProcessing (relaxed, standard, strict, noerrors), having an IdentityMap SecHandler
which uses the given gridmapfile to map the grid users and maps to ,,nobody” in case of error, then having
a LegacySecHandler which uses the arc.conf to match the client to groups and VOs configured there:

<Component name="tls.service" id="tls">
<next id="http"/>
<KeyPath>$X509_USER_KEY</KeyPath>
<CertificatePath>$X509_USER_CERT</CertificatePath>
<CACertificatesDir>$X509_CERT_DIR</CACertificatesDir>
<VOMSCertTrustDNChain>

<VOMSCertTrustRegex>.*</VOMSCertTrustRegex>
</VOMSCertTrustDNChain>
<VOMSProcessing>$VOMS_PROCESSING</VOMSProcessing>
<!-- Do initial identity mappping by gridmap file -->
<SecHandler name="identity.map" id="map" event="incoming">

<PDP name="allow.pdp"><LocalList>$GRIDMAP</LocalList></PDP>
<PDP name="allow.pdp"><LocalName>nobody</LocalName></PDP>

</SecHandler>
<!-- Match client to legacy authorization groups -->
<SecHandler name="arclegacy.handler" event="incoming">

<ConfigFile>$ARC_CONFIG</ConfigFile>
</SecHandler>

</Component>

• one HTTP MCC, one SOAP MCCs, and the Plexer, with POST messages going through SOAP to the
Plexer, GET/PUT/HEAD messages going directly to the Plexer, which checks if the path is the configured
arex_path, if yes, it sends the message to the A-REX, otherwise fails:

<Component name="http.service" id="http">
<next id="soap">POST</next>
<next id="plexer">GET</next>
<next id="plexer">PUT</next>
<next id="plexer">HEAD</next>

</Component>
<Component name="soap.service" id="soap">

<next id="plexer"/>
</Component>
<Plexer name="plexer.service" id="plexer">

<next id="a-rex">ˆ/$arex_path</next>
</Plexer>

• then the A-REX itself, with ArcAuthZ SecHandler containing a single LegacyPDP which will decide based
on the [gridftpd/jobs] section of arc.conf if this message can go through or should be denied,
then a LegacyMap SecHandler which uses the [gridftpd] section of arc.conf to figure out which local
user should the grid user be mapped to, then the full URL of the A-REX is given to the service (which

79

in theory could be figured out from the incoming messages, but it is safer to be set explicitly), then the
location of the arc.conf is given to the service (otherwise it wouldn’t know), then some extra limits are
set:

<Service name="a-rex" id="a-rex">
<!-- Do authorization in same way as jobs plugin of gridftpd does -->
<!-- Beware of hardcoded block name -->
<SecHandler name="arc.authz" event="incoming">

<PDP name="arclegacy.pdp">
<ConfigBlock>

<ConfigFile>$ARC_CONFIG</ConfigFile>
<BlockName>gridftpd/jobs</BlockName>

</ConfigBlock>
</PDP>

</SecHandler>
<!-- Perform client mapping according to rules of gridftpd -->
<SecHandler name="arclegacy.map" event="incoming">

<ConfigBlock>
<ConfigFile>$ARC_CONFIG</ConfigFile>
<BlockName>gridftpd</BlockName>

</ConfigBlock>
</SecHandler>
<arex:endpoint>$arex_mount_point</arex:endpoint>
<arex:gmconfig>$ARC_CONFIG</arex:gmconfig>
<arex:InfosysInterfaceMaxClients>

$MAX_INFOSYS_REQUESTS
</arex:InfosysInterfaceMaxClients>
<arex:JobControlInterfaceMaxClients>

$MAX_JOB_CONTROL_REQUESTS
</arex:JobControlInterfaceMaxClients>
<arex:DataTransferInterfaceMaxClients>

$MAX_DATA_TRANSFER_REQUESTS
</arex:DataTransferInterfaceMaxClients>

</Service>

In summary, A-REX is usually started with the a-rex init script, which parses the arc.conf and creates
an XML configuration, then starts the HED. This configuration uses the IdentityMap SecHandler to do an
initial user mapping based on the configured grid map file, if it fails, it maps to ,,nobody”, then it uses the
LegacySecHandler to match the user to Groups and VOs configured in arc.conf, then it uses the ArcAuthZ
SecHandler with a LegacyPDP inside to allow or deny connections based on the authorization configured in the
[gridftpd/jobs] section of the arc.conf (and the previously collected Group and VO information), then
the LegacyMap SecHandler tries to map the grid user to a local user based on the [gridftpd] section of
arc.conf (and the previously collected Group and VO information).

6.12 Structure of the grid-mapfile

The following is not needed to setup a production environment but is described here as a reference.

A grid-mapfile is a simple text file. Each line is a record of the form

<grid identity certificate DN> <unix local account>

For each user that will connect to the CE, a Distinguished Name or DN contained in each user’s certificate will
be needed. Many grid users can map to the same unix account.

A sample grid-mapfile is shown below:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3" griduser2
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo4" griduser2
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo5" griduser2

Please refer to the certificate mini How-to to strip out the subject from grid identity certificates.

80

http://www.nordugrid.org/documents/certificate_howto.html

6.13 Environment variables set for the job submission scripts

The A-REX comes with support for several LRMS. Features explained below are for PBS/Torque backend,
but for the other backends the behaviour is similar. This support is provided through submit-pbs-job, cancel-
pbs-job, scan-pbs-job scripts. submit-pbs-job creates job’s script and submits it to PBS. Created job’s script is
responsible for moving data between frontend machine and cluster node (if required) and execution of actual job.
Alternatively it can download input files and upload output if “localtransfer=no” is specified in the configuration
file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified
on frontend in A-REX’s environment and overwritten on cluster’s node through PBS configuration. Some of
them may be set in configuration file too.

PBS BIN PATH – path to PBS executables. Like /usr/local/bin for example. Corresponds to pbs bin path
configuration command.

PBS LOG PATH – path to PBS server logs. Corresponds to pbs log path configuration command.

TMP DIR – path to directory to store temporary files. Default value is /tmp. Corresponds to tmpdir configu-
ration command.

RUNTIME CONFIG DIR – path where runtime setup scripts can be found. Corresponds to runtimedir con-
figuration command.

GNU TIME – path to GNU time utility. It is important to provide path to utility compatible with GNU time.
If such utility is not available, modify submit-pbs-job to either reset this variable or change usage of available
utility. Corresponds to gnu time configuration command.

NODENAME – command to obtain name of cluster’s node. Default is /bin/hostname -f. Corresponds to
nodename configuration command.

RUNTIME LOCAL SCRATCH DIR – if defined should contain path to the directory on computing node,
which can be used to store job’s files during execution. scratchdir configuration command.

RUNTIME FRONTEND SEES NODE – if defined should contain path corresponding to
RUNTIME LOCAL SCRATCH DIR as seen on frontend machine. Corresponds to shared scratch configuration
command.

RUNTIME NODE SEES FRONTEND – if set to “no” means computing node does not share file system with
frontend. In that case content of the SD is moved to computing node by using means provided by the LRMS.
Results are moved back after job’s execution in a same way. Corresponds to shared filesystem configuration
command.

For the last options, see Section 6.14, Using a scratch area

6.14 Using a scratch area

Figures 6.4, 6.5 and 6.6 present some possible combinations for RUNTIME LOCAL SCRATCH DIR and
RUNTIME FRONTEND SEES NODE and explain how data movement is performed. Figures a) correspond to
the situation right after all input files are gathered in the session directory and actions taken right after the job
script starts. Figures b) show how it looks while the job is running and actions which are taken right after it
has finished. Figures c) show the final situation, when job files are ready to be uploaded to external storage
elements or be downloaded by the user.

Frontend Cluster node

Session directory Session directory

Figure 6.4: Both RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE undefined. Job is exe-
cuted in a session directory placed on the frontend.

81

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session directory Session directory
imported from
frontend

Job files

Scratch directory
Copy of session dir.

stdout+stderr stdout+stderr

COPY before execution

SOFT-LINKS

MOVE after execution

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

a)

b)

c)

Figure 6.5: RUNTIME LOCAL SCRATCH DIR is set to a value representing the scratch directory on the computing
node, RUNTIME FRONTEND SEES NODE is undefined.

a) After the job script starts all input files are moved to the ,,scratch directory” on the computing node.

b) The job runs in a separate directory in ,,scratch directory”. Only files representing the job’s stdout and
stderr are placed in the original ,,session directory” and soft-linked in ,,scratch”. After execution all files
from ,,scratch” are moved back to the original ,,session directory”.

c) All output files are in ,,session directory” and are ready to be uploaded/downloaded.

82

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session link

Job files

Scratch directory
Session directory

COPY before execution

MOVE after execution

a)

b)

Scratch directory

Job files

Session directory

Scratch directory

Frontend Cluster node

Scratch directory
c)

Scratch directory

SOFT-LINK

Session directory

Session link

Job files

Session directory

Figure 6.6: RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE are set to values represent-
ing the scratch directory on the computing node and a way to access that scratch directory from the frontend
respectively.

a) After the job script starts, all input files are moved to ,,scratch directory” on the computing node. The
original ,,session directory” is removed and replaced with a soft-link to a copy of the session directory in
,,scratch” as seen on the frontend.

b) The job runs in a separate directory in ,,scratch directory”. All files are also available on the frontend
through a soft-link. After execution, the soft-link is replaced with the directory and all files from ,,scratch”
are moved back to the original ,,session directory”

c) All output files are in ,,session directory” and are ready to be uploaded/downloaded.

83

	Overview
	The grid
	The ARC services
	The functionality of the ARC Computing Element
	The A-REX, the execution service
	The pre-web service interfaces
	The web service interfaces

	Security on the Grid
	Handling jobs
	A sample job processing flow

	The runtime environments
	The local information
	Overview of ARC LDAP Infosys schemas

	LRMS, Queues and execution targets

	Requirements
	Software Requirements
	Hardware Requirements
	Certificates

	Installation
	Installation for commom GNU/Linux Distributions
	Setting up the repositories
	Performing the installation

	Installation for other systems and distributions
	Installation of certificates
	Installing host certificates
	Installing custom CA certificates
	Authentication Policy
	Revocation lists
	Authorization policy

	Configuration
	Preparing the system
	Users and groups
	Disk, partitioning, directories
	Permissions
	Networking
	Security considerations

	Configuration file formats
	Structure of the arc.conf configuration file
	Description of configuration items

	Setting up a basic CE
	Creating the arc.conf file
	The [common] section
	The [grid-manager] section: setting up the A-REX and the arched
	The [gridftpd] section: the job submission interface
	The [infosys] section: the local information system
	The [cluster] section: information about the host machine
	The [queue/fork] section: configuring the fork queue

	A basic CE is configured. What's next?

	Production CE setup
	Access control: users, groups, VOs
	[vo] configuration commands
	Automatic update of the mappings
	[group] configuration commands

	Connecting to the LRMS
	PBS
	Condor
	LoadLeveler
	Fork
	LSF
	SGE
	SLURM

	Enabling the cache
	How to join the grid: registering to an index service

	Enhancing CE capabilities
	Enabling other LDAP schemas
	Applying changes

	Runtime Environments
	Enabling the Web Services interface
	VOMS

	Operations
	Starting and stopping CE services
	Overview
	Starting the CE
	Stopping the CE
	Verifying the status of a service
	Cache administration

	Testing a configuration
	Testing the information system
	Check NorduGrid Schema publishing
	Check Glue 1.x Schema publishing
	Check LDAP GLUE2 Schema publishing
	Check WS/XML GLUE2 Schema publishing
	Further testing hints

	Testing whether the certificates are valid
	Testing the job submission interface
	Testing the LRMS

	Log files
	The format of the log files

	Technical Reference
	Reference of the arc.conf configuration commands
	Generic commands in the [common] section
	Commands in the [vo] section
	Commands in the [group] section
	Commands in the [gridftpd] section
	Commands in the [infosys] section
	Commands in the [cluster] section
	Commands in the [queue] subsections
	Commands in the [grid-manager] section
	Commands affecting the A-REX process and logging
	Commands affecting the A-REX Web Service communication interface
	Commands setting limits and options for how the A-REX handles jobs and files
	Per UNIX user commands and setting the control directory
	Global commands specific to communication with the underlying LRMS
	Substitutions in the command arguments

	PBS specific commands
	Condor specific commands
	LoadLeveler specific commands
	Fork specific commands
	LSF specific commands
	SGE specific commands
	SLURM specific commands

	Handling of the input and output files
	The new data staging framework
	Job states
	Cache
	Structure of the cache directory
	How the cache works
	Remote caches
	Cache cleaning

	Transfer shares
	Batch system back-ends implementation details
	Submit-LRMS-job
	Cancel-LRMS-job
	Scan-LRMS-job
	PBS
	Condor
	LoadLeveler
	Fork
	LSF
	SGE

	Clustering A-REX
	The XML and the INI configuration formats
	The internals of the service container of ARC (the HED)
	The MCCs
	The SecHandlers
	IdentityMap
	ArcAuthZ
	LegacyMap
	LegacySecHandler

	The PDPs
	LegacyPDP
	SimpleListPDP
	ArcPDP
	AllowPDP
	DenyPDP

	How the a-rex init script configures the HED
	Structure of the grid-mapfile
	Environment variables set for the job submission scripts
	Using a scratch area

