
NORDUGRID

NORDUGRID-TECH-24

17/2/2010

Job Usage Reporter of ARC – JURA

Technical description

Péter Dóbé ∗

∗dobe@iit.bme.hu



1 Introduction

The Job Usage Reporter of ARC (JURA) is a component implementing a part of the accounting functionality
in the ARC middleware. Its objective is to gather metered resource usage data for each job and submit it
to accounting services along with the job submitter’s identity and miscellaneous job-related metadata. The
collected usage data is transformed into records of job-level granularity and a format corresponding to an
OGF specification.

JURA submits the records to an accounting service. The accounting service stores the received usage data
in a database, and provides an interface for querying it. Queries can be made by the consumers of the
accounting data, such as a billing component. JURA is currently capable of reporting to the logging service
of the SweGrid Accounting System (SGAS)[? ]. Maintaining the possibility to utilise other accounting
services has been kept in mind during design, the JURA modular architecture enables easy creation of
adapters for accounting services.

JURA offers a functionality similar to that of the logger [? ] client, with improvements and extensions. It
also serves as a complete replacement for the JARM component of SGAS.

2 Overview of functionality

Figure 1: The usage reporting mechanism.

JURA runs as a stand-alone binary application called by A-REX (see Figure 1). There is no designated
configuration file for JURA, nor is the configuration file of A-REX read directly by the application. Instead,
options related to reporting are included within the job log files generated by A-REX. The primary purpose
of these job log files is holding job-related metadata, the main input of JURA. Its format is described in
detail in Section 3.2.

The application is run periodically. First, it processes the resource usage content of job log files, and
transforms it, generating a standard XML representation of usage data, called Usage Records (URs)[? ].
Then these records are sent to one or more accounting services, referred to as reporting destinations in this
document. Several reporting destinations are supported, these can be configured by the system administrator
in the A-REX configuration file, and in addition, the user submitting the job can specify destinations in the
job description.

Currently, the SGAS Logging and Usage Tracking Service (LUTS) is the only supported reporting destina-
tion. Communication with a LUTS server is done via a web service interface. JURA is securely authenticated
by the server using X.509 certificates.

1



3 Operation

3.1 Invocation

JURA is a stand-alone executable application, executed by A-REX hourly (currently a hardcoded time
interval, see Section 8). It has no separate configuration file, and does not process the A-REX configuration
file. It receives all necessary options from A-REX in part through command-line arguments and mostly via
variables inserted into the job log files (See Section 3.2). The following configuration variables can be present
in the job log files:

� key path – Path to the private key file used when submitting records.

� certificate path – Path to the certificate file used when submitting records.

� ca certificates dir – Directory holding the certificates of trusted CAs.

� accounting options – Additional configuration options for JURA.

The source of these variables is the “grid-manager” block of the A-REX configuration file (see Section 7).

The command line format of JURA is the following:

jura [-E <expiration_time>] [-u <url> [-u <url> [...]]] <control_dir> [<control_dir> [...]]

where expiration time is the validity length of job log files in days, after which time they are considered
invalid; control dir is the A-REX control directory for a mapped local UNIX user. The “logs” subdirectory
of each control directory is traversed by JURA separately, in sequence.

The “-u” option can be used for interactive execution (e.g. from a terminal). In this case, usage data
generated for each job is reported once to each of the specified destination URLs regardless of the content
of the job log files, and no job log files are deleted.

3.2 Processing job log files

Job log files contain practically all input data (except those passed as command line arguments) for JURA.
A-REX generates these files, at least two for each job and for each reporting destination: one at the time
of job submission, another one after the job finishes, and possibly others at each start and stop event. Job
log files are the main and only source of detailed resource usage information. Furthermore, they are used to
communicate configuration parameters of JURA (see Section 3.1).

The job log files generated by A-REX reside under the directory <control dir>/logs[1]. They have file name
format <ngjobid>.<random>, where ngjobid is the identifier created for the job by A-REX, random is a
randomly generated sequence of alphanumeric characters to avoid collision of different files pertaining to the
same job.

A file consists of “name=value” lines, where “value” is either a job-related resource usage data or a config-
uration parameter. The URL of the reporting destination corresponding to the job log file is acquired from
a “jobreport=” line in the A-REX configuration file. In addition to this server-side configuration, a limited
number of destinations can be supplied by the submitter in the job description.

JURA generates records in the Usage Record (UR) format[? ] proposed by the Open Grid Forum (OGF),
using the information stored in the job log files. The generated UR is an XML representation holding
consumption information for all commonly used resources and metrics. It can be extended by custom
elements for non-standard resources and/or other types of job metadata. For a list of UR properties and
their sources in the job log file, see Appendix A.

Some elements of UR are mandatory, these must all be present in the job log file to be able to generate
a UR. For example, the job log file generated upon job submission contains no status entry, so this file is
ignored, and no UR is generated from it.

An archiving functionality allows to store generated URs in a specified directory (see Section 7) on the disk.
If enabled, valid UR XMLs are written to files named “usagerecord.<ngjobid>.<random>”, where “ngjobid”
and “random” match those of the source job log file. If a job log file is processed repeatedly – for example

2



because of temporary connection failures to a LUTS service – and a respective UR archive file already exists,
then the UR is not generated again. Instead, the contents of the archive file are used without change (NB:
the creation time stamp is also retained).

If interactive mode is not activated by the “-u” option (see Section 3.1), after successful submission to a
reporting destination, the job log file is deleted, preventing multiple insertion of usage records. If submission
fails, the log files are kept, so another attempt is made upon a subsequent run of JURA. This can repeat
until the expiration time passes (see “-E” command line switch in Section 3.1), at which point the next
execution of JURA removes the file without processing.

3.3 Reporting to LUTS

In case of non-interactive invocation of JURA by A-REX, the generated URs are submitted to the accounting
services specified by the reporting destination configuration parameters and if present, to the destinations
specified in the job description as well. Under interactive mode of operation, they are submitted to the
services given via the “-u” command line option. Reporting URs to several destinations is possible, but
currently only SGAS LUTS destinations are supported.

LUTS has a simple custom web service interface loosely based on WS-ResourceProperties[? ]. JURA uses the
insertion method of this interface to report URs. The corresponding job log files are deleted after receiving
a non-fault response from the service.

To increase communication efficiency JURA can send URs in batches provided that the server side supports
this feature. LUTS accepts a batch of URs in a single request. The batch is an XML element called
UsageRecords, containing elements representing URs.

The process of handling batches is the following: JURA does not send all usage records immediately after
generating, but instead collects them in a batch until reaching the maximal number of elements or until
running out of job log files. This means that all batches are of maximal size except the last one. The
maximal number of URs in a batch can be set as a configuration parameter of JURA (“jobreport options”,
see Section 7).

4 Security

The JURA executable runs with the same user privileges as the A-REX, typically as root. The owner of a
job log file is the local user mapped for the submitter entity of the corresponding job. These files contain
confidential data, access to which must be restricted, therefore read access is limited to the owner and the
super user. If JURA is executed by A-REX, it can read data from these files, and delete expired files.

The authentication towards the SGAS LUTS is done via the standard X.509 certificate mechanism over
SSL protocol: a chain of valid (i.e. not expired and/or revoked) certificates with a trusted root certification
authority is accepted as authentic identification of the client. In the scenario involving A-REX and JURA,
all usage records are submitted using credentials given in the “jobreport credentials=” line of the A-REX
configuration file (see A-REX Description and Administration Manual[1]), and no proxies are used. Normally
the credentials for the A-REX service should be used.

Access control to the LUTS service can only be controlled by very simple means: the Distinguished Name
(DN) of the client (in this case JURA) is checked against configured rights. Policies distinguish two rights:
publishing and querying. Clients with publishing right can insert any UR, regardless of content. By default,
querying right only allows retrieving URs pertaining to jobs submitted by the querying entity. In addition,
there is a super user role allowing publishing and querying of any record.

5 Implementation

JURA is written merely in C++, built with widely used GNU tools, and tested in a GNU/Linux environment.
It depends on HED libraries: the common utilities library, the message handling library and the Message
Chain Components for the TCP, TLS, SOAP and HTTP protocols. It also depends on all mandatory
dependencies of ARC: gthread-2.0, glibmm-2.4, libxml-2.0, openssl, e2fsprogs and GNU gettext.

3



The usage reporting part of the JURA code has a modular design in order to enable adding other types of
accounting services besides the currently only supported LUTS. An abstract interface class called “Destina-
tion” represents a usage reporting destination service. Different inherited classes of “Destination” handle
different types of services. Currently the only inherited class is “LutsDestination”, implementing support
for LUTS. If one wishes to develop a module for another service type, he or she has to create a new de-
scendant class of “Destination”, implement its “report()” method to submit the contents of the job log file
given as an argument, and adapt the static “createDestination()” method of “Destination” to instantiate
the appropriate class.

6 Installation and deployment

JURA is distributed as part of the ARC technology preview release source tarballs †. The component can
be built from source tarball using the standard autotools.

The README and INSTALL of the source tarball provide full instructions about building ARC including
JURA. The files also list required dependencies (see Section 5).

Upon make install, the executable called “jura” is placed into the bin directory of the configured ARC
install location. No other executables or wrapper scripts are installed.

A-REX executes the reporting executable through the file “logger” in the libexec/arc directory under the
install location (this is an A-REX legacy kept for backwards compatibility with the old logger). Therefore,
to enable automatic periodic reporting, the “jura” executable file should be copied into libexec/arc, or if
possible, a symbolic link called “logger” should be created there, pointing to the “jura” executable.

The usage reporting can also be performed manually provided that access to the credentials are granted, by
executing JURA with the proper command line arguments (see Section 3.1). The example command below
will send generated usage records from the job log files in the standard location, “/tmp/jobstatus/logs” and
send them to LUTS services. Files older than a week are deleted without processing.

jura -E 7 /tmp/jobstatus

7 Configuration

JURA can be configured through the configuration file of A-REX[1]. As it was already mentioned in Section
3.1, JURA does not process the A-REX configuration file directly; the configuration values are propagated
to JURA through the job log files. The following variables in the “grid-manager” block of the A-REX
configuration file are relevant for JURA:

� jobreport=[URL ... number] – specifies reporting destination URLs. Multiple entries and multiple
URLs are allowed. number specifies how long old records have to be kept if failed to be reported. That
value is specified in days. Last specified value becomes effective.

� jobreport credentials=[key file [cert file [ca dir]]] – specifies the credentials for accessing the ac-
counting service.

� jobreport options=[options] – specifies additional options for JURA.

The jobreport options variable allows passing a generic option string to JURA verbatim. This string is
interpreted by JURA as a comma-separated list of “name:value” pairs (note the colon!), which represent
service-related settings and extended reporting parameters. The job reporting options currently defined are:

� urbatch :size – sets the maximal number of URs in the batch sent within one request. Zero value
means unlimited batch size. Default is 50.

� archiving :dir – enables archiving of generated URs in the given directory. If the directory does not
exist, an attempt is made to create it. If this option is absent, no archiving is performed.

†http://download.nordugrid.org/software/nordugrid-arc1/trunk/

4



The example below is a part of the “grid-manager” block of the A-REX configuration. It enables logging of
URs to two hosts, using the host credential files (placed in the standard locations), with a maximum of 50
URs per batch. Generated URs are archived in the directory “/var/urs”. Job log files expire after a week.

...
jobreport="https://luts1.nordugrid.org:8443/wsrf/services/sgas/LUTS"
jobreport="https://luts2.nordugrid.org:8443/wsrf/services/sgas/LUTS 7"
jobreport_credentials="/etc/grid-security/hostkey.pem /etc/grid-security/hostcert.pem

/etc/grid-security/certificates"
jobreport_options="urbatch:50,archiving:/var/urs"
...

8 Limitations and future plans

Although complete, JURA still has minor imperfections, some of them stemming from limitations or opera-
tional characteristics of A-REX or the arcsub client:

� The time frequency of running JURA is not configurable. It is a hardcoded value in A-REX: 3600
seconds, i.e. one hour.

� The number of user-supplied reporting destinations is limited for the sake of robustness. This upper
limit is hardcoded in A-REX: max. 3 destinations are parsed from JSDL, and max. 1 from RSL.

� The arcsub job submission client removes all but one reporting destination URL from the job descrip-
tion, further limiting the number of user-supplied destinations.

� The current implementation of JURA and A-REX supports only one expiration time for all the re-
porting destinations. Even though the configuration enables the specification of different expiration
values per reporting destination, it is not taken into account by the system, the last value is used as
the common expiration time value.

� It is not possible to use different credentials per destinations.

� Some optional UR properties are not supported (see App. A).

� Memory is not reported correctly. A bug in GNU “time” results in all memory usage set incorrectly
as zero.

� Some necessary extensions to the generated UR are not yet filled though the information is already
collected in the job log files.

� Detailed user identity information based on the X.509 proxy certificate content or other submitted
credentials is missing from URs.

There is also plan to extend JURA with the following features:

� Support for other accounting systems besides LUTS, especially the EGEE Accounting Service. How-
ever, appropriate documentation on the service interfaces is missing as of now.

� Extend JURA to be able to read credentials from the command line in interactive mode.

� Enable generating coarser-grained “Aggregate URs” from multiple URs.

� Investigate the subject of project-related charging: who is responsible for determining the “charge”
value; what rules should be applied?

5



A Generated Usage Record

The following table shows which properties in OGF UR[? ] are filled, what data source was used for them,
and which properties are missing.

6



Generated
UR Property

Source
(job log entry)

Information content

RecordId nodename,
ngjobid

Globally unique identifier for UR

GlobalJobId globalid Globally unique identifier of job:
XML element as defined by BES

LocalJobId localid CE-specific identifier of job

GlobalUserName usersn DN of submitting user’s certificate

LocalUserId localuser POSIX user on CE executing the job

JobName jobname Name of job, as given in job description

Status status Status of job

WallDuration
[ISO 8601 duration]

usedwalltime [s] Wall-clock time used by job

CpuDuration
[ISO 8601 duration]

usedcputime [s] CPU time used by job

StartTime
[ISO 8601 time stamp]

submissiontime
[ISO 8601 time stamp]

Time instant the job started

EndTime
[ISO 8601 time stamp]

endtime
[ISO 8601 time stamp]

Time instant the job ended

MachineName nodename Name of the machine where the job ran
(first node from colon-separated list put into element)

Host nodename System hostname(s) where the job ran
(nodes from colon-separated list put into separate elements)

SubmitHost clienthost System hostname the job was submitted from

Queue lrms Name of the queue from which the job was executed

ProjectName projectname Name of project, as given in job description

Memory
[average virtual, kB]

usedmemory [kB] Average total memory used by job

Memory
[max physical, kB]

usedmaxresident [kB] Maximal resident memory used by job

Memory
[average physical, kB]

usedaverageresident
[kB]

Average resident memory used by job

NodeCount nodecount Number of nodes (physical machines) involved in the job

ProcessID MISSING The process ID(s) of the job

Charge MISSING Total charge of the job (money or abstract credits)

Network MISSING Network usage of job

Disk MISSING Disk usage of job

Swap MISSING Swap usage of job

Processors MISSING Number of processors used or requested

TimeDuration MISSING Additionally measured time duration(s)

TimeInstant MISSING Additionally identified time instant(s)

ServiceLevel MISSING Quality of service associated with usage

Extended
UR Property

Source
(job log entry)

Description

RuntimeEnvironment runtimeenvironment Requested runtime environment, specified in job description
(RTEs from space-separated list put into separate elements)

7



References

[1] A. Konstantinov. The ARC Computational Job Management Module - A-REX. URL http://www.
nordugrid.org/documents/a-rex.pdf. NORDUGRID-TECH-14.

8

http://www.nordugrid.org/documents/a-rex.pdf
http://www.nordugrid.org/documents/a-rex.pdf

	Introduction
	Overview of functionality
	Operation
	Invocation
	Processing job log files
	Reporting to LUTS

	Security
	Implementation
	Installation and deployment
	Configuration
	Limitations and future plans
	Generated Usage Record

