£ "NORDUGRID
EURDPEAN MIDDLEWARE INITIATIVE

NORDUGRID-MANUAL-20
22/3/2013

ARC COMPUTING ELEMENT

System Administrator Guide

F. Paganelli, Zs. Nagy, O. Smirnova,
and various contributions from all ARC developers

Contents

1 Overview

1.1 Thegrid e
1.2 The ARC Services o . v i e e e e e e e e e e e e
1.3 The functionality of the ARC Computing Element
1.4 The A-REX, the execution service
1.4.1 The pre-web service interfaces L L L
1.4.2 The web service interfaces L
1.5 Security on the Grido
1.6 Handling jobs e
1.6.1 A sample job processing flow Lo
1.7 Application software in ARC: The RunTime Environments
1.8 The local information oL
1.8.1 Overview of ARC LDAP Infosys schemas
1.9 LRMS, Queues and execution targets L L Lo
2 Requirements
2.1 Software Requirements L
2.2 Hardware Requirements L
2.3 Certificates e e
3 Installation
3.1 Imstallation for commom GNU/Linux Distributions
3.1.1 Setting up the repositories
3.1.2 Performing the installation
3.2 Installation for other systems and distributions,
3.3 Imstallation of certificates L e
3.3.1 Installing host certificates L oL
3.3.2 Installing custom CA certificates
3.3.3 Authentication Policy
3.3.4 Revocation lists e
3.3.5 Authorization policy e

10
11
11
12
12
13
13
15
17
17
18

19
19
19
20

4 CONTENTS

4 Configuration 25
4.1 Preparing the system L e e 25
4.1.1 Users and Groups v v v v vt i e e e e e e e e e e e 25
4.1.2 Disk, partitioning, directories 25
4.1.3 PermiSsions o e e e e e e e 27
4.1.4 Networking L e 27

4.1.5 Security considerationso 28

4.2 Configuration file formatso 29
4.2.1 Structure of the arc.conf configuration file 29
4.2.2 Description of configuration items L oL 30

4.3 Setting up a basic CE L e e 31
4.3.1 Creating the arc.conffile. 31
4.3.2 The [common] section 32
4.3.3 The [grid-manager]| section: setting up the A-REX and the arched 33
4.3.4 The [gridftpd] section: the job submission interface 33
4.3.5 The [infosys| section: the local information system 34
4.3.5.1 The [cluster] section: information about the host machine 34

4.3.5.2 The [queue/fork] section: configuring the fork queve 35

4.3.6 A basic CE is configured. What’s next? 35

4.4 Production CE setup e e 36
4.4.1 Access control: users, groups, VOs 36
4.4.1.1 [vo] configuration commands Lo Lo Lo L 37

4.4.1.2 Automatic update of the mappings 37

4.4.1.3 [group] configuration commands 38

4.4.2 Connecting to the LRMS 38
4.4.2.1 PBS . . e 39

4.4.2.2 Condor 40

4.4.2.3 LoadLeveler e 41

4.4.2.4 Fork e e e 41

4.4.2.5 LSF . . oL 42

4.4.2.6 SGE 42

4.4.277 SLURM . . .o e 43

4.4.3 Enabling the cache 44
4.4.3.1 The Cache Service L 45

4.4.3.2 The ARC Cache Index (ACIX) 45

4.4.4 Configuring Data Staging 45
4.4.5 Registering toan ARC EGIIS 47
4.46 ARC CE to gLite Site and Top BDII integration 49
4.4.7 Accounting with JURA 49
4.4.8 Sending usage records to SGAS with urlogger 51

4.4.9 Monitoring the ARC CE: Nagios probes 52

CONTENTS 5

4.5 Emnhancing CE capabilities e 52
4.5.1 Enabling or disabling LDAP schemas 52
4.5.1.1 Applying changes e 54

4.5.2 Runtime Environments 54
4.5.3 Enabling the Web Services interface 56
4.5.4 Virtual Organization Membership Service (VOMS) 56
4.5.4.1 Configuring trusted VOMS ACissuers 57

4.5.4.2 Configuring VOMS AC signing servers to contact 58

4.5.4.3 Configuring ARC to use VOMS extensions 58

4.5.5 Dynamic vs static mapping 59
4.5.5.1 Staticmappingo e e 59

4.5.5.2 Dynamic mapping« .o it 59

4.5.6 Using Argus authorization service e 60
457 Using LCAS/LCMAPS 61
4.5.7.1 Enabling LCAS/LCMAPS 61

4572 LCAS/LCMAPS policy configuration 62

4.5.7.3 Example LCAS configuration L. 65

4.5.7.4 Example LCMAPS configuration 65

5 Operations 67
5.1 Starting and stopping CE services e 67
5.1.1 Overview oL e e 67
5.1.2 Validating CE setup« e 67
5.1.3 Starting the CE 68
5.1.4 Stopping the CE e 68
5.1.5 Verifying the status of a service Lo Lo L 69

5.2 Testing a configuration e e 70
5.2.1 Testing the information system o 70
5.2.1.1 Check NorduGrid Schema publishing 70

5.2.1.2 Check Glue 1.x Schema publishing 70

5.2.1.3 Check LDAP GLUE2 Schema publishing 73

5.2.1.4 Check WS/XML GLUE2 Schema publishing 73

5.2.1.5 Further testing hints L Lo 73

5.2.2 Testing whether the certificates are valid 73
5.2.3 Testing the job submission interface 76
5.2.4 Testing the LRMS e 76

5.3 Administration tools L 77
5.4 Logfiles o 78
5.4.1 The format of the log files 78

5.5 Modules of the A-REX« . o 78
5.6 Common taskso 79

6 CONTENTS
5.6.2 How configure SELinux to use a port other than 2135 for the LDAP information system 79
5.6.3 How to debug the ldap subsystem 80
5.6.4 Missing information in LDAP or WSRF 80

6 Technical Reference 83

6.1 Reference of the arc.conf configuration commands 83
6.1.1 Generic commands in the [common] section 83
6.1.2 Commands in the [vo] section Lo Lo 83
6.1.3 Commands in the [group] section L 84
6.1.4 Commands in the [gridftpd] sectiono 86

6.1.4.1 seneral commands L L L oL oL L 86

6.1.4.2 Commands for fine-grained authorisation 87

6.1.4.3 Commands to configure the jobplugin 88

6.1.5 Commands in the [infosys] section L oL L 89
6.1.6 Commands in the [infosys/admindomain] section 90
6.1.7 Commands in the [infosys/gluel2] section, . 91
6.1.8 Commands in the [infosys/site/sitename] section 91
6.1.9 Commands in the [cluster] section L Lo 92
6.1.10 Commands in the [queue] subsections L L 93
6.1.11 Commands in the [infosys/cluster/registration/registrationname] subsections 93
6.1.12 Commands in the [grid-manager] section L 94
6.1.12.1 Commands affecting the A-REX process and logging 94
6.1.12.2 Commands affecting the A-REX Web Service communication interface . .. 94
6.1.12.3 Commands setting control and session directories 96
6.1.12.4 Commands to configure the cache 96
6.1.12.5 Commands setting limits oL o 97
6.1.12.6 Commands related to file staging L. 98
6.1.12.7 Commands related to usage reporting 98
6.1.12.8 Other general commands in the [grid-manager| section 99
6.1.12.9 Global commands specific to communication with the underlying LRMS. . . 99
6.1.12.10 Substitutions in the command arguments 100

6.1.13 Commands in the [data-staging] section 100
6.1.14 PBS specific commands oL Lo 101
6.1.15 Condor specific commands e 102
6.1.16 LoadLeveler specific commands e 103
6.1.17 Fork specific commands 103
6.1.18 LSF specific commands 103
6.1.19 SGE specific commands 103
6.1.20 SLURM specific commands Lo 104
6.1.21 Commands for the urlogger accounting component 104
6.2 Handling of the input and output files 104

6.3 Jobstates 105

CONTENTS 7

6.4

6.5

6.6

6.7
6.8

6.9

6.10
6.11
6.12
6.13
6.14

6.15

Cache e 106
6.4.1 Structure of the cache directory 106
6.4.2 How the cache works 107
6.4.3 Remote caches e 107
6.4.4 Cache cleaning 108
Batch system back-ends implementation details 108
6.5.1 Submit-LRMS-job 108
6.5.2 Cancel-LRMS-job 109
6.5.3 Scan-LRMS-job e 109
6.5.4 PBS . . e e 109
6.5.50 Condor L e e 110
6.5.6 LoadLeveler e 110
6.5.7 Fork . . . e 110
6.5.8 LSE . . . e e 110
6.5.9 SGE e e 110
JURA: The Job Usage Reporter for ARC 111
6.6.1 OVerview e e e e e e 111
6.6.2 Joblogfiles 111
6.6.3 Archiving e 113
6.6.4 Reporting to LUTS e 113
6.6.5 Reporting to APEL e 114
6.6.6 Security e e e e 114
6.6.7 Mapping of job log entries to usage record properties 114
The XML and the INI configuration formats 114
The internals of the service container of ARC (the HED) 115
6.8.1 The MCCs e e 115
6.8.2 The SecHandlers e 116
6.8.3 The PDPs e 117
How the a-rex init script configures the HED 118
Structure of the grid-mapfile 120
Internal files of the A-REX e 121
Environment variables set for the job submission scripts 124
Using a scratch area e 124
Web Service Interface e 125
6.14.1 Basic Execution Service Interface oL 125
6.14.2 Extensions to OGSA BES interface 125
6.14.3 Delegation Interface L 128
6.14.4 Local Information Description Interface 130
6.14.5 Supported JSDL elements 131
6.14.6 ARC-specific JSDL Extensions 131
GridFTP Interface (jobplugin) e 132

6.15.1
6.15.2
6.15.3

6.15.4

CONTENTS

Virtual tree 132
Submission L 132
Actions 132
6.15.3.1 Cancel e e 133
6.15.3.2 Clean e 133
6.15.3.3 Renew e 133
Configuration Examples Lo Lo 133
6.15.4.1 Simple Example 133

6.15.4.2 Detailed Example 134

Chapter 1

Overview

The ARC middleware [? | by NorduGrid [?] is a software solution that uses grid technologies to enable
sharing and federation of computing and storage resources distributed across different administrative and
application domains. ARC is used to create grid infrastructures of various scope and complexity, from
campus to national grids.

This document gives a detailed overview of the ARC Computing Element (CE), along with step-by-step
installation and configuration instructions and a full reference of the configuration commands.

1.1 The grid

An ARC-based grid aggregates computing and storage resources, making them accessible through standard
interfaces, and using a common information system to optimize access.

Client tools can query this information system to see what kind of resources are available, match user’s
tasks to best available resources, submit computing jobs, which are smaller or bigger tasks (scripts and/or
binaries, often processing defined input data) to run on computing nodes in the grid, they can access files
on and upload results to storage resources.

For users, all this complexity is hidden: they simply formulate their tasks in a special language and send
them to the grid, not even knowing which computing or storage resources are out there. ARC takes care of
the rest.

While submitting jobs, users must specify requirements for each job, namely, what software should it execute,
what data to process, what kind of software environment it needs on the computing node, how much memory,
how strong CPU etc—these are specified in the formal job description. They can use various client tools,
like the native command-line interface supplied along with the ARC middleware [?], GUI tools, web portals
or specialized clients as part of a bigger software tool. All users must be authenticated by grid services using
X.509 certificates signed by trusted Certificate Authorities. ARC also uses short-lived prozy certificates to
delegate users’ rights to various activities performed by Grid services on their behalf, such as job execution
or data transfer. Authentication alone is not sufficient: users must also be authorized to perform such
activities. Typically, users form groups (called Virtual Organizations, VOs) to ease to process of getting
authorized on the several computing resources.

In order to handle all the computing resources in a uniform way, there is a need for a layer (“middleware”)
between the client tools and the resources: the Computing Element (CE). This document describes how to
use the CE functionality of the ARC middleware to make a computing resource accessible for grid users.

1.2 The ARC services

Grid computing has three big areas: computation, storage and information. The server side of the ARC
middleware provides services for all three main areas:

10 CHAPTER 1. OVERVIEW

computing _ ,
) execution serwce)
~r_ element
client iobs job submission interface local batch system interface
tools
Info info query interface information provider
/}‘/@ —
file access interface input/output file staging

Figure 1.1: The interfaces and internal components of a generic grid computing element

¢ The Computing Element (CE). By installing the ARC Computing Element (CE), a computing re-
source (usually, computing clusters managed by a batch system—LRMS—or a standalone workstation)
will gain standard grid interfaces, through which users (authenticated using their X.509 certificates)
can get information about the resource, submit, query and manage computing jobs with the help of
client tools. The computing resource will also gain a capability to register itself to several different
grid information system such that client tools would discover it.

e The Storage Element (SE). The ARC GridFTP Server [?] besides being an important part of the
ARC Computing Element, can also be installed as a standalone storage solution.

e The Indexing Service (EGIIS). The ARC Enhanced Grid Information Indexing Service (EGIIS)
is capable of collecting registrations from computing elements and storage elements equipped with
the ARC Resource Information Service (ARIS) and providing these resource pointers to the client
tools. There are several EGIIS instances deployed all around the world. New resources usually register
themselves to one or more of the existing indexes.

These three functionalities are implemented by one or more ARC services, which can be installed separately
in a standalone manner, or all of them can reside on the same machine. This document only describes the
ARC Computing Element (CE). For the description of the standalone GridFTP Storage Element, please
refer to the The NorduGrid GridFTP Server document [?].

There is a very important fourth area: the client side. The ARC command line clients [? | are able to
fully interact with the A-REX or other computing elements, they support several data transfer protocols to
be able to upload and download files from all kinds of storage resources. They are querying the available
computing resources from the information system, doing brokering based on the requirements specified in
the job description (languages supported: XRSL [?], JSDL [?] and JDL [?]), they are able to query the
status of jobs and manage their lifecycle, and to handle all aspects of the secure communication including
delegation of the user’s credentials.

1.3 The functionality of the ARC Computing Element

Figure 1.1 shows the interfaces and the internal components of a generic grid computing element. An ARC
Computing Element (CE) has these interfaces and components, and with them it is capable of the
following:

e to advertise (register) itself in an information system to make the clients tools know about its location
and capabilities

e to accept job execution requests coming through the job submission interface and to process the jobs
(written in standard job description languages) handled by the ezecution service

1.4. THE A-REX, THE EXECUTION SERVICE 11

GFS job interface pre-WS LRMS job mgmt scripts

client jobs OGSA-BES WS
inf, LDAP pre-WS inf ” -
o} OASIS-WSHF WS infoprovider scripts
7 —
Ss
GridFTP .
! pre-WS downloader uploader
HTTPS WS

Figure 1.2: The interfaces and components of the ARC Computing Element

e to accept the files requested by the jobs from the user through the file access interface or to download
them from remote storages (input file staging) and to avoid downloading the same files over and over
again by caching them

e to forward the jobs to the local resource management system (LRMS) (such as Condor [?], Torque [?
], OpenPBS [?], Sun Grid Engine [?], etc.), which will schedule and execute them on the computing
nodes in the local cluster

e to monitor the status of the jobs by running the information provider scripts and make this information
available through the information query interface.

e to make the results (output files) of the jobs accessible through the file access interface or upload them
to a remote storage output file staging

1.4 The A-REX, the execution service

The most important component of the ARC Computing Element is the A-REX (ARC Resource-coupled
EXecution service). The A-REX accepts requests containing a description of generic computational jobs and
executing it in the underlying local batch system. It takes care of the pre- and post-processing of the jobs:
staging in (downloading) files containing input data or program modules from a wide range of sources and
storing or staging out (uploading) the output results.

The ARC Computing Element with the help of A-REX and some other services provides two distinct set
of interfaces: the pre-web service interfaces, which are based on LDAP and GridFTP, and are currently
widely deployed and in production; and the web service interfaces, which are based on grid standards, are
also well-tested and production-quality but not yet widely used. Figure 1.2 shows the interfaces and also
the other components.

1.4.1 The pre-web service interfaces

The pre-web service job submission interface uses the GridF'TP protocol in a special way. It is provided by
a separate component, the ARC GridFTP Server (GFS) has a job plugin which accepts job descriptions in
the XRSL job description language. The A-REX works together with the GridFTP Server to get notified
about new jobs.

The pre-web service information query interface of the ARC CE is an LDAP/BDII based interface, which
is provided by a separate component, called the ARIS (the ARC Resource Information System).

The pre-web service file access interface uses the GridFTP protocal, and is served by the same ARC GridF'TP
Server (GFS) which provides the job submission interface too.

12

CHAPTER 1.

OVERVIEW

S
infoprovider
(ARIS (LDAP + BDII) |
&
/ ©
- & A-REX
— r_' downloader
uploader
client
tools "> . .
/065 GFS job .
Q P interface GridFTP Server LRMS job
NP Tesg ~— (GFS) management
GridFTP scripts

Figure 1.3: The services and components of the pre-web service ARC CE

The A-REX service itself has no direct interface to the clients in the pre-web service case, it communicates
through the GridFTP Server (GFS). Figure 1.3 shows the services and the components of the pre-web service
ARC CE.

1.4.2 The web service interfaces

The web service job submission interface of the ARC CE is provided by the A-REX itself, and it is a
standard-based interface: an enhancement of the OGSA Basic Execution Service recommendation [? |.

The web service information query interface of the ARC CE is also provided by the A-REX itself, and
it is also a standard-based interface, called LIDI (Local Information Description Interface), which is an
implementation of the OASIS Web Services Resource Properties specification [?].

The file access interface is technically not a web service, but it is the well-known HTTPS interface provided
by the A-REX itself.

In the web service case, all the interfaces are provided by the A-REX itself, there is no need of separate
services. Figure 1.4 shows the components of the web service ARC CE.

The web service and the pre-web service interfaces are capable to work together: an ARC CE can provide
both interfaces at the same time.

1.5 Security on the Grid

Security on the grid is achieved using X.509 certificates. Any grid service needs to have a certificate issued
by a trusted Certificate Authority (CA). A single machine, like a front-end running a CE, is identified by a
host certificate. A single user accessing the grid is identified by a user certificate also issued by a trusted
CA.

Grid CAs are often established in each country, though there are also CAs issuing certificates for specific
organizations (like CERN), or for several countries (like TERENA). Each CA has its own certification policies
and procedures: to access/setup a grid service, one has to contact the relevant Certificate Authority in order
to obtain the needed certificates.

When a user wants to access the grid, the client tools generate a short-lived prozy certificate to delegate
user’s rights to jobs or other activities performed by grid services on the user’s behalf.

1.6. HANDLING JOBS 13

infoprovider
scripts
T ——

A-REX

OGSA-BES '
client '\obs'-; -
tools OASIS-WSRF
info @
downloader S
. LRMS job
oY fileg & HTTPS
_w es @ uploader management
scripts

Figure 1.4: The components of the web service ARC CE

In order for the server to authenticate the client, the certificate of the CA issuing the user’s certificate has
to be installed on the server machine. In the same manner in order for the client to authenticate the server,
the certificate of the CA issuing the host’s certificate should be installed on the client machine.

On the server side it is the responsibility of the system administrator to decide which authorities to trust, by
installing each authority’s certificate. On the client side, the user decides which CA certificates she installs.
The user cannot access a grid resource, if the issuer CA certificate of the host is not installed.

Figure 1.5 shows an overview of the required keys and certificates, and also the process of creating a client
proxy certificate using the user’s credentials, and optionally collecting more information about the Virtual
Organization (VO) the user belongs by connecting to a Virtual Organization Membership Service (VOMS).

1.6 Handling jobs

A job is described as a set of input files (which may include executables), a main executable and a set of
output files. The job’s life cycle (its session) starts with the arrival of the job description to the Computing
Element (CE), next comes the gathering of the input files, then follows the execution of the job, then the
handling of the output files and finally job ends with the removal of the session contents by either the user
or after a specified amount of days by the CE.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The
job may also produce new data files in the SD. The A-REX does not guarantee the availability of any other
places accessible by the job other than SD (unless such a place is part of a requested Runtime Environment,
see section 1.7, Application software in ARC: The RunTime Environments).

Each job gets a globally unique identifier (jobid). This jobid is effectively a URL, and can be used to access
the session directory (to list, download and even upload files into the SD) from outside, either through the
HTTP(S) interface or through the GridFTP Server.

1.6.1 A sample job processing flow

The jobs in the ARC Computing Element usually go through these steps:

1. The client (such as the ARC command line tools [?]) connects to the job submission interface (either
to the web service interface of A-REX or to the GridF'TP Server).

14

CHAPTER 1. OVERVIEW

trusted CAs trusted CAs
CA cert CA cert CA cert CA cert
secure il
CAcert)IC CAcert connection CAcert IC CA cert
user key . host key
= client client A-REX —

tools proxy
user cert / host cert _

/
VOMS
server

Figure 1.5: Certificates on the client side and on the server side. The client tools create a proxy certificate using the
user’s credentials, and optionally collect more information about the Virtual Organization (VO) the user belongs by
connecting to a Virtual Organization Membership Service (VOMS).

10.

11.

12.

Using the well-established processes of the X.509 Public-Key Infrastructure [?], the client and the
server both authenticate each other, based on the trusted CA credentials which were previously installed
on both ends.

The A-REX authorizes the user based on configurable rules, and maps the grid identity to a local
username which should be available also on all the worker nodes.

The client tool delegates user’s credentials to the A-REX to enable it to act on behalf of the user when
transferring files. (See Figure 1.6.)

A job description written in one of the supported languages (XRSL [? | or JSDL [?]) is sent from
the client to the server. (The client itself understands the JDL [? | language also, and it translates it
to either XRSL or JSDL for the A-REX to understand.)

. The job is accepted and a directory (the session directory, SD) is created which will be the home of

the session. Metadata about the job is written into the control directory of the A-REX.

. The client tool receives the location of the session directory (SD), and if there are local input files, those

will be uploaded into the SD through the file access interface (either through the HTTP(S) interface
of the A-REX, or through the GridFTP Server).

If the job description specifies input files on remote locations, the A-REX fetches the needed files
and puts them into the SD. If the caching is enabled, the A-REX checks first if the file was already
downloaded recently, and uses the cached version if possible.

When all the files prescribed in the job description are present (either uploaded by the client tool or
downloaded by the A-REX), a suitable job script is created for and submitted to the configured batch
system (LRMS).

During this time, the SD of the job is continuously accessible by the client tool, thus any intermediate
result can be checked.

The information provider scripts periodically monitor the job status, updating the information in the
control directory.

When the job in the LRMS is finished, the A-REX uploads, keeps or removes the resulted output files
according to the job description.

1.7. APPLICATION SOFTWARE IN ARC: THE RUNTIME ENVIRONMENTS 15

CA signs CA signs
certificate certificate

tools W -

user cert 1 host cert
client client _ \/
. I ‘ A-REX
user key . host key
\.Q/ client ~ \v/

Slient delegates
client verifies server verifies
host certificate client proxy
client

Figure 1.6: The client delegates the client proxy to the Computing Element, while both parties verifies that the
credentials are signed by a trusted Certificate Authority (CA)

13. The client tool may also download the output files through the file access interface, and remove the
job from the Computing Element (CE).

During the whole lifetime of the job, its status can be queried through the information query interface (either
through the LDAP interface or through the LIDI web service interface).

Figure 1.7 and Figure 1.8 shows the staging process.

1.7 Application software in ARC: The RunTime Environments

Code development in science but also in specific knowledge areas always demands specific software, libraries
and tools to be used. A common task when offering computational power is to recreate such environments
for each specific knowledge domain.

To provide such software environments and tools in the grid world, ARC enforces the concept of the RunTime
Environment (RTE).

ARC RunTime Environments (RTEs) provide user interfaces to application software and other resources in
a way that is independent of the details of the local installation of the application and computing platform
(OS, hardware, etc.).

It adresses setups typically required by large research groups or user bases, dealing with a common set of
software.

The actual implementation of particular RTE may differ from site to site as necessary. However, it should be
designed so that resource providers with different accounting, licence or other site-specific implementation
details can advertise the same application interface (RE) for all users. It is always up to the local system
administrators to take a decision whether to install and enable a particular runtime environment or not.

A RTE, as conceptualized in http://pulse.fgi.csc.fi/gridrer/htdocs/intro.phtml) is defined
by two items:

1. RTE Homepage

e describes the users’ application interface

e provides application installation instructions for the site administrators

http://pulse.fgi.csc.fi/gridrer/htdocs/intro.phtml

16 CHAPTER 1. OVERVIEW

metadata control
A-REX] directory
4 LA
downloader '

. N session
client ~ o directory
tools e,

local s 5

cache Ss
external external
storage storage

Figure 1.7: The process of staging in the input files of a job

e links to the application support information
2. RTE itself

e is a shell environment initialization script
e is installed on computing resources

e initializes variables that point to the application software

Let’s have an example from the user perspective:

A user has a script written in python 2.6 that she wishes to execute in some remote computing node in
Grid. She requests PYTHON-2 . 6 Runtime Environment in the job-description file and passes that file to the
command arcsub.

Upon submission, arcsub parses the job description, notices the RTE request and submits the job only
to sites advertising that RTE. After job submission A-REX on the chosen site initializes the environment
in the computing node before local execution of the job. It initializes the environment so that python
interpreter and standard libraries are in the PATH and executable/readable by the user as described in the
RTE Homepage.

What does this give to the users:

e casier access to a large software resource base

e identical interface to applications independent of the computing platform
What does this do for resource providers and application developers:

e opens the application to a large user base

e reduces overlapping work with application support

More information on how to setup RTEs can be found in Section 4.5.2, Runtime Environments.

1.8. THE LOCAL INFORMATION 17

metadata control

A-REX directory

o
il

uploader
i session
A)
client E\ & directory
tools Yo/,
local 90s re
cache Stz
external external
storage storage

Figure 1.8: The process of staging out the output files of a job

1.8 The local information

In order to create a Grid infrastructure using ARC-enabled computing resources, information description and
aggregation services need to be deployed. ARIS is coupled to a computing resource and collects information
about it. EGIIS keeps a list of ARIS instances, and eventually, of other EGIIS instances lower down in
hierarchy. Top-level EGIIS instances thus serve as an entry point to the Grid, allowing to discover all the
resources.

While ARIS is coupled to a resource, EGIIS is an independent service. A typical Grid resource owner
always has to deploy ARIS*. EGIIS servers, on the other hand, are normally deployed by the overall Grid
infrastructure operators.

A system effectively created by ARIS and EGIIS services is called the ARC Information System. Being
based on OpenLDAP [?], it can be accessed in a standard manner by a variety of LDAP clients, giving a
full overview of the infrastructure resources.

ARIS instances are responsible for resource (e.g. computing or storage) description and characterization.
The local information is generated on the resource, and it can be cached. Upon client requests it is presented
via LDAP interface.

1.8.1 Overview of ARC LDAP Infosys schemas

ARC information system currently can present information in three different formats, or schemas. These
can be enabled simultaneously. The schemas are:

1. NorduGrid-ARC schema — this is the NorduGrid default schema, described in detail in this document.
It was inspired by Globus MDS, but has been improved a lot over the years and due to incompatible
changes was moved into the NorduGrid LDAP namespace. In order for standard NorduGrid clients to
submit jobs to a resource, this schema must be published.

2. Glue 1.2 — This is the schema that is used by gLite [?]. Currently, gLite supports Glue 1.3 schema,
but Glue 1.2 is sufficient to be compatible. If ARC is configured to publish information in the Glue 1.2

*Without ARIS, a resource is still functional, but is not a Grid resource

18 CHAPTER 1. OVERVIEW

format, it will first produce data in the NorduGrid-ARC schema which will then be translated to Glue
1.2. To allow gLite clients to submit to a resource, this schema must be published. Please note, that
the gLlite information system must also be hooked into the resource in order for this interoperability
to work.

3. Glue 2.0 — This is the common schema for the EMI [? |. This schema can be published both through
LDAP and XML interfaces of the ARC Compute Element.

ARIS is the information service that is installed on the ARC Compute Element. It publishes via LDAP
interface information about the local computing cluster, like: operating system, amount of main memory,
computer architecture, information about running and finished jobs, users allowed to run and trusted cer-
tificate authorities. The information can be published in either NorduGrid-ARC schema, Glue 1.2 schema
or Glue 2.0 schema.

The dynamic resource state information is generated on the resource. Small and efficient programs, called
information providers, are used to collect local state information from the batch system, from the local Grid
layer (e.g. A-REX or GridFTP server) or from the local operating system (e.g. information available in
the /proc area). Currently, ARC is capable interfacing to the following batch systems (or local resource
management system LRMS in the ARC terminology): UNIX fork, the PBS-family (OpenPBS, PBS-Pro,
Torque), Condor, Sun Grid Engine, IBM LoadLeveler and SLURM.

The output of the information providers (generated in LDIF format) is used to populate the local LDAP
tree. This OpenLDAP back-end implements two things: it is capable caching the providers output and upon
client query request it triggers the information providers unless the data is already available in its cache.
The caching feature of the OpenLDAP back-end provides protection against overloading the local resource
by continuously triggering the information providers.

1.9 LRMS, Queues and execution targets

Usually the A-REX is installed on top of an existing local resource management system (LRMS). The A-REX
has to interfaced to the LRMS in order to be able to submit jobs and query their information.

The A-REX assumes that the LRMS has one or more queues, which is a couple of (usually homogeneous)
worker nodes grouped together. These queues should not overlap. The different LRMSes have different
concepts of queues (or have no queues at all). Nevertheless, in the A-REX configuration, the machines of
the LRMS should be mapped to A-REX queues. The details can be found in Section 4.4.2, Connecting to
the LRMS.

The client side job submission tools query the information system for possible places to submit the jobs,
where each queue on a CE is represented as an execution target, and treated separately.

Chapter 2

Requirements

To properly configure an ARC CE the following prerequisites are needed:

¢ Administrators installing ARC CE must have access to network firewall configuration:
Several ports will need to be open for the ARC services to work (see 4, Configuration and 4.1.4,
Firewalls

e Time Syncronization of the system that will run an ARC CE must be setup, by using the NTP
protocol [?] or similar. The grid relies on syncronization for the jobs to be correctly submitted and
for the security infrastructure to work properly.

The following is optional but suggested to be on the machines running an ARC CE:

e A networked filesystem such as NFS or similar, to connect storage and share job data between the
ARC middleware and the LRMS system behind it.

2.1 Software Requirements

ARC services can be built mainly for GNU/Linux and Unix systems.
Table 2.1 shows the current officially supported ones.

’ Operating System ‘ Version/Distribution | Supported Architectures

Scientific Linux 5.5+ | i386, x86_64
GNU/Linux RedHat 5+ 1386, x86_64
Debian 6+ 1386, x86_64
Ubuntu 10.04+ 1386, x86_64

Table 2.1: Supported operating systems

For a detailed list of the software libraries needed to compile and install ARC services, please refer to the
README included in the source tarball. See Chapter 3, Installation for details.

2.2 Hardware Requirements

The NorduGrid middleware does not impose heavy requirements on hardware. The choice is only bound to
the computational needs of your organization.

Table 2.2 shows the minumum requirements.

19

20 CHAPTER 2. REQUIREMENTS

Architecture 32 or 64 bits
CPU families > 1386 , PowerPC
CPU Speed > 300 MHz
Memory Size > 128MB
Disk space for binaries < 30MB
Disk space including development files 160MB

Disk space including external software (such as Globus Toolkit 5) | +10MB

a public IP on the front-end
cluster is strongly encouraged.
Worker nodes can be on a private
or local network.

Network connectivity

Table 2.2: Hardware Requirements

2.3 Certificates

To run an ARC CE and have it servicing the grid, a host certificate provided by a Certificate Authority
(CA) is needed.

A request for such a certificate must be sent to the National Grid Infrastructure organization or to any local
organization entitled to provide grid services.

The CA certificate is needed as well, this is public and can be usually obtained from either the CA itself, of
fetched from the EMI repository, IGTF repository, NorduGrid yum/apt repositories, or from the NorduGrid
Downloads area. These are needed to verify that the service and the users connecting to it have valid
credentials, to perform mutual authentication.

If this is the first time the reader sets up an ARC CE, we suggest to obtain temporary test
certificates for hosts, users and a temporary CA via the InstantCA service:

https://arc-emi.grid.upjs.sk/instantCA/instantCA

Such certificates cannot be used in production environments and can only be used for testing

purposes.
Once the system administrator feels comfortable with an ARC CE setup, InstantCA certificates
can be substituted with actual ones from trusted production CAs.

Installation of certificates is discussed in Section 3.3, Installation of certificates.

https://arc-emi.grid.upjs.sk/instantCA/instantCA

Chapter 3

Installation

3.1 Installation for commom GNU /Linux Distributions

The preferred installation method for ARC middleware is by installing packages from repositories. The
currently supprted distributions are those based on YUM-RPM (Redhat, CentOS, Fedora, Scientific Linux)
and those based on APT (Debian, Ubuntu).

The packaging systems will automatically download additional libraries and dependencies for all the ARC
middleware components to work properly. You can choose to install single packages one by one and add
functionalities in a step-by-step fashion. Please refer to table 3.1 if you plan to do so.

ARC provides also meta-packages that are shortcuts to install a group of packages that provide a single
functionality. It is strongly recommended to use this functionality for a quick start.

3.1.1 Setting up the repositories

The current repository is the official Nordugrid one. To configure nordugrid repositories please follow the
up-to-date instructions at:

http://download.nordugrid.org/repos.html

If ARC CE is to be used together with other European grid products, for example to join European scientific
experiments such as ATLAS or ALICE, then the suggested repository is the EMI repository.

The EMI consortia provides also official production level customer support for distributions such as Scientific
Linux 5.5 and Debian 6 and above, so it is strongly recommended to install from EMI if you are planning
to use an ARC CE on these systems.

To install such repositories, please follow the instructions at EMI official website at this link:

http://emisoft.web.cern.ch/emisoft/index.html

3.1.2 Performing the installation

To perform the installation, follow these steps:

1. Configure a repository (see above for details)

2. Install the ARC CE using meta-packages: issue the following command as root:
For RPM-Based distros:

yum install nordugrid-arc-compute-element

21

http://download.nordugrid.org/repos.html
http://emisoft.web.cern.ch/emisoft/index.html

22 CHAPTER 3. INSTALLATION

For APT-Based distros:

apt—-get install nordugrid-arc-compute-element

This will install the packages marked with * in table 3.1.

3. (optional) if you want to customize your setup with individual packages, issue:
For RPM-Based distros:

yum install <packagename>

For APT-Based distros:

apt—-get install <packagename>

Package Content

All

nordugrid-arc*! All components

ARC CE

nordugrid-arc-arex*! ARC Remote EXecution service
nordugrid-arc-hed*! ARC Hosting Environment Daemon
nordugrid-arc-plugins-needed*! ARC base plugins
nordugrid-arc-gridftpd*! ARC GridFTP server
nordugrid-arc-plugins-globus* ARC Globus plugins
nordugrid-arc-cache-service ARC cache service

nordugrid-arc-datadelivery-service | ARC data delivery service

nordugrid-arc-ldap-infosys™+ LDAP components of ARC information system
nordugrid-arc-aris* ARC local information system
ARC SE

nordugrid-arc-gridftpd ARC GridFTP server

ARC IS

nordugrid-arc-egiis+! ARC EGIIS service

Security

nordugrid-arc-gridmap-utils*! NorduGrid authorization tools
nordugrid-arc-ca-utils*! NorduGrid authentication tools
Monitoring

nordugrid-arc-ldap-monitor ARC LDAP monitor service
nordugrid-arc-ws-monitor ARC WS monitor service
Documentation

nordugrid-arc-doc ARC documentation

Figure 3.1: ARC packages: the table shows a brief description of each package and the components they
belong to. Packages marked with “I” are mandatory to have a working functionality. Packages marked with
“*7 are automatically installed by ARC-CE nordugrid-arc-compute-element metapackage, packages marked
with “+” are automatically installed by ARC Infosys nordugrid-arc-information-index metapackage

3.2. INSTALLATION FOR OTHER SYSTEMS AND DISTRIBUTIONS 23

3.2 Installation for other systems and distributions

Packages are not provided for platforms other than GNU/Linux, so for the moment being the only way of
installing ARC services is by compiling from source. Please refer to the README file* in the source code
repository for more details.

3.3 Installation of certificates

A description of what certificates are and why they are needed can be found in Section 1.5, Security on the
+1id.

Information about reading the contents of the certificates, changing their formats and more can be found in
the ARC certificate mini how-to document.

In case ARC was installed using meta-packages (see Chapter 3, Installation) all the required CAs are already
installed and a script will automatically update them together with system updates.

If you want to install or remove specific CAs, NorduGrid repositories contain packaged CAs for ease of
installation. By installing these packages, all the CA credentials will get updated by system updates. These
packages are named in this format:

ca_<CA name>
Example:
ca_nordugrid

You can install them as you would install any package by APT or YUM.

In case your resource is in a Nordic country (Denmark, Finland, Norway, Iceland or Sweden), install the
certrequest-config package from the NorduGrid Downloads area. It is also in the NorduGrid repos-
itories with name ca-nordugrid-certrequest—config. This contains the default configuration for
generating certificate requests for Nordic-based services and users. If you are located elsewhere, contact
your local CA for details.

For example, in Nordic countries, generate a host certificate request with
grid-cert-request —-host <my.host.fqgdn>

and a LDAP certificate request with
grid-cert-request -service ldap -host <my.host.fgdn>

and send the request(s) to the NorduGrid CA for signing.

3.3.1 Installing host certificates

Once an host certificate is obtained from a CA, it has to be installed for the CE to use it.

When generating a certificate, two files will be created: a certificate file (public), typically hostcert . pem;
and a key file (private), typically hostkey.pem.

Installation is as follows:

1. Copy the two files hostcert .pem and hostkey.pem into the standard ARC location:
/etc/grid-security.

2. Both files must be owned by root.

*http://svn.nordugrid.org/trac/nordugrid/browser/arcl/trunk/README
fhttp://www.nordugrid.org/documents/certificate_howto.html

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/README
http://www.nordugrid.org/documents/certificate_howto.html

24 CHAPTER 3. INSTALLATION

3. The private key (hostkey.pem) must be readable only by root.
4. The two files MUST NOT have executable permissions.

5. The key file MUST NOT be password protected. This is especially important if a tool other than
grid-cert-request was used.

If the ARC services will be run as a different user than root, then these files should be owned and accessible
by this other user.

3.3.2 Installing custom CA certificates

If you’re planning to install custom certificates such as the one provided by InstantCA (See 2.3, Certificates)
then the files must usually be copied into the /etc/grid-security/certificates/ directory.

3.3.3 Authentication Policy

The credential-level authentication policy is just a decision on which certificates the CE will accept. Only
those users whose CAs are installed will be able to connect to the CE. (This does not mean they will be
authorized to submit jobs, but at least they can establish the connection.) It is strongly advised to obtain
a certificate from each CA by contacting it. To simplify this task, the NorduGrid Downloads area has a
non-authoritative collection of CA credentials approved by EUGridPMA. As soon as you decide on the list
of trusted certificate authorities, you simply download and install the packages containing their public keys
and certificates. Before installing any CA package, you are advised to check the credibility of the CA and
verify its policy!

Example If your host certificate is issued by the NorduGrid CA, and your user has a
certificate issued by the Estonian CA, and she is going to transfer files between your site
and Slovakia, you need the NorduGrid, Estonian and Slovak CA credentials.

3.3.4 Revocation lists

The Certificate Authorities are responsible for maintaining lists of revoked personal and service certificates,
known as CRLs (Certificate Revocation Lists). It is the CE administrator responsibility to check the CRLs
regularly and deny access to Grid users presenting a revoked certificate. Outdated CRLs will render your
site unuseable. A tool called fetch-crl exists to get the latest CRLs, which can be installed from the
fetch-crl package which is included with the nordugrid-arc—compute—-element meta-package and
also available from major repositories (this package is not provided by NorduGrid). The tool is intended to
run as a cron job. There are 2 init scripts available:

/etc/init.d/fetch-crl-boot
/etc/init.d/fetch-crl-cron

The fetch-crl-boot script enables CRL downloads during boot while fetch—-crl-cron enables sched-
uled download of CRLs. Detailed configuration can be tuned via /etc/fetch-crl.conf.

More information can be found here: http://vdt.cs.wisc.edu/components/fetch—-crl.html.
Automatic startup of these services are distribution dependent and the administrator should take care of
running these scripts by the means offered by their OS distribution.

3.3.5 Authorization policy

The authorization policy is a decision on which grid users or groups of grid users (Virtual Organizations) are
allowed to use a resource. Configuration of this will be discussed in the following sections: Section 4.4.1,
Access control: users, groups, VOs and Section 6.10, Structure of the grid-mapfile.

http://vdt.cs.wisc.edu/components/fetch-crl.html

Chapter 4

Configuration

This section leads through the following steps:

1. Prepare the system to run ARC services (Section 4.1, Preparing the system)
2. Configure a basic CE (Section 4.2, Configuration file formats and Section 4.3, Setting up a basic CE)
3. Make it production-ready (Section 4.4, Production CE setup)

4. Add optional features (Section 4.5, Enhancing CE capabilities)

4.1 Preparing the system

4.1.1 Users and groups

ARC services are run by the root user by default, and this is the most convenient way for normal operation.
But it is also possible to run them as a non-privileged user (see Section 4.1.3, Permissions).

Users accessing the grid have a grid identity (see Section 1.5, Security on the Grid) and will submit and
run jobs on different physical machines. In ARC, each grid identity is mapped to a local UNIX user on the
front-end machine (the one that runs A-REX) and eventually on the machine actually performing the job
(worker nodes, managed by the LRMS). Hence, one or more local UNIX users need to be created in the
system, to run the jobs submitted by grid clients.

It is possible to map all grid users to the same local user. For a basic CE setup, this will be sufficient. Later
however for security reasons it is better to have a pool of local users to choose from, or the have actual local
users for each grid user. To anticipate more users in the future, it is a good practice to create a dedicated
local group for these mapped users, so that is possible to use local UNIX authorization methods to restrict
the grid accounts.

For the basic CE setup, let’s create a new group called grid and new user called griduserl that belongs to
this group. Later more users can be created.

More advanced user configuration setups are discussed in Section 4.4.1, Access control: users, groups, VOs.

4.1.2 Disk, partitioning, directories

The ARC CE uses separate directories to store the data files of the jobs, the metadata about the jobs, and
the cached input files. It also requires a directory with the installed CA certificates and optionally can use
a directory of runtime environments.

Figure 4.1 shows these directories, Table 4.1 summarizes how these directories should be configured.

Some of these directories are suggested to be local to the front-end, other can be on shared or networked
filesystems on external storage. The following is a description of the important directories for ARC CE.
Note: some of them are Required for the ARC CE to work.

25

26 CHAPTER 4. CONFIGURATION

control cert
A-REX directory directory
———)
local session RTE
cache directory directory

Figure 4.1: The directories on an ARC CE

Control Directory (CD) [Required] contains all the information about jobs handled by the A-REX, such
as job specification files and LRMS submission scripts. The information provider scripts also use this
directory to get information about jobs. This directory is heavily accessed by the A-REX, hence it
should not be on a slow remote storage.

Session Directory (SD) [Required] contains the executable and data files of the jobs. This is where
the jobs run, and this is the only area where they can produce results. Each job is assigned a unique
directory within the session directory. This is usually shared among the worker nodes and the frontend,
and can be remote for the frontend also. (See also Section 6.13, Using a scratch area.)

Grid Certificates Directory [Required] contains the certificates of and other information about the trusted
CAs. Tt is usually located at /etc/grid-security/certificates. (For setup instructions, see
Section 3.3, Installation of certificates.)

Cache Directory [Optional] can be used to cache downloaded input files, so if a new job requires the same
file, it doesn’t have to be downloaded again. Can reside on a shared filesystem. Caching is discussed
in sections Section 4.4.3, Enabling the cache and Section 6.4, Cache.

Runtime Environments Scripts directory [Optional] contains special scripts that setup a particular
runtime enviroment for a job to access. These include environment variables and software selections.
Can reside on a shared filesystem. Runtime Environments are explained in Section 4.5.2, Runtime
Environments.

When partitioning disks and connecting shared storage, keep in mind the following things:

e The control directory (CD) is frequently accessed by the CE, so it is strongly advised to have it on a
local hard disk. It can, however, grow pretty much with the number of jobs, so it is better to allocate
a separate partition for it. The amount of data per job is generally around 50-100kb, but depending
on the configured log level and the amount of data transfer, the data transfer log for each job can be
much larger than this.

e The session directory (SD) stores all the executables, input and output files, and intermediate results
of the jobs. It should be on a separate partation or even on a remote storage.

4.1. PREPARING THE SYSTEM 27

For more details please refer to sections Section 6.13, Using a scratch area, Section 4.4.3, Enabling the
cache.

The ARC suggested setup for these directories is summarized in table 4.1.

Directory Suggested Location Example Required?

session directory NFS or Shargd FS, can be also on /var/spool/arc/session Required
a separate disk partition

control directory local to th.e fI‘OIlt—.eTld, also in a /var/spool/arc/control Required

separate disk partition

CA certificates | local to the front-end /etc/grid-security/certificates Required

RTE scripts NF'S or shared FS /SOFTWARE/runtime Optional

cache directory Lc;;all\,}FlgFS, local and published /var/spool/arc/cache Optional

Table 4.1: Summary of ARC CE directories setup

4.1.3 Permissions

By default, the ARC services are run by root. In this case the control directory (CD) and the session
directory (SD) should be writable, readable and executable by the root user, and then the A-REX will set
all the other permissions as needed.

In case the ARC services should be run as a non-privileged (non-root) user, they cannot modify permissions
of directories as easily. After the grid users are mapped to local users, they have to be able to access the
job’s session directory, hence the suggested setup is:

put all the local users into the same group (e.g. grid)

to set group ownership of the SD to this group
e the SD has to be writable, readable and executable by members of this group

e the SD and the CD have to be writable, readable and executable by the user running the ARC services

The host credentials need to have special permissions (see Section 3.3, Installation of certificates).

4.1.4 Networking

DNS Requirements For the ARC middleware, the frontend has to have a public IP and a Fully Qualified
Domain Name (FQDN) in order to join an indexing service and thus the grid (more on this on chapter
Section 4.4.5, Registering to an ARC EGIIS). This means that a reverse DNS lookup for the frontend’s IP
has to return the FQDN.

Basic networking recommendations are the following:

e Make sure your frontend has a FQDN. Issuing hostname -f should print it.

e In the /etc/hosts file, make sure that the FQDN of your machine comes first, before other network
names. Example: if 130.235.185.195 is the IP address and gridtest.hep.lu.se is the FQDN
assigned to it, /etc/hosts should look like:

130.235.185.195 gridtest.hep.lu.se gridtest

while the following could lead to problems:

wrong!
130.235.185.195 gridtest gridtest.hep.lu.se

28 CHAPTER 4. CONFIGURATION

Firewalls ARC-CE needs the following incoming and outgoing ports to be opened:

e For the web service interface: HTTP(s), default 80 and 443

e For LDAP Information System, default 2135 (see also Section 4.3.5, The [infosys] section: the local
information system)

e For the gridftp service interface: GridF TP,

— default 2811
— a range of ports for GridFTP data channels, typically 9000-9300

e For HTTPg, default 8443 (outgoing only)
e For SMTP, default 25 (outgoing only)
e For NTP, default 123 (outgoing only, in case NTP is used for time synchronisation, see 2, Requirements)

e For webservices, the port defined for A-REX. See Section 4.5.3, Enabling the Web Services interface.

Most ports, including 2135 and 2811, are registered with IANA and should normally not be changed. The
ports for GridFTP data channels can be chosen arbitrary, based on following considerations: gridftpd by
default handles 100 connections simultaneously; each connection should not use more than 1 additional
TCP port. Taking into account that Linux tends to keep ports allocated even after the handle is closed
for some time, it is a good idea to triple that amount. Hence about 300 data transfer ports should be
enough for the default configuration. Typically, the range of ports from 9000 to 9300 is being opened.
Remember to specify this range in the ARC configuration file (see Section 4.2, Configuration file formats,
globus_tcp_port_range attribute) later on.

For using legacy Globus components it is also worth to read information at this URL: http://dev.
globus.org/wiki/FirewallHowTo

Other network related Internal cluster nodes (i.e. LRMS nodes) are NOT required to be fully avail-
able on the public internet (however, user applications may require it). For information about publishing
nodes’ network connectivity please refer to Section 4.3.5.1, The [cluster] section: information about the host
machine.

4.1.5 Security considerations
SELinux If the system uses SELinux, the startup script should be usually able to create profiles for the
services.

To fine tune LDAP information system permissions, see 5.6.2, How configure SELinux to use a port other
than 2135 for the LDAP information system.

If any problem in connecting to or starting up services arises, submit a bug report to the ARC bugzilla*.

If problems arise and it is suspected they are due to SELinux, the best is to set SELinux in permissive mode
and check if the problem persists.

AppArmor On Ubuntu and Debian machines AppArmor profiles have been reported to prevent the infos-
ystem starting. AppArmor profiles are currently not shipped for ARC components. Therefore for the time
being:

e Remove /etc/apparmor.d/usr.sbin.slapd and restart AppArmor.

e If the above doesn’t exist or doesn’t help, disable AppArmor completely or put all the profiles in
complain modeT.

*http://bugzilla.nordugrid.org/
fhttps://help.ubuntu.com/community/AppArmor

http://dev.globus.org/wiki/FirewallHowTo
http://dev.globus.org/wiki/FirewallHowTo
http://bugzilla.nordugrid.org/
https://help.ubuntu.com/community/AppArmor

4.2. CONFIGURATION FILE FORMATS 29
4.2 Configuration file formats

Configuration of ARC can be done with a single configuration file usually located at /etc/arc.conf.

This configuration file format is fully compatible with the one for ARC middleware version 0.8.x.

* If you have a legacy file from an ARC 0.8.x version,
you can directly use that file for the new A-REX-based ARC CE.

Using the the arc.conf is sufficient for the majority of use cases, however there is a possibility to use a
lower-level XML-based configuration format (and a corresponding higher-level INT format) in special cases.
For more details, see Section 6.7, The XML and the INI configuration formats.

4.2.1 Structure of the arc.conf configuration file

An ARC configuration file is a text file containing sections and related commands.

Each section identifies one or more components/features of ARC, and commands are used to modify the
behaviour of these component /features.

A section name is sourrounded by square brackets and can contain slashes. Names after the slashes identify
subsections. Examples:

[cluster]

[infosys]

[infosys/gluel2]

[queue/fork]
[infosys/cluster/registration/toPGS1]

As a general rule, a section name containing a subsection has to appear after its section. Examples in
Figure 4.2.

[infosys] [infosys/cluster/registration/toPGS1]

[infosys/gluel2] [infosys/gluel2]
[queue/fork] [infosys]
[infosys/cluster/registration/toPGS1] [queue/fork]

Correct Wrong

Figure 4.2: Ordering of section names.

i it ne-line command="value" expression. Exam :
A configuration command is a one-line d="value" expression. Examples

hostname="gridtest.hep.lu.se"
nodecpu="2"
resource_location="Lund, Sweden"
mail="gridmaster@hep.lu.se"

Comments can be added one per line by putting a # at the beginning of the line.

A section starts with a section name and ends at another section name or if the end of the configuration file
is reached. Configuration commands always belong to one section.

Here is an overall example:

30 CHAPTER 4. CONFIGURATION

this is a comment, at the beginning of the [common] section
[common]

hostname="piff.hep.lu.se"
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"

lrms="fork"

since there 1s a new section name below, the [common] section ends
and the grid-manager section starts

[grid-manager]

user="root"

controldir="/tmp/control"

sessiondir="/tmp/session"

cachedir="/tmp/cache"

debug="3"

other commands...
[queue/fork]

other commands till the end of file.
This ends the [queue/fork] section.

4.2.2 Description of configuration items

In the descriptions of commands, the following notation will be used:

command=value [value] — where the values in square brackets [...] are optional. They should
be inserted without the square brackets!

A pipe “|” indicates an exclusive option. Example:

securetransfer=yes/no — means that the value is either yes or no.

For a complete list and description of each configuration item, please refer to Section 6.1, Reference of the
arc.conf configuration commands.

The configuration commands are organized in sections. The following is a description of the main manda-
tory sections and of the components and functionalities they apply to, in the order they should appear in
the configuration file. These are needed for minimal and basic functionalities (see Section 4.3, Setting up a
basic CE).

[common] Common configuration affecting networking, security, LRMS. These commands define defaults
for all the ARC components (A-REX, GridF'TPd, ARIS), which can be overridden by the specific sections
of the components later. Always appears at the beginning of the config file.

Discussed in Section 4.3.2, The [common] section.

[group] This section and its subsections define access control mappings between grid users and local
users. Applies to all ARC components. Usually follows the [common] section. If there are [vo] sections,
they should come before the [group] section.

Discussed in Section 4.4.1, Access control: users, groups, VOs.

If no access control is planned (for example for tests) this section can be omitted but the administrator must
manually edit the grid-mapfile (see Section 6.10, Structure of the grid-mapfile)

[grid-manager] This section configures the A-REX, including job management behavior, directories,
file staging and logs.

4.3. SETTING UP A BASIC CE 31

Discussed in Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched.

[gridftpd] This section configures the GridF'TPd, which is the server process running the GridF'TP
protocol. Its subsections configure the different plugins of the GridFTPd, in particular the job submission
interface: [gridftpd/jobs].

Discussed in Section 4.3.4, The [gridftpd] section: the job submission interface.

[infosys] This section configures the local information system (ARIS) and the information provider
scripts. (This section also can be used to configure an information index server, see [?].) The commands
affect the data published by the information system, the behaviour of the publishing server and its networking
options. The subsections configure registration to information index servers, and extra information for
different information schemas.

Discussed in Section 4.3.5, The [infosys] section: the local information system.

[cluster] Configures the A-REX information provider scripts. The commands here affect the data
published by the local information system, mostly regarding the front-end machine. Must appear after the
[infosys] section.

Discussed in Section 4.3.5.1, The [cluster] section: information about the host machine

[queue/queuename] Configures the queues provided by A-REX. At least one [queue/...] section must
exist. The commands here affect the data published by the information system, mostly regarding the LRMS
queues A-REX is serving. Must appear after the [infosys] section.

Discussed in Section 4.3.5.2, The [queue/fork] section: configuring the fork queue.

Generic commands These commands specify common defaults in the [common] section, and also can
be used to set different values per component in the following sections: [grid-manager], [gridftpd]
and its subsections and [infosys].

logfile=path — where the logs will be written.
pidfile=path — where the PID of the process will be written.
debug=number — specifies the level of logging from 5 (DEBUG) to 0 (FATAL).

4.3 Setting up a basic CE

A basic CE is the starting point of every ARC setup. A basic CE is a stand-alone machine ready to accept
job submission. A basic CE will not be connected to an information index, so clients will have to explicitly
specify its job submission interface URL to connect to. This chapter will show a basic configuration of the
main sections seen in chapter Section 4.2.2, Description of configuration items.

Please make sure all the steps in chapter Section 4.1, Preparing the system are done before proceeding.

The basic CE will have fork as an LRMS, which will allow the machine to process jobs in the environment
provided by the operating system of the front-end machine. Connecting to real LRMSes is discussed in
Section 4.4.2, Connecting to the LRMS.

4.3.1 Creating the arc.conf file

ARC will by default search for its configuration file in the following location:
/etc/arc.conf

The minimal configuration file described in the following is usually installed here:

32 CHAPTER 4. CONFIGURATION

=/

)
infoprovider
scripts

HARIS (LDAP + BDII)

@)
4 N A-REX
- r" downloader
uploader
client y
tools 1 -|-
/%5 & GFS job .
{4 proxy 7 N interface GridFTP Server LRMS job
N s — (GFS) management

GridFTP scripts

— W,

/usr/share/doc/nordugrid-arc-doc<version>/examples/arc_computing_element.conf

where <version> varies with every update of the documentation.
The latest one can be downloaded from the ARC Configuration Examples web page®.

Copy this file into /etc with the name arc.conf, then customize its contents following the instructions
below, although it should work without any customization.

4.3.2 The [common] section

The [common] section maintains informations that will be used by any subsystem of the CE. It has to
appear as the first item in the configuration file.

A minimal configuration for this section is shown here:

[common]
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"
lrms="fork"

Here we specify the path of the host’s private key and certificate, the directory where the certificates of the
trusted Certificate Authorities (CAs) are located, the path of the grid map file, which defines mapping of
grid users to local users, and the name of the default LRMS, which is “fork” in the basic case, when we only
want to use the frontend as a worker node, not a real cluster.

For details about these configuration commands, please see Section 6.1.1, Generic commands in the [com-
mon/ section

For the basic CE, let’s create a “grid map file” which looks like this:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demol" griduserl
"/DC=eu/DC=KnowARC/0O=Lund University/CN=demo2" griduserl
"/DC=eu/DC=KnowARC/0O=Lund University/CN=demo3" griduserl

ihttp://www.nordugrid.org/arc/configurationfexamples.html

http://www.nordugrid.org/arc/configuration-examples.html

4.3. SETTING UP A BASIC CE 33

4.3.3 The [grid-manager] section: setting up the A-REX and the arched

The [grid-manager] section configures A-REX and arched. Its commands will affect the behaviour of
the startup scripts and the A-REX and arched processes.

A sample section would look like this:

[grid-manager]

user="root"
controldir="/tmp/jobstatus"
sessiondir="/tmp/grid"

debug="3"
logfile="/tmp/grid-manager.log"
pidfile="/tmp/grid-manager.pid"
mail="grid.support@somewhere.org"
Jjoblog="/tmp/gm-jobs.log"

Here we specify which user the A-REX should be run as, where should be the directory for the job’s metadata
(the control dir) and data (the session dir), what level of log message we want, where should be the log file
and where should the process ID of the arched daemon be written. We also specify an e-mail contact address
and the path of the “joblog” file, which will contain information about each job’s lifecycle.

For details about these configuration commands, please see Section 6.1.12, Commands in the [grid-manager]
section

4.3.4 The [gridftpd] section: the job submission interface

Currently, the production level job submission interface uses the gridftp protocol which is served by the
GridFTP Server (GFS) running on the frontend.

The [gridftpd] section configures the behaviour of the gridftpd daemon and its startup scripts.

A sample section for a basic CE is the following:

[gridftpd]

user="root"

debug="3"
logfile="/tmp/gridftpd.log"
pidfile="/tmp/gridftpd.pid"
port="2811"
allowunknown="no"

Here we specify which user the GridF'TP server should run as, the verbosity of the log messages, the path
of the logfile and the pidfile, the port of the GridF'TP server, and that only “known” users (specified in the
grid map file) should be allowed to connect.

For a minimal ARC CE to work, we need the configure the job interface with setting up the “job plugin” of
the GridF'TP server in a configuration subsection:

[gridftpd/jobs] controls how the virtual path /jobs for job submission will behave. These paths can
be thought of as those of a UNIX mount command. The name jobs itself is not relevant, but the contents
of the section and especially the plugin command determine the path behaviour.

For a minimal CE to work, it is sufficient to configure the following:

[gridftpd/jobs]
path="/jobs"
plugin="jobplugin.so"
allownew="yes"

34 CHAPTER 4. CONFIGURATION

Here we specify the virtual path where the job plugin will sit, the name of the library of the plugin, and that
new jobs can be submitted (turning allownew to “no” would stop accepting new jobs, but the existing jobs
would still run.)

For a more complex configuration example with fine-grained authentication based on groups see 6.15.4, Con-
figuration Examples and for full details on all configuration commands, please see Section 6.1.4, Commands
in the [gridftpd] section

As GridFTPd interface is planned to be phased out and replaced by the web service interface, no big changes
will be done in the future.

4.3.5 The [infosys] section: the local information system

The [infosys] section and its subsections control the behaviour of the information system. This includes:

e configuration of ARIS and its infoproviders

e customization of the published information

e configuration of the slapd server to publish information via LDAP

e configuration of BDII to generate 1dif trees for LDAP

e selection of the LDAP schema(s) to publish

e registration to an EGIIS index service (see Section 4.4.5, Registering to an ARC EGIIS)

e running a EGIIS IS (not covered in this manual, please refer to [?])

After this section, several subsections will appear as well as some other sections which are related to the
information system, such as [cluster] and [queue/...] sections. More on these will be explained
later.

A sample configuration for a basic CE would be the following:

[infosys]

user="root"

overwrite_config="yes"

port="2135"

debug="1"

slapd_loglevel="0"
registrationlog="/tmp/inforegistration.log"
providerlog="/tmp/infoprovider.log"
provider_loglevel="2"

Here we specify which user the slapd server, the infoproviders, the BDII and the registration scripts should
run, then we specify that we want the low-level slapd configs to be regenerated each time, then the port
number, the debug verbosity of the startup script, the slapd server and the infoproviders, and the logfiles
for the registration messages and the infoprovider messages.

For details about these configuration commands, please see Section 6.1.5, Commands in the [infosys] section.

4.3.5.1 The [cluster] section: information about the host machine

This section has to follow the [infosys] section and it is used to configure the information published
about the host machine running ARC CE.

A sample configuration can be seen below:

4.3. SETTING UP A BASIC CE 35

[cluster]

cluster_alias="MINIMAL Computing Element"
comment="This is a minimal out-of-box CE setup"
homogeneity="True"

architecture="adotf"

nodeaccess="inbound"

nodeaccess="outbound"

Here we specify the alias of the cluster, a comment about it, that the worker nodes are homogeneous, that
we want infoprovider scripts to determine the architecture automatically on the frontend (“adotf”), and that
the worker nodes have inbound and outbound network connectivity.

For details about these configuration commands, please see Section 6.1.9, Commands in the [cluster] section.

4.3.5.2 The [queue/fork] section: configuring the fork queue

Each [queue/queuename] section configures the information published about computing queues. At least
one queue must be specified for a CE to work. In this chapter a configuration for the fork LRMS will be
shown.

The fork LRMS is just a simple execution environment provided by the means of the underlying operating
system, that is, usually a shell with the standard linux environment variables provided to the mapped UNIX
user.

A special section name [queue/fork] is used to configure such information, some of its commands can be
used for any queue section, some are specific for the fork queue. More about this will be explained in
Section 4.4.2, Connecting to the LRMS.

A minimal CE configuration for this section would look like this:

[queue/fork]

name="fork"

fork_job_limit="cpunumber"

homogeneity="True"

scheduling_policy="FIFO"

comment="This queue is nothing more than a fork host"
nodecpu="adotf"

architecture="adotf"

Here we specify that this is a “fork” queue, that the number of allowed concurent jobs should equal the
number of CPUs, that the queue is homogeneous, the scheduling policy, an informative comment, and that
the type of the cpu and the architecture should be determined automatically on the frontend. The only fork-
specific command is the fork_job_limit command, the others can be used for other LRMSes also. See
sections Section 4.4.2, Connecting to the LRMS and Section 6.1.10, Commands in the [queue] subsections.

4.3.6 A basic CE is configured. What’s next?

A basic CE is now set. To test its functionality, it must be started first. Please refer to Section 5.1.3,
Starting the CFE to start the CE. If none of the startup scripts give any error, the testing can be started.
Please follow the testing suggestions in Section 5.2, Testing a configuration.

If everything works as expected, the next step is the turn the basic CE into a production level CE: connecting
it to the LRMS, turning on input file caching, and registering it to an information index service. Please
follow the instructions in Section 4.4, Production CE setup.

For some additional (optional) features, please proceed to Section 4.5, Enhancing CE capabilities.

36 CHAPTER 4. CONFIGURATION

4.4 Production CE setup

Once a basic CE is in place and its basic functionalities have been tested, these things are usually needed to
make it production-ready:

Configure access control to streamline the maintenance of the authentication and authorization of users,
VOs and authorization groups should be defined and the nordugridmap tool should be utilized to
generate the grid map file automatically. See Section 4.4.1, Access control: users, groups, VOs.

Connect to the LRMS to be able to use the underlying batch system, ARC support several famous
clustering and load balancing systems such as Torque/PBS, Sun Grid Engine, LSF, and others. See
Section 4.4.2, Connecting to the LRMS.

Enabling the cache to keep a copy of the downloaded input files in case the next job needs the same,
which greatly decreases wait time for jobs to start. See Section 4.4.3, Enabling the cache

Configure data staging Staging data in and out for jobs is a critical part of the CE, and it is important
that it is correctly configured to optimise performance. See Section 4.4.4, Configuring Data Staging.

Register to an index service NorduGrid provides an index service that will publish the CE to all the
grid clients that have access to the NorduGrid network. In this way the CE will be part of the GRID.
See Section 4.4.5, Registering to an ARC EGIIS.

Accounting the A-REX is capable of sending usage records to the SGAS accounting service. See Sec-
tion 4.4.8, Sending usage records to SGAS with urlogger.

Monitoring Nagios plugins exist for monitoring the ARC Computing Element. See Section 4.4.9, Moni-
toring the ARC CE: Nagios probes.

4.4.1 Access control: users, groups, VOs

The grid mappings between grid users and local unix accounts are listed in the so-called grid map file,
usually located in the directory /etc/grid-security/. By default this file also serves as list of authorized
users. While this text file can be edited by hand this is not advisible in production environments. To ease
the security administrator’s job, NorduGrid provides a collection of scripts and cron jobs that automatically
keeps the local grid map files synchronized to a central user database. If the CE has to join the Grid, it is
suggested to install the nordugrid-arc—gridmap-utils package from the NorduGrid Downloads area
or EMI repository, see Chapter 3, Installation for details. Once installed, the [groups] and [vo] sections
in the configuration file can be edited as well as optionally the location of the file representing the local list of
mappings (can have any name, but usually called /etc/grid-security/local-grid-mapfile). For
the description of the grid map file, please refer to Section 6.10, Structure of the grid-mapfile.

The two sections [group] and [vo] configure basic access control policies. The [vo] section may be also
used to control automatic mapping of GRID identities to local UNIX users:

[vo] defines Virtual Organizations (VOs). A VO is a simple way of grouping sets of users belonging to
different (real) organizations and, for example, willing to use the same set of software. A common use
of this section is to include users published by VOMS servers [? |. [vo] sections can be referred by
[group] sections. If this happens, it is important that the corresponding [vo] definition appears
before the [group] section that refers to it.

[group] defines authorization rules to access the CE for users or set of users defined by [vo] sections.

The configuration presented here is sufficient for a simple production setup where the identities are known
or are already contained in a file or a collection of files, eventually located and updated remotely.

4.4. PRODUCTION CE SETUP

4
I grid users

~
—

client
tools

-r- jobsk

based on

DN 4¢¢;7
N0

= VO
S

default)

A-REX

maps to
local user

local users

222
222
122
222
222
122
122

37

Figure 4.3: The A-REX maps the grid users to local users based on information about their identity and Virtual

Organization membership. It’s also possible to do default mapping.

4.4.1.1 [vo] configuration commands
The following is a sample [vo] section for a minimal CE:

[vo]

id="vo_1"
vo="TestVO"
source="file:///etc/grid-security/local-grid-mapfile"
mapped_unixid="griduserl"

require_issuerdn="no"

We define a VO here with the name of TestVO and the id of vo_1, the list of members comes from a URL
(which here points to a local file, see example below), and all members of this VO will be mapped to the

local user griduserl.

Here’s an example of the file with the list of members:

" /DC=eu/DC=KnowARC/O=Lund
" /DC=eu/DC=KnowARC/0O=Lund
" /DC=eu/DC=KnowARC/0=Lund
" /DC=eu/DC=KnowARC/O=Lund
" /DC=eu/DC=KnowARC/O=Lund

University/CN=demol"
University/CN=demo2"
University/CN=demo3"
University/CN=demo4"
University/CN=demo5"

For more configuration options, please see Section 6.1.2, Commands in the [vo] section.

To generate the actual grid map file from these [vo] settings, we need the nordugridmap utility, described

below.

4.4.1.2 Automatic update of the mappings

The package nordugrid-arc—-gridmap-utils contains a script to automatically update user mappings
(usually located in /usr/sbin/nordugridmap). It does that by fetching all the sources in the source
commands and writing their contents adding the mapped user mapped_unixid in the grid-mapfile and each

file specified by the file command. The script is executed from time to time as a cron job

38 CHAPTER 4. CONFIGURATION

LRMS frontend LRMS node

= A—REX\ LRMS \ ___ job script

T — j N—
=~ L@

control session \ session -
directory directory directory { H H \r

g gl Tl |
KL Koot o | XXX

LxX LxX

I_RI\/IS node
LRMS node
LRMS node
LRMS node

Figure 4.4: The LRMS frontend and the nodes sharing the session directory and the local users

4.4.1.3 [group] configuration commands

[group] defines authorizations for users accessing the grid.

There can be more than one group in the configuration file, and there can be subsections identified by the
group name such as [group/users].

For a minimal CE with no authorization rules, it is sufficient to have something like the following, preceeded
with the [vo] section previously defined in this chapter:

[group/users]
name="users"
vo="TestVO"

where the name could be omitted and then would be automatically taken from the subsection name.

For more about authorization, please read Section 6.1.3, Commands in the [group] section.

4.4.2 Connecting to the LRMS

A-REX supports several Local Resource Management Systems, with which it interacts by several backend
scripts.

Connecting A-REX to one of these LRMS involves the following steps:

1. creation of shared directories between A-REX, the LRMS frontend and its working nodes. It might
involve setup of shared filesystems such as NFS or similar.

2. configuration of the behaviour of a-rex with respect to the shared directories in the [grid-manager]
section.

3. configuration of the following arc.conf sections: [common], [grid-manager], [queue/*].

In the [common] section the name of the LRMS has to be specified:

lrms=default_lrms_name [default_queue_name] — specifies the name of the LRMS and option-
ally the queue.

4.4. PRODUCTION CE SETUP 39

The following [grid-manager] configuration commands affect how A-REX interacts with the LRMS:
gnu_time=path — path to time utility.
tmpdir=path — path to directory for temporary files. Default is /tmp.
runtimedir=path — path to directory which contains runtimenvironment scripts.

shared filesystem=yes/no — if computing nodes have an access to session directory through a
shared file system like NFS. If set to “no”, this means that the computing node does not share
a filesystem with the frontend. In this case the content of the SD is moved to a computing node
using means provided by the LRMS. Results are moved back after the job’s execution in a similar
way. Sets the environment variable RUNTIME_NODE_SEES_FRONTEND

scratchdir=path — path on computing node where to move session directory before execution. If
defined should contain the path to the directory on computing node which can be used to store a
job’s files during execution. Sets the environment variable RUNTIME_LOCAL_SCRATCH_DIR .

shared_scratch=path — path on frontend where scratchdir can be found. If defined should contain
the path corresponding to that set in scratchdir as seen on the frontend machine. Sets the
environment variable RUNTIME_FRONTEND_SEES_NODE .

nodename=command — command to obtain hostname of computing node.

For additional details, see Section 6.1.12.10, Substitutions in the command arguments and Section 6.13,
Using a scratch area.

Each LRMS has his own peculiar configuration options.

4.4.2.1 PBS

The Portable Batch System (PBS) is one of the most popular batch systems. PBS comes in many flavours
such as OpenPBS (unsupported), Terascale Open-Source Resource and QUEue Manager (TORQUE) and
PBSPro (currently owned by Altair Engineering). ARC supports all the flavours and versions of PBS.

Recommended batch system configuration PBS is a very powerful LRMS with dozens of configurable
options. Server, queue and node attributes can be used to configure the cluster’s behaviour. In order to
correctly interface PBS to ARC (mainly the information provider scripts) there are a couple of configuration
REQUIREMENTS asked to be implemented by the local system administrator:

1. The computing nodes MUST be declared as cluster nodes (job-exclusive), at the moment time-shared
nodes are not supported by the ARC setup. If you intend to run more than one job on a single processor
then you can use the virtual processor feature of PBS.

2. For each queue, one of the max_user_run or max_running attributes MUST be set and its value
SHOULD BE IN AGREEMENT with the number of available resources (i.e. don’t set the max running
= 10 if there are only six (virtual) processors in the system). If both max running and max_user_run
are set then obviously max_user_run has to be less or equal to max_running.

3. For the time being, do NOT set server limits like max_running, please use queue-based limits instead.

4. Avoid using the max_load and the ideal load directives. The Node Manager (MOM) configuration file
(<PBS home on the node>/mom_priv/config) should not contain any max_load or ideal_load
directives. PBS closes down a node (no jobs are allocated to it) when the load on the node reaches
the max_load value. The max_load value is meant for controlling time-shared nodes. In case of job-
exclusive nodes there is no need for setting these directives, moreover incorrectly set values can close
down a node.

5. Routing queues are now supported in a simple setup were a routing queue has a single queue behind
it. This leverages MAUI work in most cases.
Other setups (i.e. two or more execution queues behind a routing queue) cannot be used within ARC.

Additional useful configuration hints:

40 CHAPTER 4. CONFIGURATION

e If possible, please use queue-based attributes instead of server level ones (for the time being, do not
use server level attributes at all).

e The “acl_user_enable = True” attribute may be used with the “acl_users = userl,user2” attribute to
enable user access control for the queue.

e It is advisory to set the max_queuable attribute in order to avoid a painfully long dead queue.

e Node properties from the <PBS home on the server>/server_priv/nodes file together with
the resources_default.neednodes can be used to assign a queue to a certain type of node.

Checking the PBS configuration:

e The node definition can be checked by <PBS installation path>/bin/pbsnodes —a. All the
nodes MUST have ntype=cluster.

e The required queue attributes can be checked as <PBS installation path>/bin/gstat -f -Q
queuename. There MUST be a max_user_run or a max_running attribute listed with a REASONABLE
value.

Configuration commands in arc.conf Below the PBS specific configuration variables are collected.

lrms="pbs" —in the [common] section enables the PBS batch system back-end. No need to specify
the flavour or the version number of the PBS, simply use the "pbs" keyword as LRMS configuration
value.

For each grid-enabled (or grid visible) PBS queue a corresponding [queue/queuename] subsection must
be defined. queuename should be the PBS queue name.

pbs bin path=path —in the [common] section should be set to the path to the gstat,pbsnodes,qmgr
etc. PBS binaries.

pbs_log path=path — in the [common] sections should be set to the path of the PBS server logfiles
which are used by A-REX to determine whether a PBS job is completed. If not specified, A-REX
will use the gstat command to find completed jobs.

For additional configuration commands, please see Section 6.1.14, PBS specific commands.

Known limitations Some of the limitations are already mentioned under the PBS deployment require-
ments. No support for routing queues, difficulty of treating overlapping queues, the complexity of node
string specifications for parallel jobs are the main shortcomings.

4.4.2.2 Condor

The Condor [?] system, developed at the University of Wisconsin-Madison, was initially used to harness
free cpu cycles of workstations. Over time it has evolved into a complex system with many grid-oriented
features. Condor is available on a large variety of platforms.

Recommended batch system configuration Install Condor on the A-REX node and configure it as a
submit machine. Next, the following must be added to the node’s Condor configuration (CONDOR_IDS can
also be an environment variable):

MAIL = <ARC_install_prefix>/libexec/finish-condor-job
CONDOR_IDS = 0.0

The MAIL attribute will instruct Condor to run the specified program on job completion. The default on
Condor is to run /bin/mail to notify the user, but in this case, it is A-REX that needs the notification.
Therefore, /bin/mail is replaced with a program especially written for talking to A-REX.

CONDOR_IDS has to be 0.0, so that the above notification program can access the Grid job’s session directories
(needed to extract the job exit code from the Condor log).

4.4. PRODUCTION CE SETUP 41

Make sure that no normal users are allowed to submit Condor jobs from this node. For one thing, it would
not work for the user, since Condor will try to notify A-REX instead of the job owner on job completion.
If allow normal user logins are not allowed on the A-REX machine, then nothing needs to be done. If
for some reason users are allowed to log into the A-REX machine, simply don’t allow them to execute the
condor_submit program. This can be done by putting all local Unix users allocated to the Grid in a single
group, e.g. ’'griduser’, and then setting the file ownership and permissions on condor_submit like this:

chgrp griduser $condor_location/bin/condor_submit
chmod 750 $condor_location/bin/condor_submit

Configuration commands in arc.conf The Condor-specific configuration commands:
lrms="condor" — in the [common] section enables the Condor batch system back-end.

condor_location=path — in the [common] section should be set to the Condor install prefix (i.e.,
the directory containing Condor’s bin, sbin, etc).

For additional configuration commands, please see Section 6.1.15, Condor specific commands.

Known limitations Ounly Vanilla universe is supported. MPI universe (for multi-CPU jobs) is not sup-
ported. Neither is Java universe (for running Java executables). ARC can only send jobs to Linux machines
in the Condor pool, therefore excluding other unixes and Windows destinations. The session directory must
be on a network shared directory, visible from all worker nodes.

4.4.2.3 LoadLeveler

LoadLeveler(LL), or Tivoli Workload Scheduler LoadLeveler in full, is a parallel job scheduling system
developed by IBM.

Recommended batch system configuration The back-end should work fine with a standard installa-
tion of LoadLeveler. For the back-end to report the correct memory usage and cputime spent, while running.
LoadLeveler has to be set-up to show this data in the llg command. Normally this is turned off for perfor-
mance reasons. It is up to the cluster administrator to decide whether or not to publish this information.
The back-end will work whether or not this is turned on.

Configuration commands in arc.conf Only the two basic LRMS config options are relevant for
LoadLeveler:

lrms="11" —in the [common] section enables the LoadLeveler batch system.

11 bin path=path — in the [common] section must be set to the path of the LoadLeveler binaries.

Known limitations There is at the moment no support for parallel jobs on the LoadLeveler back-end.

4.4.2.4 Fork

The Fork back-end is a simple back-end that interfaces to the local machine, i.e.: there is no batch system
underneath. It simply forks the job, hence the name. The back-end then uses standard posix commands
(e.g. ps or kill) to manage the job.

Recommended batch system configuration Since fork is a simple back-end and does not use any
batch system, there is no specific configuration needed for the underlying system.

42 CHAPTER 4. CONFIGURATION

Configuration commands in arc.conf Only these commands are applied:

lrms="fork" — in the [common] section enables the Fork back-end. The queue must be named
"fork" in the [queue/fork] subsection.

fork_job_limit=cpunumber — sets the number of running grid jobs on the fork machine, allowing
a multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

Known limitations Since Fork is not a batch system, many of the queue specific attributes or detailed
job information is not available. The support for the “Fork batch system” was introduced so that quick
deployments and testing of the middleware can be possible without dealing with deployment of a real batch
system since fork is available on every UNIX box. The “Fork back-end” is not recommended to be used in
production. The back-end by its nature, has lots of limitations, for example it does not support parallel
jobs.

4.4.2.5 LSF

Load Sharing Facility (or simply LSF) is a commercial computer software job scheduler sold by Platform
Computing. It can be used to execute batch jobs on networked Unix and Windows systems on many different
architectures.

Recommended batch system configuration Set up one or more LSF queues dedicated for access by
grid users. All nodes in these queues should have a resource type which corresponds to the one of the the
frontend and which is reported to the outside. The resource type needs to be set properly in the 1sb.queues
configuration file. Be aware that LSF distinguishes between 32 and 64 bit for Linux. For a homogeneous
cluster, the type==any option is a convenient alternative.

Example: In 1sb.queues set one of the following:

RES_REQ = type==X86_64
RES_REQ type==any

See the —R option of the bsub command man page for more explanation.

Configuration commands in arc.conf The LSF back-end requires that the following options are
specified:

lrms="1sf" - in the [common] section enables the LSF back-end
1sf bin path=path — in the [common] section must be set to the path of the LSF binaries

1sf profile path=path — must be set to the filename of the LSF profile that the back-end should
use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because
the architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture
to match the chosen queue. LSF’s standard behaviour is to assume the same architecture as the frontend.
This will fail for instance if the frontend is a 32 bit machine and all the cluster resources are 64 bit. If this
is not done the result will be jobs being rejected by LSF because LSF believes there are no useful resources
available.

Known limitations Parallel jobs have not been tested on the LSF back-end.

The back-end does not at present support reporting different number of free CPUs per user.

4.4.2.6 SGE

Sun Grid Engine (SGE, Oracle Grid Engine, Codine) is an open source batch system maintained by Sun
(Oracle). It is supported on Linux, and Solaris in addition to numerous other systems.

4.4. PRODUCTION CE SETUP 43

Recommended batch system configuration Set up one or more SGE queues for access by grid users.
Queues can be shared by normal and grid users. In case it is desired to set up more than one ARC queue,
make sure that the corresponding SGE queues have no shared nodes among them. Otherwise the counts of
free and occupied CPUs might be wrong. Only SGE versions 6 and above are supported.

Configuration commands in arc.conf The SGE back-end requires that the following options are
specified:

lrms="sge" — in the [common] section enables the SGE batch system back-end.
sge_root=path — in the [common] section must be set to SGE’s install root.
sge bin path=path — in the [common] section must be set to the path of the SGE binaries.

sge_jobopts=options —in the [queue/queuename] section can be used to add custom SGE op-
tions to job scripts submitted to SGE. Consult SGE documentation for possible options. Example:

lrms="sge"
sge_root="/opt/nlge6"
sge_bin_path="/opt/nlge6/bin/1x24-x86"

[queue/long]
sge_jobopts="-P atlas -r yes"

For additional configuration commands, please see Section 6.1.19, SGE specific commands.

Known limitations Multi-CPU support is not well tested. All users are shown with the same quotas
in the information system, even if they are mapped to different local users. The requirement that one
ARC queue maps to one SGE queue is too restrictive, as the SGE’s notion of a queue differs widely from
ARC’s definition. The flexibility available in SGE for defining policies is difficult to accurately translate into
NorduGrid’s information schema. The closest equivalent of nordugrid-queue-maxqueuable is a per-cluster
limit in SGE, and the value of nordugrid-queue-localqueued is not well defined if pending jobs can have
multiple destination queues.

4.4.2.7 SLURM

SLURM is an open-source (GPL) resource manager designed for Linux clusters of all sizes. It is designed to
operate in a heterogeneous cluster with up to 65,536 nodes. SLURM is actively being developed, distributed
and supported by Lawrence Livermore National Laboratory, Hewlett-Packard, Bull, Cluster Resources and
SiCortex.

Recommended batch system configuration The backend should work with a normal installation using
only SLURM or SLURM+moab/maui. Do not keep nodes with different amount of memory in the same
queue.

Configuration commands in arc.conf The SLURM back-end requires that the following options are
specified:

lrms="SLURM" — in the [common] section enables the SLURM batch system back-end.

slurm bin path=path — in the [common] section must be set to the path of the SLURM binaries.

Known limitations If you have nodes with different amount of memory in the same queue, this will lead
to miscalculations. If SLURM is stopped, jobs on the resource will get canceled, not stalled. The SLURM
backend is only tested with SLURM 1.3, it should however work with 1.2 as well.

44 CHAPTER 4. CONFIGURATION

4.4.3 Enabling the cache

The A-REX can cache input files, so that subsequent jobs requiring the same file don’t have to wait for
downloading it again: the cached file will be symlinked (or copied) into the session directory of the job (but
only after the permissions of this user and the modification date of the file are checked).

Enabling caching is as simple as providing a directory path with the cachedir configuration command in the
[grid-manager] section and turning on the cache cleaning mechanism with the cachesize command:

cachedir=path
cachesize=high_mark low_mark

Here path points to a directory which will be used by the A-REX to store the cached files. A-REX will
create this directory when the first job is submitted, it should be owned by the same user as which the
A-REX is running. The size of the cache directory is maintained by removing the least recently accessed
files. If the cache size exceeds a given percentage (“high mark”) of the available space, the oldest files will
be removed until the size goes below another given percentage (“low mark”).

A sample section is shown here:

[grid-manager]

user="root"
controldir="/tmp/control"
sessiondir="/tmp/session"
mail="grid.support@somewhere.org"
Jjoblog="/tmp/gm-jobs.log"
securetransfer="no"
cachedir="/tmp/cache"
cachesize="80 70"

It is possible to use more than one cache directory by simply specifing more than one cachedir command
in the configuration file. When multiple caches are used, a new cache file will go to a randomly selected
cache where each cache is weighted according to the size of the file system on which it is located (e.g. if
there are two caches of 1TB and 9TB then on average 10% of input files will go to the first cache and 90%
will go to the second cache).

By default the files will be soft-linked into the session directory of the job. If it is preferred to copy them
(because e.g. the cache directory is not accessible from the worker nodes), a dot (.) should be added after
the path:

cachedir="path ."

If the cache directory is accessible from the worker nodes but on a different path, then this path can be
specified also:

cachedir="path link_path"

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache
cleaning can become slow, leading to caches filling up beyond their configured limits. For performance
reasons it may be advantageous to disable cache cleaning by the A-REX (by removing the cachesize
command from the config), and run the cache-clean tool independently on the machine hosting the file
system. (Please refer to Section 7?7, ?7.)

Caches can be added to and removed from the configuration as required without affecting any cached data,
but after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and
all data erased, it is recommended that the cache be put in a draining state until all currently running jobs
possibly accessing files in this cache have finished. This can be done by putting the word “drain” as the
link_path:

cachedir="path drain"

For more details about the mechanisms of the cache, please refer to Section 6.4, Cache.

4.4. PRODUCTION CE SETUP 45

4.4.3.1 The Cache Service

The ARC caching system automatically saves to local disk job input files for use with future jobs. The cache
is completely internal to the computing element and cannot be accessed or manipulated from the outside.
The ARC Cache Service exposes various operations of the cache and can be especially useful in a pilot job
model where input data for jobs is not known until the job is running on the worker node.

It is packaged as nordugrid-arc-cache-service, and it can either be started with its own init script,
or it can be configured to run in the same container as A-REX. For more information about the cache service,
please visit the NorduGrid wiki:

http://wiki.nordugrid.org/index.php/Cache_Service

4.4.3.2 The ARC Cache Index (ACIX)

There is another option for locating already cached files: the ARC Cache Index (ACIX). It consists of
two components, one on the computing resource: the Cache Server, and the Index Server which indexes
the cache locations retrieved from the Cache Servers. These components can be found respectively in the
packages nordugrid—-arc—acix—cache and nordugrid-arc—acix-index. They both depend on a
third package, nordugrid-arc-acix-core.

The Cache Server periodically scans the A-REX cache and constructs a Bloom filter of cache content. This
filter is a way of representing the cache content in an extremely compressed format, which allows fast query
of any element of the filter and efficient upload of the content to an index server. This type of compression
however has the possibility of giving false-positives, i.e. a certain file may appear to be present in the cache
according to the filter when it is not. The Cache Server runs in an HT'TPS server and the filter is accessible at
the endpoint https://hostname:5443/data/cache. It does not require any configuration (but make
sure port 5443 is open in the firewall) and it uses the caches specified in the A-REX arc.conf.

The Index Server runs independently of the Cache Servers and A-REX, but can be deployed on the same
host as both of them. It is configured with a list of Cache Servers and periodically pulls the cache filter
from each one. It runs within an HTTPS server through which users can query the cached locations of files.
Configuration uses the regular arc.conf file in the section [acix/indexserver]. Here Cache Servers are
specified by the cacheserver option. For example:

[acix/indexserver]
cacheserver="https://my.host:5443/data/cache"
cacheserver="https://another.host:5443/data/cache"

The Index Server can be queried at the endpoint https://hostname:6443/data/index and the list of
URLs to check are given as comma-separated values to the option “url” of this URL, e.g.

https://hostname:6443/data/index?url=http://www.nordugrid.org:80/data/echo.sh,\
http://my.host/datal,lfc://1fc.org/grid/data?2

A JSON-formatted response is returned, consisting of a dictionary mapping each URL to a list of locations.
Any HTTP client can be used to query for cache locations and this makes it easy to use data-based brokering
for ARC jobs. (It is planned to write an ACIX-based broker plugin for ARC).

Figure 4.5 shows an example ACIX set up. Each CE runs a Cache Server and there is a central Index Server
which pulls content from all CEs. In addition there is one site with two CEs, CE 1a and CE 1b. In order to
do data-based brokering on just those two sites (and ease the load on the global Index Server), a local Index
Server is running which pulls content from only these two sites.

4.4.4 Configuring Data Staging

The CE is responsible for collecting input data for a job before submission to the LRMS, and for staging out
data after the job has finished. The component which performs data staging is called DTR (Data Transfer
Reloaded). Its architecture is shown in Figure 4.6.

http://wiki.nordugrid.org/index.php/Cache_Service

46 CHAPTER 4. CONFIGURATION

Global Index
Server

-
Cache
| Server

CE 1a

Figure 4.5: ACIX deployment scenario, with one global Index Server and a local Index Server for CE 1a and CE 1b.

A-REX sends each job that requires data staging before or after execution to the Generator, which constructs
a Data Transfer Request (DTR) per file that needs to be transferred. These DTRs are sent to the Scheduler
for processing. The Scheduler sends DTRs to the Pre-processor for anything that needs to be done up until
the physical transfer takes place (e.g. cache check, resolve replicas) and then to Delivery for the transfer
itself. Once the transfer has finished the Post-processor handles any post-transfer operations (e.g. register
replicas, release requests). The number of slots available for each component is limited, so the Scheduler
controls queues and decides when to allocate slots to specific DTRs, based on the prioritisation algorithm
implemented.

DTR configuration is specified in the [data-staging] section, and each parameter is explained in detail in
Section 6.1.13, Commands in the [data-staging] section. Reasonable (conservative) default values exist
which allow safe operation without any configuration being set, but it is better to tune values according to
each set up. Example:

[data-staging]

maxdelivery="40"
maxprocessor="20"
maxemergency="2"
maxprepared="200"
sharetype="voms:role"
definedshare="myvo:production 80"
definedshare="myvo:student 20"

DTR also features a priorities and shares system, as well as the ability to distribute data transfers over
multiple nodes. For more information on this and all other aspects of DTR, please consult the data staging
page of the NorduGrid wiki®.

A legacy system using the downloader and uploader components is also available and can be used by setting

enable_dtr=no

in the [grid-manager| section of the configuration.

4.4. PRODUCTION CE SETUP 47

UPPER LAYER

Generator DTR:
(Toocll | | Someo ocaton

destination location
Submit Receive credentials
transfer options

MIDDLE LAYER U i |
Scheduler
Pre-processor K] ‘ ‘ :> Post-processor

LOWER LAYER

Figure 4.6: The architecture of DTR.

4.4.5 Registering to an ARC EGIIS

Once a cluster is setup, it needs to communicate to some index service to join the grid. Joining an index
will let clients query the index to find the CE without specifying the CE hostname on the command line.

In the grid world, this is crucial as the user is agnostic about the server his/her jobs will run.

Connection to an index will enable resource sharing in a federated way, among users accepted by the rules
in the [group] and [vo] sections.

National Grid Infrastructures usually run their own index, and NorduGrid runs several:

ldap://index1.nordugrid.org:2135
ldap://index2.nordugrid.org:2135
ldap://index3.nordugrid.org:2135

To connect to an index, add the following to a basic CE configuration file, after all the other existing
[infosys] related sections:

[infosys/cluster/registration/toPGS1]
targethostname="quark.hep.lu.se"
targetport="2135"
targetsuffix="mds-vo-name=PGS, o=grid"
regperiod="300"

The special section name [infosys/cluster/registration/toIndex] is used to configure registra-
tion of a cluster (a CE) to an index service (an IS).

Registration commands explained:
targethostname=FQDN — The FQDN of the host running the target index service.
targetport=portnumber — Port where the target Index Service is listening. Defaults to 2135.

targetsuffix=Idapsuffix — ldap suffix of the target index service. This has to be provided by a
manager of the index service, as it is a custom configuration value of the Index Service. Usually is
a string of the form "mds-vo-name=<custom value>, o=grid"

Shttp://wiki.nordugrid.org/index.php/Data_Staging

http://wiki.nordugrid.org/index.php/Data_Staging

48 CHAPTER 4. CONFIGURATION

information system

client
tools <

information

Figure 4.7: The components of the ARC information system: the ARIS which sits next to a computing element
(or a storage resource) and advertises information about it; and the EGIIS which indexes the location of ARISes
and other EGIIS, creating a hierarchical information mash, where querying the top nodes would provide information
about all the resources.

regperiod=seconds — the registration script will be run each number of seconds. Defaults to 120.

These commands will affect the way the registration script is run. Logs about registration information can
be found by looking at the file configured by the registrationlog command in the [infosys] section
(see Section 4.3.5, The [infosys/| section: the local information system). For information on how to read the
logs see Section 5.4, Log files

The registration script is called grid-info-soft-register. Once registration to an index is configured,
parameters of this script can be checked on the system by issuing at the shell:

[root@piff tmpl# ps aux | grep reg

root 29718 0.0 0.0 65964 1316 pts/0 S 14:36 0:00
/bin/sh /usr/share/arc/grid-info-soft-register
-log /var/log/arc/inforegistration.log
-f /var/run/arc/infosys/grid-info-resource-register.conf -p 29710

root 29725 0.0 0.0 66088 1320 pts/0 S 14:36 0:00
/bin/sh /usr/share/arc/grid-info-soft-register
-log /var/log/arc/inforegistration.log
-register -t mdsreg2 -h quark.hep.lu.se -p 2135 -period 300
—dn Mds-Vo-Op-name=register, mds-vo-name=PGS,o=grid —-daemon
-t ldap -h piff.hep.lu.se -p 2135 -ttl 600
—-r nordugrid-cluster—-name=piff.hep.lu.se,Mds-Vo-name=local, o=Grid
-T 45 -b ANONYM-ONLY -z 0 -m cachedump -period O

Other less relevant options are available for registration, please refer to Section 6.1.11, Commands in the
[infosys/cluster/registration /registrationname] subsections.

If the registration is successful, the cluster will be shown on the index. To find out that, please refer to the
Index Service documentation [?].

4.4. PRODUCTION CE SETUP 49

4.4.6 ARC CE to gLite Site and Top BDII integration

The gLite BDII is an information caching system used in EGI to store information about computing services.
ARC LDAP renderings of Gluel.2/1.3 and GLUE2 where espacially designed to achieve interoperability with
non ARC products, among these, Site and Top bdii.

gLite BDII technology is not based on registration, but each Site or Top BDII scans with a certain cadence a
list of LDAP URLSs targeting the cached systems and contacts directly the LDAP server of such systems. This
technology is bootstrapped by some database. The means of getting an LDAP URL inside such database
are out of the scope of this manual. Please refer to gLite BDII documentation for such details.

An ARC CE is capable to publish the information needed by such systems.

To act as a resource BDII, that is, publish information suitable for a Site BDII to be collected, the
administrator must:

e Enable the NorduGrid LDAP schema rendering in the [infosys] configuration block;
¢ Enable the Gluel.2/1.3 schema rendering in the [infosys] configuration block;

e Configure the [infosys/gluel2] block

e Configure a Site BDII to scan the CE on LDAP port 2135 instead of 2170.

Since release 12.05, ARC can act as a Site BDII itself, for its information to be directly collected by a Top
BDII. However, this approach is discontinued as GLUE2 will be used as the main schema for information.

To have an ARC CE behaving like a Gluel.2/1.3 Site BDII, that is, to directly produce information for a
Top BDII to collect, the administrator must:

e Enable the NorduGrid LDAP schema rendering in the [infosys] configuration block;
e Enable the Gluel.2/1.3 schema rendering in the [infosys] configuration block;
e Configure the [infosys/gluel2] configuration block

o Configure the [infosys/site/sitename] configuration block

Top BDII with GLUE2 support can directly fetch GLUE2 information from an ARC CE, provided that the
ARC CE is publishing GLUE2 AdminDomain information. ARC CE default behavior is to setup an LDAP
server capable of being contacted by a GLUE2 Top BDII out of the box. To configure the ARC CE to that
purpose, the administrator must:

e Enable the GLUE2 schema rendering in the [infosys] configuration block;

e Configure the [infosys/admindomain] configuration block

Refer to the following sections to know how to configure the above items. 4.5.1, Enabling or disabling LDAP
schemas, 6.1.5, Commands in the [infosys] section, 6.1.8, Commands in the [infosys/site/sitename] section,
6.1.6, Commands in the [infosys/admindomain] section

4.4.7 Accounting with JURA

The A-REX can be configured to periodically execute an external usage reporting utility which should create
standard-complient usage records from job usage information provided by the A-REX (called the “job log
files”) and send the records to remote accounting services. The JURA is such an external utility which
capable of doing this. It is distributed with the A-REX.

JURA is capable of creating two types of usage records from the job log files:

e Usage Record 1.0 (UR) XML format [?]
e Compute Accounting Record (CAR) XML format [?]

50 CHAPTER 4. CONFIGURATION

After creating these usage records, JURA can archive them to a given directory and it can send them to
remote services:

e The UR can be sent to an SGAS LUTS (Logging and Usage Tracking Service) [?]

e Experimental feature: The CAR usage record can be sent to the new version of APEL or any other
service supporting the format.

To enable reporting, the jobreport and the jobreport_publisher configuration commands in the
[grid-manager] section has to be set to the URL of an accounting destination and the name of the exe-
cutable publisher. Multiple URLSs can be specified in one jobreport command, and multiple jobreport
commands can be used. The usage record of each job will be reported to all of the destinations. Currently
if the URL starts with “CAR:”, then a Compute Accounting Record (CAR) will be created, and logged,
but it will not be sent anywhere. When the URL starts with “APEL:”, then a Compute Accounting Record
(CAR) will be reported directly to APEL. If a HTTPS URL is given, then then a Usage Record 1.0 will
be created and sent to an SGAS LUTS destination. (The experimental APEL support can be utilized by
running JURA separately and specifying a “topic” with the -t command line options.) A number can be
specified after the URLs: how many days the job log files will be kept if the reporting fails.

The credentials for the HTTPS connection should be set using the jobreport_credentials command,
specifying first the path to the key then the path to the certificate and the path to the CA certificates
directory, separated by space.

Additional options can be given to JURA in the form of comma-separated key :value pairs by setting the
jobreport_options configuration command. Currently these options are recognized:

e urbatch:size — JURA sends usage records not one-by-one, but in batches. This options sets the
maximum size of a batch. Zero value means unlimited batch size. Default is 50.

e archiving:dir — JURA can archive the generated usage records to a given directory. This options
specifies the directory and enables archiving. If the directory does not exist, an attempt is made to
create it. If this option is absent, no archiving is performed.

e topic:name of the topic — here can be set a name of the APEL topic where would like to publish an
accounting records. When not set this option then a JURA will be use a default APEL topic.

An example configuration which will report all jobs to both destinations using the given credentials, sending
them in batches of 50, and archiving them into var/urs:

[grid-manager]
Jjobreport="https://lutsl.grid.org:8443/wsrf/services/sgas/LUTS"
Jjobreport="https://luts2.grid.org:8443/wsrf/services/sgas/LUTS 7"
jobreport="APEL:https://apel.cern.ch:2170"
jobreport_publisher="jura"
jobreport_credentials="/etc/grid-security/hostkey.pem
/etc/grid-security/hostcert.pem /etc/grid-security/certificates"
jobreport_options="urbatch:50,archiving:/var/urs, topic:/queue/cpu"

For the configuration commands, see also 6.1.12.7, Commands related to usage reporting.

It is also possible to run JURA separately from the A-REX (e.g. a cron job can be set to execute it
periodically). The command line options of JURA are the following:

jura -E <days> -u <url> -t <topic> -o <path> <control dir>

e —E <days> — for how many days should failed-to-send records be kept

e —u <url> —runs JURA in “interactive mode”, which sends usage reports only to the URLs given as
command line arguments (and not those which were put into the job log files by the A-REX), and does
not delete job log files after a successful report. Multiple —u can be given.

4.4. PRODUCTION CE SETUP 51

e -t <topic> — after each —u <url> a topic can be specified. This topic is needed for publishing
to APEL. If the URL does not start with “CAR” and a topic is specified, the report will be sent to
APEL, if a topic is not specified, the report will be sent to SGAS.

e -0 <path> — specifies the path of the archiving directory, which will be used only for this run of
JURA, and the usage records will be put into this directory.

e <control dir> [<control dir> ...] — one or more control directories has to be specified.
JURA looks for the job log files in the “logs” subdirectory of the control directories given here.

For more details about JURA, see 6.6, JURA: The Job Usage Reporter for ARC.

4.4.8 Sending usage records to SGAS with urlogger
The urlogger component of the A-REX is capable of generating and sending job usage records to the
SGAS [? | accounting service.

The following libraries need to be installed:

e Python 2.4 or later

e Twisted Core and Web (http://twistedmatrix.com/)

e PyOpenSSL (https://launchpad.net/pyopenssl)

e ElementTree (http://effbot.org/zone/element-index.htm - only needed with Python 2.4)

Debian/Ubuntu package names:

python-twisted-core, python-twisted-web, python-openssl
python-elementtree (only needed with Python 2.4)

RPM based distributions (e.g., RHEL, CentOS, SL, Fedora, etc.):

python-twisted-core python-twisted-web pyOpenSSL
python-elementtree (only needed with Python 2.4)

The urlogger reads its configuration from the arc.conf. It should be specified for the A-REX that the
urlogger generator script should be run for each job, so the following should be put into the [grid-manager]
section:

[grid-manager]
authplugin="FINISHED timeout=10,onfailure=pass /usr/libexec/arc/arc-ur—-logger %C %I %S %U"

The plugin will log to the file: /var/log/arc/ur-logger.log (configurable). This file will not appear
until a job has finished.

Then the SGAS service should be specified in a [1logger] section:

[logger]
log_all="https://sgas.ndgf.org:6143/sgas"

This will send all records to the given address. It is possible to specify separate SGASes for separate VOs:
log_vo="bio.ndgf.org https://biosgas.ndgf.org:6143/sgas"

For more options, see Section 6.1.21, Commands for the urlogger accounting component.
The A-REX needs to be restarted after the configuration is finished.
A cron job should be set up to send the usage records to SGAS periodically, e.g.:

0 » » » » /usr/libexec/arc/arc-ur-registrant

To ensure that the registrant is working, you can run the script from the command line first. Note that the
script will still write its log to /var/log/arc/ur-registration.log (configurable). By running the script with -s
its ouput will be directed to stdout.

52 CHAPTER 4. CONFIGURATION

4.4.9 Monitoring the ARC CE: Nagios probes

Nagios scripts (probes) exist that allow monitoring of ARC-CEs. The scripts are available in the EGI
repository ¥.

NorduGrid provides a set of Nagios tests that can be used to monitor the functionality of an ARC computing
element. These tests were originally developed by the NDGF in order to provide availability monitoring to
WLCG. The maintenance of the tests has since been taken over by the EMI project.

The tests are available in the workarea of the nordugrid subversion server:
http://svn.nordugrid.org/trac/workarea/browser/nagios
They are also available packaged as an RPM: grid-monitoring-probes-org.ndgf.

The configuration of the tests is collected in one configuration file called org.ndgf.conf. Make sure that the
user configured to run the tests is authorized at the CEs under test and has the necessary access rights to
the storage locations and catalogues configured.

Some of the tests send test jobs to the CE and will report the result when the test job has finished. If the
job does not complete within 12 hours it will be killed and a warning is reported in Nagios.

More information about the tests can be found here:

http://wiki.nordugrid.org/index.php/Nagios_Tests

4.5 Enhancing CE capabilities

Once a basic CE is in place and its basic functionalities have been tested, is possible to add more features
to it.

These include:

Enable gluel.2/1,3, GLUE2 LDAP schemas To be compliant with other grid systems and middle-
wares, ARC CE can publish its information in these other schemas. In this way its information can
show up also in information systems compliant with gLite [? |. ARC CE can act as a resource-BDII,
to be part of a site-BDII and join the European grid.

See Section 4.5.1, Enabling or disabling LDAP schemas

Provide customized execution environments on-demand As every experiment can have its own li-
braries, dependencies and tools, ARC provides a means of creating such environments on demand for
each user. This feature is called Runtime Environment (RTE). See Section 4.5.2, Runtime Environ-
ments.

Use web services instead/together with of GridFTPd/LDAP Next generation ARC Client and servers
are Web Service ready. Job submission and the Information System can now be run as a single stan-
dardized service using the https protocol. See Section 4.5.3, Enabling the Web Services interface.

4.5.1 Enabling or disabling LDAP schemas

ARIS, the cluster information system, can publish information in three schemas and two protocols. Infor-
mation published via the LDAP protocol can follow the following three schemas:

NorduGrid Schema The default NorduGrid schema, mostly used in Nordic countries and within all the
NorduGrid Members. Definition and technical information can be found in [? |].

Glue 1.2 / 1.3 schema Default currently used by gLite middleware[? | and the European grids. Specifi-
cations can be found here: [? ?7].

GLUE 2 schema Next generation glue schema with better granularity. Will be the next technology used
in production environments. Specification can be found here: [?].

https://wiki.egi.eu/wiki/EMI_Nagios_probes

http://svn.nordugrid.org/trac/workarea/browser/nagios
http://wiki.nordugrid.org/index.php/Nagios_Tests
https://wiki.egi.eu/wiki/EMI_Nagios_probes

4.5. ENHANCING CE CAPABILITIES 93

The benefits of enabling these schemas are the possibility to join grids other than NorduGrid, for example
to join machines allotted to do special e-Science experiments jobs, such as the ATLAS experiment[? |.

To enable or disable schema publishing, the first step is to insert the enable commands in the [infosys]
section as explained in 6.1.5, Commands in the [infosys] section.

The Glue 1.2/1.3 schemas carry geographical information and have to be configured in a separate section,
[infosys/gluel2].

If the nordugrid-arc-doc package is installed, two arc.conf examples are available in

/usr/share/doc/nordugrid-arc-doc/examples/

Glue 1.2/1.3 arc_computing_element_gluel2.conf

Glue 2 arc_computing_element_glue2.conf

More examples can be found on svn:

http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/

An example configuration of the [infosys/gluel2] section is given in Figure 4.8.

[infosys/gluel?2]

resource_location="Somewhere, Earth"

resource_latitude="54"

resource_longitude="25"

cpu_scaling_reference_si00="2400"
processor_other_description="Cores=1,Benchmark=9.8-HEP-SPECO6"
glue_site_web="http://www.eu-emi.eu"
glue_site_unique_id="MINIMAL Infosys configuration"
provide_glue_site_info="true"

Figure 4.8: An example [infosys/gluel2] configuration section

Explanation of the commands can be found in the technical reference, section 6.1.7, Commands in the
[infosys/gluel2] section.

For the GLUE 2.0 it is enough set the command to enable. The default behaviour is enabled. However,
there are other options to let the system administrator configure more features, like the AdminDomain
information used for a cluster to join a domain that might be distributed across different geographical sites.
A minimal example is detailed in Figure 4.9 and it just contains the domain name.

[infosys/admindomain]
name="ARC-TESTDOMAIN"

Figure 4.9: An example [infosys/admindomain| configuration section

NOTE: AdminDomain GLUE2 ID is a URI. ARC automatically adds the URI prefix to the GLUE2DomainID.
This prefix is urn:ad: .

Example:

name="ARC-TESTDOMAIN"

ARC will create a GLUE2DomainID = "urn:ad:ARC-TESTDOMAIN"

The corresponding LDAP url pointing at the AdminDomain object will be:
ldap://myserver.domain:2135/GLUE2DomainID=urn:ad:ARC-TESTDOMAIN, o=glue

For detailed information please see 6.1.6, Commands in the [infosys/admindomain] section.

http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/

54 CHAPTER 4. CONFIGURATION

4.5.1.1 Applying changes

Once arc.conf is modified, restart the infosystem as explained in Section 5.1, Starting and stopping CE
services.

To test information is being published, follow the instructions in Section 5.2.1, Testing the information
system.

4.5.2 Runtime Environments

A general description of Runtime Environments (RTEs) can be found in Section 1.7, Application software
mn ARC: The RunTime Environments.

The A-REX can run specially prepared BASH scripts prior to creation of the job’s script, before and after
executing job’s main executable. These scripts are usually grouped in a directory and called RTE scripts.

To configure a RTE, it is enough to add to the [grid-manager] block the following:

runtimedir="/SOFTWARE/runtime"

where /SOFTWARE/runtime is a directory that contains different RTEs, usually organized in different
directories.

Each RTE SHOULD have its own directory containing its scripts. A proposal on how to organize such
directories can be seen here: http://pulse.fgi.csc.fi/gridrer/htdocs/concept.phtml .

It is important that each directory is replicated or accessible by all the computing nodes in the LRMS that
are intended to use those Runtime Environments. A-REX will scan each directory and identify the different
RTEs.

A specific set of scripts for an RTE is requested by client software in the job description, through the
runtimeenvironment attribute in XRSL, JSDL or ADL, with a value that identifies the name of the RTE.

The scripts are run with first argument set to ’0’,’1” or ’2’, and executed in specific moments of the job’s
lifetime, in this way:

’0’ is passed during creation of the job’s LRMS submission script. In this case the scripts are run by A-REX
on the frontend, before the job is sent to the LRMS. Some enviroment variables are defined in this
case, and can be changed to influence the job’s execution later. A list is presented in table 4.2.

’1’ is passed before execution of the main executable. The scripts are executed on the computing node of
the LRMS. Such a script can prepare the environment for some third-party software package. The
current directory in this case is the one which would be used for execution of the job. Variable $HOME
also points to this directory.

’2’ is passed after the main executable has finished. The scripts are executed on the computing node of
the LRMS. The main purpose is to clean possible changes done by scripts run with "1’ (like removing
temporary files). Execution of scripts on computing nodes is in general not reliable: if the job is killed
by LRMS they most probably won’t be executed.

If the job description specifies additional arguments for corresponding RTE those are appended starting at
second position.

The scripts all are run through BASH’s ’source’ command, and hence can manipulate shell variables.

For a description on how to organize and create a RTE, please follow the instructions here: http://pulse.
fgi.csc.fi/gridrer/htdocs/maintainers.phtml

For publicly available runtime environments please see the RTE Registry at http://pulse.fgi.csc.
fi/gridrer/htdocs/index.phtml.

http://pulse.fgi.csc.fi/gridrer/htdocs/concept.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/maintainers.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/maintainers.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/index.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/index.phtml

4.5. ENHANCING CE CAPABILITIES 95

Variable

Description

joboption_directory

session directory of job.

joboption_controldir

control directory of job. Various internal information related to this job is
stored in file in this directory under names job.job_gridid.*. For more informa-
tion see section 6.11.

joboption_arg_#

command with arguments to be executed as specified in the JD (not bash
array).

joboption_arg_code

exit code expected from executable if execution succeeded.

joboption_pre_# _#

command with arguments to be executed before main executable (not bash
array). There may be multiple such pre-executables numbered from 0.

joboption_pre_# _code

exit code expected from corresponding pre-executable if execution succeeded.

joboption_post_#_#

command with arguments to be executed after main executable (not bash
array). There may be multiple such post-executables numbered from 0.

joboption_post_# _code

exit code expected from corresponding post-executable if execution succeeded.

joboption_stdin

name of file to be attached to stdin handle.

joboption_stdout

same for stdout.

joboption_stderr

same for stderr.

joboption_env_#

array of ' NAME=VALUE’ environment variables (not bash array).

joboption_cputime

amount of CPU time requested (minutes).

joboption_walltime

amount of execution time requested (minutes).

joboption_memory

amount of memory requested (megabytes).

joboption_count

number of processors requested.

joboption_runtime_#

array of requested runtimeenvironment names (not bash array).

joboption_num

runtimeenvironment currently beeing processed (number starting from 0).

joboption_jobname

name of the job as given by user.

joboption_lrms

LRMS to be used to run job.

joboption_queue

name of a queue of LRMS to put job into.

joboption_starttime

execution start time as requested in the JD in MDS format.

joboption_gridid

identifier of the job assigned by A-REX. It is an opaque string representing
the job inside the A-REX service. It may be not same as the job identifier
presented to an external client.

joboption_inputfile_#

local name of pre-staged file (not bash array).

joboption_outputfile_#

local name of file to be post-staged or kept locally after execution (not bash
array).

joboption_localtransfer

if set to ’yes’ data staging is done on computing node.

joboption_nodeproperty_#

array of properties of computing nodes (LRMS specific, not bash array).

For example joboption_arg_# could be changed to wrap the main executable. Or joboption_runtime could
be expanded if the current one depends on others.

Table 4.2: RTEs predefined environment variables when the scripts are run with option ’0’

56 CHAPTER 4. CONFIGURATION

4.5.3 Enabling the Web Services interface

A-REX provides a standard-compliant Web Service (WS) interface to handle job submission/management.
The WS interface of A-REX is however disabled by default in ARC and EMI distributions as of 2011. To ex-
periment with this advanced A-REX feature, setting the option arex_mount_point inthe [grid-manager]
section of arc.conf enables the web service interface, e.g.

arex_mount_point="https://your.host:60000/arex"

Remember to enable incoming and outgoing traffic in the firewall for the chosen port; in the example above,
port 60000.

Then jobs can be submitted through this new WS interface with the arcsub command (available in the
ARC client package) and jobs can be managed with other arc* commands.

A-REX also has an EMI Execution Service interface. To enable it, in addition to the above option the
following option must be specified

enable_emies_interface="yes"

IMPORTANT: this web service interface does not accept legacy proxies created by voms—-proxy-init
by default. RFC proxies must be used, which can be created by specifying voms-proxy-init -rfc or
using arcproxy.

The WS interface can run alongside the GridF'TP interface. Enabling the WS interface as shown above does
not disable the GridF TP interface - if desired “gridftpd” service must be explicitly stopped.

4.5.4 Virtual Organization Membership Service (VOMS)

Classic authentication of users in grid environment is based on his/her certificate subject name (SN). Au-
thorization of users is performed by checking the lists of permitted user SNs, also known as grid-mapfiles.
The classic scheme is the simplest to deal with, but it may have scalability and flexibility restrictions when
operating with dynamic groups of researchers — Virtual Organizations (VO).

From the computing element perspective, all members of a particular VO are involved in the same research
field having common predictable requirements for resources that allows flexibly configured LRMS scheduler
policies. In general, VOs have an internal structure that regulate relationships between members that is
implemented via groups, roles and attributes. VO membership parameters are controlled by means of the
VOMS specialized softwarell.

VOMS consists of two parts:

¢ VO Management interface (VOMS-Admin) — web-based solution to control membership parameters.
Along with the management interface, the service provides a SOAP interface to generate lists of VO
members’ SNs. EDG VOMS-Admin is a classic VO Management solution distributed by EMI [?].
There is also alternative lightweight solution available — PHP VOMS-Admin [? |].

e Credentials signing service (vomsd) — standalone daemon that fortifies user VO membership and its
parameters. A credentials signing daemon issues an Attribute Certificate (AC) extension attached to
the user’s proxy-certificate and is used in a delegation process. VOMS processing API of the middleware
or some external authorization processing executables may parse and verify the VOMS AC extension
and make a decision taking into account group affiliation instead of just using the personal certificate
SN.

To maintain the grid-mapfiles based on information in the VOMS database (using the SOAP interface of
the VO Management service), use voms:// or vomss:// sources in the [vo] configuration block for the
nordugridmap utility (see section 6.1.2, Commands in the [vo] section for details).

A VOMS credentials signing daemon is used directly by client tools (see arcproxy manual) to create a
VOMS AC-enabled proxy. The computing element does not interact with the credentials signing daemon

I There are other existing technologies for group management, but VOMS is the most popular and widely supported

4.5. ENHANCING CE CAPABILITIES 57

directly, but verifies the digital signature of the VOMS server against a configured list of trusted VOMS AC
issuers instead.

All general VOMS-related configurations described below are supported by the ARC API as well as other
EMI products based on classic VOMS libraries.

4.5.4.1 Configuring trusted VOMS AC issuers

The VOMS AC signature included in a client’s proxy certificate can be verified in two ways:

1. Get the issuing VOMS server certificate to trust beforehand and use it for signature verification.

2. Configure the lists of certificates (LSC) to verify the certificate chain in the VOMS AC.
In case of errors detected in VOMS AC processing, A-REX behavior depends on the voms_processing

configuration variable (see Section 6.1.12.2, Commands affecting the A-REX Web Service communication
interface and 6.1.4.1, General commands).

Getting the VOMS server certificate. This was historically the first method of VOMS server signature
verification based on retrieval of the server public key.

THIS CONFIGURATION METHOD IS NOW OBSOLETE AND UNSUPPORTED SINCE ARC 1.0.0!

Among all EGI-supported grid services there are only few that do not support LSC files configuration —
glite-FTS and glite-WMS for gLite 3.1. If legacy VOMS credentials setup is required for those services,
please refer to appropriate documentation.

Configure lists of certificates. The trust chain from the Certificate Authority (CA) to the VOMS AC
issuing server certificate needs to be described in order to verify ACs in clients’ proxies issued by that server.
Generally, the VOMS server certificate is signed by the CA directly, so there is only two certificates in the
chain of trust, but it can be much longer in other cases.

Chains of trust are configured in *.LSC files. Each line of the LSC file lists a single certificate SN starting
from the VOMS server and continues up the trust chain ending with the root CA certificate SN. The following
is an example of an LSC file for the voms.ndgf.org server:

/0=Grid/O=NorduGrid/CN=host/voms.ndgf.org
/0=Grid/0=NorduGrid/CN=NorduGrid Certification Authority

In some rare cases (e.g. host certificate change and/or moving to different CA) it is possible to specify
several lists per hostname, separating them with —————- NEXT CHAIN —————— line (the ARC parser
uses NEXT CHAIN match only, but classic VOMS libraries require exactly six dashes and space around it,
so it is better to put it there for compatibility).

The following is an example of several chains in a single LSC-file:

/DC=org/DC=ugrid/O=hosts/0=KNU/CN=host/grid.org.ua
/DC=0org/DC=ugrid/CN=UGRID CA

—————— NEXT CHAIN —-————-—
/DC=org/DC=ugrid/O=hosts/0=KNU/CN=grid.org.ua
/DC=o0rg/DC=ugrid/CN=UGRID CA

To get the trust chain of SNs for the VOMS server either contact the VO manager or use openssl for
known VOMS servers:

echo | openssl s_client -connect <server:port> 2>/dev/null \
| openssl x509 -noout -subject —-issuer

https://voms.ndgf.org:8443/vomses/

58 CHAPTER 4. CONFIGURATION

Here <port> is typically the standard VOMS-Admin https interface port — 8443. Port of the vomsd daemon
listed in the vomses file can also be used.

The location of LSC files for ARC is fixed and compatible with other EMI software’s default setup:
/etc/grid-security/vomsdir/<VO>/<hostname>.lsc

Creation of an additional LSC file or modifying an old can be performed without A-REX restart.

Another ARC-specific way exists to configure trust chains without creation of *.LSC files for each VOMS
server — define voms_trust_chain configuration options that contain information about all trusted issuers
in one place.

This approach is more useful with A-REX standalone installations that provide resources for a few VOs. In
contrast the LSC files based solution is more scalable and compatible with other EMI software.

These variables can be specified in the [common] configuration block and extended in [grid-manager]
and/or [gridftpd] blocks:

voms_trust_chain="/0=Grid/O=NorduGrid/CN=host/arthur.hep.lu.se" "/0=Grid/O=NorduGrid/CN=NorduGrid Certification Authority"
voms_trust_chain="/0=Grid/0O=NorduGrid/CN=host/emi-arc.eu" "/0=Grid/O=NorduGrid/CN=NorduGrid Certification Authority"
voms_trust_chain=""/0=Grid/O=NorduGrid"

NOTE! A defined voms_trust_chain option will override the information in *.LSC files.

Unlike LSC files the voms_trust_chain option supports regular expressions syntax. After voms_trust_chain
modification services should be restarted to apply changes.

4.5.4.2 Configuring VOMS AC signing servers to contact

Clients rely on VOMSes configuration. VOMSes refers to a list of VOMS servers that are used to manage
the supported VOs, more precisely speaking — VOMS AC signing daemons’ contact parameters.

The old way of specifying VOMSes is to put all VOs configuration into a single file /etc/vomses. Each
line should be written in the following format:

"alias" "host address" "TCP port" "host certificate SN" "official VO name"

It is advised to have alias the same as official VO name: several VOMS client versions mix them. If several
VOMS servers are used by the VO for redundancy, specify them on separate lines. These parameters can be
found in the “Configuration” section of VOMS-Admin labeled “VOMSES string for this VO”.

With recent versions of grid software it is possible to maintain a separate VOMSes files for each VO.
This files should be placed in the VOMSes directory — /etc/grid-security/vomses/ is used by de-
fault but can be redefined with X509_VOMSES environmental variable. Please refer to client documenta-
tion for more information. For example, to configure support of the nordugrid.org VO, create a file
/etc/grid-security/vomses/nordugrid.org with the following content:

"nordugrid.org" "voms.ndgf.org" "15015" "/0=Grid/O=NorduGrid/CN=host/voms.ndgf.org" "nordugrid.org"

4.5.4.3 Configuring ARC to use VOMS extensions

From the client side, arcproxy already has built-in support for VOMS AC extensions, so no additional
configuration is required unless it is desired to redefine VOMSes path.

To utilize VOMS AC extensions in A-REX there are several possibilities:

e using an access control filter based on VOMS AC (see section 4.4.1, Access control: users, groups,
VOs for details)

e using LCAS/LCMAPS authorization and mapping (see section 4.5.7, Using LCAS/LCMAPS for de-
tails)

e using external plugins that operate with VOMS AC (e.g. arc-vomsac—check)

4.5. ENHANCING CE CAPABILITIES 99

4.5.5 Dynamic vs static mapping

There are many debates on using static or dynamic local account mapping policy. Historically, ARC initially
supported only static mapping. Currently, ARC and all middlewares involved in the EMI project support
and can be configured to use any combination of the two.

4.5.5.1 Static mapping

The main reason of using a static account mapping policy is to simplify administration of grid services.
Static mapping works by assigning a fixed operating system account to a grid user identified by his/her SN.
General practice is to map all grid users to one or a few operating system accounts dedicated to grid jobs.

The most significant drawback of sharing local accounts is that different grid users are indistinguishable for
the underlying system infrastructure. There is no easy way to securely isolate different jobs running with
the same credentials or implement complex scheduling policy in the LRMS with reservations and priorities
as well as employ flexible disk space allocation policy.

On the other hand, if every grid user is mapped to a dedicated local account, there is significant increase of
administration burden. Individual mappings and their permissions may need to be manually synchronized
with grid user directories (like VOMS or Globus CAS).

4.5.5.2 Dynamic mapping

A dynamic mapping policy allows to provide every grid user with a separate dynamically leased local account
and to deploy more secure and flexible configurations. Generally, dynamic mapping involves using multiple
pools of local accounts for different classes of grid users.

Common examples of such classes include VOs and groups/roles in the VOs. This allows for building
authorization and mapping policies in terms of VOMS FQANs additionally to user SNs, which is very
common as a site usually provides resources for more than one VO.

Each grid user accessing some site service gets mapped to a local account which is leased from an appropriate
pool. Policy rules define how to select that pool depending on the VOMS AC presented by the user as a
part of his/her proxy-certificate. A user accessing the same site with different credentials generally will be
mapped differently, depending on FQANSs included.

Each grid user gets separated from other local and grid users by means of the underlying operating system
because with dynamic mapping every grid user is mapped to a dedicated local account. If the local account
lease is not used for some period of time, it is released and can be assigned to another grid user.

Pool accounts can belong to specific local groups which can be a subject of LRMS scheduling policy or disk
quotas. Authorization and mapping policies should be updated only in the case when a new role or group
is introduced in a VO, update in case of user membership changes is not necessary.

There are different approaches to the implementation of a dynamic mapping policy, including;:

e deploying the ARC built-in simplepool mapping plugin
e using LCMAPS from Site Access Control framework (see section 4.5.7, Using LCAS/LCMAPS)
e using the Argus dedicated authorization service (see section 4.5.6, Using Arqus authorization service)

e using any third-party solution which can be implemented through a call to an external executable

Please note that to completely disable static mapping, an empty grid-mapfile needs to be specified in
the configuration. This is needed because users are always mapped to accounts in the grid-mapfile by
default. And because the grid-mapfile is used as the primary authorization list by default the option
allowunknown="yes" must be specified in the [gridftpd] section to turn that check off.

Also for security purposes it is advisable to always provide a fallback mapping rule to map the user to a safe
or nonexiting local account in case all the dynamic mapping rules failed for some reason.

60 CHAPTER 4. CONFIGURATION

4.5.6 Using Argus authorization service

A-REX with the Web Service (WS) interface enabled (see section 4.5.3, Enabling the Web Services interface)
may directly use the Argus service [? | for requesting authorization decisions and performing client mapping
to a local user account. To make A-REX communicate to Argus PEP or PDP service for every operation
requested through WS interface add the following option to the [grid-manager] section of arc.conf:

arguspep_endpoint="https://arguspep.host:8154/authz"
or
arguspdp_endpoint="https://arguspdp.host:8154/authz"
A-REX can use different XACML profiles for communicating to Argus. Available are
e direct - pass all authorization attributes (only for debugging). No deployed Argus service implements
this profile.

e subject - pass only subject name of client. This is a simplified version of the 'cream’ profile.

e cream - makes A-REX pretend it is a gLite CREAM service. This is currently the recommended profile
for interoperability with gLite based sites.

e emi - a new profile developed in the EMI project. This is the default choice.
Example:
arguspep_profile="cream"
or
arguspdp_profile="cream"

To choose whether the username of the local account provided by Argus PEP should be accepted, the
arguspep_usermap option is used. By default the local account name provided by Argus is ignored. This
can be changed by setting

arguspep_usermap="yes"

Although a corresponding option for Argus PDP server exists, the Argus PDP server itself does not provide
a local user identity in its response yet.

IMPORTANT: note that first mapping rules defined in the [grid-manager] section are processed and
then Argus is contacted. Hence the account name provided by Argus will overwrite the one defined by local
rules.

IMPORTANT: although direct communication with the Argus PEP server is only possible for a WS
enabled A-REX server it is possible to use Argus command line utilities as authorization and account
mapping plugins in the [grid-manager] section of the configuration file. For example:

[grid-manager]
authplugin="ACCEPTED timeout=20 pepcli_wrapper.sh %C/job.%I.proxy"

Content of pepcli_warpper.sh:
#!/bin/sh
pepcli —-pepd https://arguspep.host:8154/authz —--certchain "$1" -v —--cert \
/etc/grid-security/hostcert.pem —--key /etc/grid-security/hostkey.pem \
——capath /etc/grid-security/certificate | grep -F "Permit"

4.5. ENHANCING CE CAPABILITIES 61

The example above uses the authplugin feature of A-REX to perform authorization for the job submission
operation. More sophisticated scenarios may be covered by a more complex pepci-wrapper.sh. For more
information see Argus documentation [?] and description of various plugins sections: 6.1.3, Commands in
the [group] section, 6.1.4, Commands in the [gridftpd] section and 6.1.12.8, Other general commands in the
[grid-manager] section.

4.5.7 Using LCAS/LCMAPS

LCAS stands for Local Centre Authorization Service. Based on configured policies, LCAS makes binary
authorization decisions. Most of LCAS functionality is covered by ARC’s internal authorization mechanism
(see section 6.1.3, Commands in the [group] section), but it can be used for interoperability to maintain a
common authorization policy across different Grid Middlewares.

LCMAPS stands for Local Credential Mapping Service, it takes care of translating Grid credentials to Unix
credentials local to the site. LCMAPS (as well as LCAS) is modular and supports flexible configuration
of complex mapping policies. This includes not only classical mapping using a grid-mapfile generated by
nordugridmap (see section 4.4.1, Access control: users, groups, VOs) but primarily using dynamic pools
and VOMS AC-based mapping using FQAN match which differs in some aspects from the functionality
provided by ARC natively. LCMAPS can be used to implement VO integration techniques and also for
interoperability to maintain a common account mapping policy.

LCAS/LCMAPS libraries are provided by the Site Access Control (SAC) framework [? | that was originally
designed to be called from the gLite middleware stack and the pre-WS part of Globus Toolkit version 4.
ARC can also be configured to employ these libraries.

The main goal of using SAC is to maintain common authorization and Unix account mapping policies for a
site and employ them on multiple services of a site. The framework allows to configure site-wide autorization
policies independently of the contacted service and consistent identity mapping among different services that
use LCAS/LCMAPS libraries, e.g. A-REX, LCG CE (GT4), CREAM CE or GSISSH.

Additionally, the SAC framework provides the SCAS mapping service, an ARGUS client and the gLExec
enforcement executable. More information about its functionality and configuration can be found in the
SAC documentation [? 7 7].

4.5.7.1 Enabling LCAS/LCMAPS

LCAS and LCMAPS can be used by configuring them in the corresponding sections of the configura-
tion file and will be used by the gridftpd jobplugin or fileplugin and the A-REX WS interface. To
avoid undesired behavior of the SAC framework - changing user identity of running process, use and ma-
nipulation of environment variables, etc. - which is harmful for a multithreaded execution environment,
mediator executables are used called arc-1cas and arc-lcmaps correspondingly. They are located at
<ARCinstallation path>/libexec/arc and are invoked by ARC services with grace 60 seconds time-
out to avoid hanging connections. Both executables invoke appropriate functions from shared libraries
(usually 1iblcas.so and liblcmaps.so respectively), so LCAS/LCMAPS must be installed to use it.
Installing the SAC framework is not covered by this manual, please refer to the corresponding EMI docu-
mentation [? ? |.

Although the advised way to use LCAS and LCMAPS is through corresponding dedicated authorization and
mapping rules it is also possible to use the generic plugin capability of ARC and call those executables directly.
Their arguments syntax is the same as one of the corresponding configuration rules with two additional
arguments prepended - subject name of user and path to file containing user credentials. Credentials must
include the full chain of user credentials with optional CA certificate. If file containing X.509 proxy is used
its private key is ignored.

Using LCAS LCAS is configured in the [group] section using an 1cas authorization rule. This com-
mand requires several parameters:

lcas=<LCAS library name> <LCAS library path> <LCAS policy description file>

The corresponding system command to call the mediator executable is

62 CHAPTER 4. CONFIGURATION

arc—lcas <user subject> <user credentials> <LCAS library name> <LCAS library path> \
<LCAS policy description file>

This command can be invoked manually to check the desired operation of LCAS.

The user subject and credentials path can be substituted by A-REX using %D and %P syntax. It is also
necessary to pass the LCAS library name and path to the SAC installation location. The syntax of the
LCAS policy description file is provided later in this section.

Enabling LCAS in arc.conf example:

[group/users]
lcas="liblcas.so /opt/glite/lib /etc/lcas.db"

[gridftpd/jobs]
groupcfg="users"
path="/jobs"
plugin="3jobplugin.so"

And if using authorization plugin functionality section [group/users] can be written

[group/users]
plugin="5 /opt/arc/libexec/arc/arc—-lcas %D %P liblcas.so /opt/glite/lib /etc/lcas.db"

As one can see this syntax may be used to achieve an even higher degree of flexibility by tweaking more
parameters.

Using LCMAPS LCMAPS is configured with an 1cmaps rule for one of the identity mapping commands
- unixmap, unixgroup or unixvo - in the [gridftpd] section. This rule requires several parameters:

lcmaps <LCMAPS library name> <LCMAPS library path> <LCMAPS policy description file> \
<LCMAPS policy name> [<LCMAPS policy name>...]

The corresponding system command to call the mediator executable is

arc-lcmaps <user subject> <user credentials> <LCMAPS library name> \
<LCMAPS library path> <LCMAPS policy description file> \
<LCMAPS policy name> [<LCMAPS policy name>...]

An LCMAPS policy description file can define multiple policies, so additional LCMAPS policy name
parameter(s) are provided to distinguish between them. The syntax of LCMAPS policy description is
provided later in this section.

Enabling LCMAPS in arc.conf example:
[gridftpd]
gridmap="/dev/null”

allowunknown="yes"
unixmap="+* lcmaps liblcmaps.so /opt/glite/lib /etc/lcmaps.db voms"

And if using generic plugin functionality section unixmap command can be written

unixmap="+ mapplugin 30 /opt/arc/libexec/arc/arc-lcmaps %D %P liblcmaps.so \
/opt/glite/lib /etc/lcmaps.db voms"

4.5.7.2 LCAS/LCMAPS policy configuration

LCAS and LCMAPS provide a set of plugins to be used for making the policy decisions. All configuration
is based on the plugins used and their parameters.

4.5. ENHANCING CE CAPABILITIES 63

LCAS configuration To create an access control policy using LCAS, the following set of basic plugins is
needed:

Icas_userallow.mod allows access if SN of the user being checked is listed in the config file provided.
Icas_userban.mod denies access if SN of the user being checked is listed in the config file provided.
Icas_voms.mod checks if FQANSs in user’s proxy certificate VOMS AC match against config file provided.

lcas_timeslots.mod makes authorization decisions based on available time slots (as mentioned in LCAS
documentation “the most useless plugin ever” :-))

The LCAS configuration file (1cas.db) contains several lines with the following format:
pluginname="<module name/path to plugin file>", pluginargs="<arguments>"

Each line represents an authorization policy rule. A positive decision is only reached if all the modules listed
permit the user (logical AND).

LCMAPS configuration LCMAPS plugins can belong to one of two classes, namely acquisition and
enforcement. Acquisition modules gather the information about user credentials or find mapping decisions
that determine the user’s UID, primary GID and secondary GIDs that can then be assigned by enforcement
modules.

LCMAPS basic acquisition modules:

lemaps_localaccount.mod uses account name corresponding to user’s SN in static mapfile (mostly like
classic grid-mapfile).

lcmaps_poolaccount.mod allocates account from a pool corresponding to user’s SN in static mapfile (like
grid-mapfile with “dot-accounts” for Globus with GRIDMAPDIR patch).

Icmaps_voms.mod parses and checks proxy-certificate VOMS AC extension and then fills internal LCMAPS
data structures with that parsed information, which can be used by other plugins invoked later.

Icmaps_voms_localaccount.mod uses static UID value corresponding to user’s VOMS FQAN.
Icmaps_voms_localgroup.mod uses static GID value corresponding to user’s VOMS FQAN.
Icmaps_voms_poolaccount.mod allocates account from a pool corresponding to user’s VOMS FQAN.
Icmaps_voms_poolgroup.mod allocate GID from a pool corresponding to user’s VOMS FQAN.

Icmaps_scas_client.mod passes request to a SCAS server for making the decision.
LCMAPS basic enforcement modules:

lecmaps_posix_enf.mod sets UID/GID by POSIX setreuid () /setregid() calls so that the LCMAPS
caller process after successful enforcement continues running with credentials of an account mapped.

lecmaps_ldap_enf.mod change an information about an account in the LDAP database (uidnumber, gid-
number, memberuid, etc.).

Icmaps_dummy_good.mod does not perform enforcing and returns success in case the mapping was found.
The LCMAPS configuration file (Lcmaps . db) is more complex than LCAS one due to flexibility of policies.

define path to plugable modules

path = /path/to/lcmaps/modules

define actions

<actionl name> = "<modulel name> [<modulel options>]"
<action2 name> = "<module2 name> [<module2 options>]"

64 CHAPTER 4. CONFIGURATION

<actionM name> = "<moduleN name> [<moduleN options>]"
define policies
<policyl name>:

<actionX1l> -> <action on success> [| <action on fault>]
<actionX2> —-> <action on success> [| <action on fault>]
<actionXN> —-> <action on success> [| <action on fault>]

<policyN name>:

<actionYl> -> <action on success> [| <action on fault>]
<actionY2> —-> <action on success> [| <action on fault>]
<actionYN> -> <action on success> [| <action on fault>]

After specifying the path to LCMAPS modules, several actions need to be defined. Each action can be
either an acquisition or enforcement action, depending on the specific module used. If a module requires
parameters, they are specified just after the module filename.

Then defined actions are combined into sequences defining the mapping policy. The first line after policy
name starts the sequence. A module defined by action from the left side of the arrow “->” is executed and
depending on the execution result (positive or negative) another action gets called. The action sequence
ends on enforcement module execution.

To find more information about available pluggable modules and their configuration options, please follow
the LCMAPS documentation [?].

Environment variables To fine-tune or debug LCAS/LCMAPS framework operation, special environ-
mental variables should be used. There is no another way to change e.g. debug level.

LCAS environmental variables:

LCAS_LOGFILE sets location of the logfile

LCAS_LOG_TYPE determines method of logging (lLogfile, syslog, both or none)

LCAS_LOG_STRING specifies text to be prepended to each line to be logged

LCAS DB FILE specifies location of lcas policy file (either absolute or relative to LCAS DIR)
LCAS_DEBUG_LEVEL sets debug level (0-5)

LCAS_MOD DIR sets location of the LCAS plugins (/modules will be added to the end of value specified)
LCAS DIR sets location of LCAS configuration files

LCAS_ETC DIR can be used alternatively to LCAS_DIR for the same purpose
LCMAPS enviromental variables:

LCMAPS LOG _FILE sets location of the logfile

LCMAPS_LOG_TYPE determines method of logging (logfile, syslog, both or none)

LCMAPS _LOG_STRING specifies text to be prepended to each line to be logged

LCMAPS DB _FILE specifies location of lcas policy file (either absolute or relative to LCMAPS_DIR)
LCMAPS DEBUG_LEVEL sets debug level (0-5)

LCMAPS MOD_DIR sets location of the LCMAPS plugins (/modules will be added to the end of value
specified)

LCMAPS DIR sets location of LCMAPS configuration files
LCMAPS ETC DIR can be used alternatively to LCMAPS_DIR for the same purpose

LCMAPS POLICY _STRING determines the list of policies to apply from a configuration file

4.5. ENHANCING CE CAPABILITIES 65

4.5.7.3 Example LCAS configuration
Here is an example of LCAS configuration file:

pluginname=lcas_userban.mod,pluginargs=/etc/grid-security/lcas/ban_users.db
pluginname=lcas_voms.mod, pluginargs="-vomsdir /etc/grid-security/vomsdir/"
" —certdir /etc/grid-security/certificates/"

" —authfile /etc/grid-security/voms—-user-mapfile"

" —authformat simple"

There are two modules used: 1cas_userban.mod and lcas_voms.mod. The list of particular users to ban
(their certificate SNs) is stored in the file /etc/grid-security/lcas/ban_users.db that is passed to
lcas_userban.mod.

If the user’s certificate SN is not directly banned, then VO membership check is performed by 1cas_voms.mod.
The plugin accepts several parameters: vomsdir and certdir paths used to check proxy-certificate and
VOMS AC extension; authfile contains allowed FQANSs specified in a format set by authformat.

Example content of /etc/grid-security/voms—-user-mapfile:

"/dteam" .dteam

"/dteam/Role=1lcgadmin" .sgmdtm"
"/dteam/Role=NULL/Capability=NULL" .dteam
"/dteam/Role=1lcgadmin/Capability=NULL" .sgmdtm
"/VO=dteam/GROUP=/dteam" .dteam
"/VO=dteam/GROUP=/dteam/ROLE=1cgadmin” .sgmdtm

" /VO=dteam/GROUP=/dteam/ROLE=NULL/Capability=NULL" .dteam

" /VO=dteam/GROUP=/dteam/ROLE=1cgadmin/Capability=NULL" .sgmdtm

Ounly the first parameter (FQAN) is used. The second parameter is valuable only for LCMAPS, when it
is configured to use the same file. The several FQAN specification formats are used to support different
versions of the VOMS library. If the latest VOMS library (later than version 2.0.2 from EMI-1) is installed
on a site then just the first two lines are enough, but to keep things safe and support older VOMS, all of
them should be given.

A GACL format of authfile can also be used as well as more options and plugins. Please refer LCAS
documentation for more information.

4.5.7.4 Example LCMAPS configuration

LCMAPS configuration for ARC is not an enforcing configuration (it means that LCMAPS does not actu-
ally apply UID/GID assignment on execution), so the 1cmaps_dummy_good.mod plugin must be used to
accomplish this. The arc-1cmaps executable returns the user name and optionally group name to stdout
which is then used by ARC to perform enforcing by itself.

Simple gridmap behavior For gridmap behaviour the 1cmaps_localaccount .mod plugin can be used
with a grid-mapfile, where the users are mapped to some Unix account(s).

Example 1cmaps.db configuration file:

path = /opt/glite/lib/modules

ACTIONS

do not perform enforcement

good = "lcmaps_dummy_good.mod"

statically mapped accounts

localaccount = "lcmaps_localaccount.mod"

" —gridmapfile /etc/grid-security/grid-mapfile"

POLICIES
staticmap:
localaccount -> good

66 CHAPTER 4. CONFIGURATION

There is only one policy staticmap defined: after localaccount action is called, LCMAPS execution
gets finished.

VOMS AC-based mapping to pools Parsing the VOMS AC is accomplished via the 1cmaps_voms
family of plugins. Account pools and gridmapdir should be created beforehand.

path = /opt/glite/lib/modules

ACTIONS

do not perform enforcement

good = "lcmaps_dummy_good.mod"

parse VOMS AC to LCMAPS data structures
vomsextract = "lcmaps_voms.mod"

" —vomsdir /etc/grid-security/vomsdir"

" —certdir /etc/grid-security/certificates"

FQAN-based pool account mapping

vomspoolaccount = "lcmaps_voms_poolaccount.mod"

" —override_inconsistency"

" -max_mappings_per_credential 1"

" —do_not_use_secondary_gids"

" —gridmapfile /etc/grid-security/voms-user-mapfile"
" —gridmapdir /etc/grid-security/gridmapdir"

FQAN-based group mapping

vomslocalgroup = "lcmaps_voms_localgroup.mod"

" —groupmapfile /etc/grid-security/voms—group-mapfile"
" -mapmin 1"

#POLICIES

voms :

vomsextract —-> vomspoolaccount | good
vomspoolaccount —-> vomslocalgroup | good
vomslocalgroup —> good

Configuration requires voms—group-mapfile which maps FQANs to groups and voms-user-mapfile
which maps FQANS to accounts from pools. Directories vomsdir and certdir in vomsextract config-
uration are used to check VOMS AC validity.

Example content of /etc/grid-security/voms—-user-mapfile is provided in section 4.5.7.3, Exam-
ple LCAS configuration. The second parameter indicates the Unix account used to accomplish mapping for
specified FQAN. Notice the dot prepending an account name — that means that a free pool account will be
used instead of a single account.

For example, there are 50 pool accounts named dteam01, dteam02 ...dteam50. Specifying .dteam in
voms—user-mapfile means that LCMAPS needs to get any unused account from the pool and assign
it to the user’s SN:FQAN pair. Already leased accounts are tracked by hard-linking the account file to a
url-encoded SN:FQAN pair file in the gridmapdir.

File voms—-group—-mapfile is simillar to voms—-user-mapfile, but the second parameter indicates a
group name. If the parameter has a dot prepended like in voms-user-mapfile, it defines the name of
the pool of groups that can be used with the 1cmaps_voms_poolgroup.mod plugin.

There is only one policy defined — voms. Action vomsextract gets executed first and on success vomspoolaccount
module is used. If validation and parsing the VOMS AC has failed then LCMAPS execution finishes. When

called vomspoolaccount allocates an account from the pool, LCMAPS moves on to finding an appropriate

group by vomslocalgroup action. LCMAPS execution is finished if vomspoolaccount had no success

and after vomslocalgroup has finished operation successfully.

Chapter 5

Operations

5.1 Starting and stopping CE services

5.1.1 Overview

There are three components needed for a production level CE to work:

e gridftpd : Starts the gridftpd interface. Brings up the server (configured in the [gridftpd] block)
and all the services related to it (configured in all the [gridftpd/subsection] blocks).
Usually located in /etc/init.d/
See Section 4.3.4, The [gridftpd] section: the job submission interface for configuration details.

e a-rex : Starts A-REX, the grid manager (configured in the [grid-manager] block). It prepares
the configuration files and starts the arched hosting environment process.
Starts the Web Services interface only if it has been enabled. See Section 4.5.3, Enabling the Web
Services interface
Starts LRMS scripts. See Section 4.4.2; Connecting to the LRMS for configuration details.
Usually located in /etc/init.d/
See Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched for configuration
details.

e nordugrid-arc-slapd, nordugrid-arc-bdii and nordugrid-arc-inforeg : Starts the
LDAP server, the infosystem scripts and infosystem registration scripts (configured in the [infosys]
configuration block and its subsections).

Usually located in /etc/init.d/
See Section 4.3.5, The [infosys] section: the local information system for configuration details.

5.1.2 Validating CE setup

Before starting the CE, and also after any configuration changes are made, it is a good idea to validate the
setup using the validate option of the A-REX init script. Run (as root user):

/etc/init.d/a-rex validate

This checks the CE environment and configuration and prints a summary of issues. Please read the output
carefully and make any necessary changes before starting the CE. Example output:

/etc/init.d/a-rex validate

W: Timecheck: Your time differs slightly 0.005378 seconds) from the public \
time server ’europe.pool.ntp.org’.

E: Permission of ’/etc/grid-security/hostkey.pem’ must be 'r-———————-
E: cachedir: not existing at ’/home/grid/cache’

W: /etc/arc.conf:101: duplicate parameter path
/etc/grid-security/hostcert.pem: OK

67

68 CHAPTER 5. OPERATIONS

Found 2 failures.
Found 2 non-critical issues.

The exit code is the number of failures found.

5.1.3 Starting the CE

To start a CE, issue the following commands with root rights in the following order:

1. # service gridftpd start

2. # service a-rex start

3. # service nordugrid-arc-slapd start
4. # service nordugrid-arc-bdii start

5. # service nordugrid-arc-inforeg start
Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/gridftpd start

2. # /etc/init.d/a-rex start

3. # /etc/init.d/nordugrid-arc-slapd start
4. # /etc/init.d/nordugrid-arc-bdii start

5. # /etc/init.d/nordugrid-arc-inforeg start

Note: If ARC-related environment variables are set, for example $ARC_LOCATION or $ARC_CONFIG,
then the second form must be used in order to pass those variables through to the script.

5.1.4 Stopping the CE

To stop a CE, issue the following commands with root rights in the following order:

1. # service nordugrid-arc-inforeg stop
2. # service nordugrid-arc-bdii stop

3. # service nordugrid-arc-slapd stop
4. # service a-rex stop

5. # service gridftpd stop
Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/nordugrid-arc—-inforeg stop
2. # /etc/init.d/nordugrid-arc-bdii stop

3. # /etc/init.d/nordugrid-arc-slapd stop
4. # /etc/init.d/a-rex stop

5. # /etc/init.d/gridftpd stop

5.1. STARTING AND STOPPING CE SERVICES 69

5.1.5 Verifying the status of a service

To check the status of a service, issue the command:
service <servicename> status

Alternatively the exact same procedure can be used calling the scripts directly:
/etc/init.d/<servicename> status

where <servicename> is one of gridftpd, a-rex, grid-infosys
Depending on the security configuration, root permissions might be needed to execute these commands.

A CE is fully funtional when all the three scripts return an OK status.

70 CHAPTER 5. OPERATIONS

5.2 Testing a configuration

This chapter gives instructions on how to test and troubleshoot that a given configuration is correct, and
that everything is running properly.

Things to check are, in order of importance:

1. The information system is running and publishing the correct information. Without a
properly configured information system, the clients will not be able to query the cluster for its resources
and do an efficient brokering.

See Section 5.2.1, Testing the information system

2. A-REX is running with valid certificates installed.
See Section 5.2.2, Testing whether the certificates are valid

3. The job submission interface is listening and accepting jobs.
See Section 5.2.3, Testing the job submission interface

4. LRMS configuration is correct and a job can be executed on the queues.
See Section 5.2.4, Testing the LRMS
5.2.1 Testing the information system

The ARC-CE information system publishes in LDAP and WebServices/XML format.

To test if the LDAP information system is running, ldap tools must be installed. In particular the tool called
ldapsearch [?].

To test if the WS information system is running, ARC suggests its own tool called arcwsrf [?].

5.2.1.1 Check NorduGrid Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following;:
ldapsearch -x -H ldap://localhost:2135 -b 'mds-vo-name=local,o=grid’

and the result should be something like the one in Figure 5.1.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’'mds-vo-name=local,o=grid’

The result must be the similar to the one in Figure 5.1.

All the values must be consistent with the setup. For example, nordugrid-cluster-name must be the machine’s
hostname.

5.2.1.2 Check Glue 1.x Schema publishing
To check if the information system is creating the needed ldap trees and publishing them, issue the following:
ldapsearch -x —-H ldap://localhost:2135 -b 'mds-vo-name=resource, o=grid’

and the result should be something like the one in Figure 5.2.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x —-H ldap://<hostname>:2135 -b ’'mds-vo-name=resource, o=grid’

The result must be the similar to the one in Figure 5.2.

5.2. TESTING A CONFIGURATION

extended LDIF
LDAPV3

filter: (objectclass=x*)
requesting: ALL

H= H H = I I I

local, Grid

dn: Mds-Vo-name=local, o=Grid
objectClass: Mds

objectClass: MdsVo
Mds—-Vo-name: local
Mds-validfrom: 20110811172014%
Mds-validto: 20110811182014%

piff.hep.lu.se, local, grid

dn: nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-name=local,o=grid

nordugrid-cluster-totalcpus: 2
nordugrid-cluster-homogeneity:

base <mds-vo-name=local, o=grid> with scope subtree

TRUE

nordugrid-cluster-name: piff.hep.lu.se

nordugrid-cluster—-lrms-version:

0.9

nordugrid-cluster-middleware: nordugrid-arc-1.0.1
nordugrid-cluster-middleware: globus-5.0.3

nordugrid-cluster-trustedca: /0=Grid/O=NorduGrid/CN=NorduGrid Certification Au

thority

nordugrid-cluster-cpudistribution: 2cpu:l
nordugrid-cluster-sessiondir-lifetime: 10080

nordugrid-cluster-issuerca: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12

nordugrid-cluster-credentialexpirationtime: 20110807141455Z
nordugrid-cluster-lrms-type: fork
nordugrid-cluster—-sessiondir—free: 129566
nordugrid-cluster-sessiondir-total: 143858

nordugrid-cluster—-architecture:

nordugrid-cluster-prelrmsqueued:

nordugrid-cluster-comment: This

nordugrid-cluster-contactstring:
nordugrid-cluster-issuerca-hash:

nordugrid-cluster—-totaljobs: O

x86_64

0

is a minimal out-of-box CE setup
gsiftp://piff.hep.lu.se:2811/jobs
8050ebf5

nordugrid-cluster-aliasname: MINIMAL Computing Element

nordugrid-cluster-usedcpus: 0
objectClass: Mds

objectClass: nordugrid-cluster
Mds-validfrom: 20110811172104%
Mds-validto: 20110811172204Z

fork, piff.hep.lu.se, local,

e=local,o=grid
nordugrid-queue-running: 0

Figure 5.1: Output of an ldapsearch on a CE

grid
dn: nordugrid-queue—name=fork,nordugrid-cluster—-name=piff.hep.lu.se,Mds-Vo—nam

71

72 CHAPTER 5. OPERATIONS

ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’'mds-vo-name=resource, o=grid’
extended LDIF

#
#
LDAPvV3

base <mds-vo-name=resource,o=grid> with scope subtree
filter: (objectclass=x)

requesting: ALL

#

resource, Grid

dn: Mds-Vo-name=resource, o=Grid
objectClass: Mds

objectClass: MdsVo

Mds-Vo-name: resource
Mds-validfrom: 20110822130627%Z
Mds-validto: 201108221406272Z

piff.hep.lu.se, resource, grid

dn: GlueClusterUniqueID=piff.hep.lu.se,Mds-Vo-name=resource,o=grid
objectClass: GlueClusterTop

objectClass: GlueCluster

objectClass: GlueSchemaVersion

objectClass: GlueInformationService

objectClass: GlueKey

GlueClusterUniqueID: piff.hep.lu.se

GlueClusterService: piff.hep.lu.se

GlueSchemaVersionMinor: 2

GlueForeignKey: GlueCEUniquelID=piff.hep.lu.se:2811/nordugrid-fork-arc
GlueForeignKey: GlueSiteUniqueID=MINIMAL Infosys configuration
GlueSchemaVersionMajor: 1

GlueClusterName: MINIMAL Infosys configuration

MINIMAL Infosys configuration, resource, grid

dn: GlueSiteUniqueID=MINIMAL Infosys configuration,Mds-Vo-name=resource,o=grid
GlueSiteDescription: ARC-This is a minimal out-of-box CE setup
GlueSiteSecurityContact: mailto: -1

objectClass: GlueTop

objectClass: GlueSite

objectClass: GlueKey

objectClass: GlueSchemaVersion

GlueSiteSysAdminContact: mailto: -1

GlueSiteName: MINIMAL Infosys configuration

GlueSiteUniqueID: MINIMAL Infosys configuration
GlueSchemaVersionMinor: 2

GlueSiteLongitude: 25

GlueSitelLatitude: 54

GlueSchemaVersionMajor: 1

GlueForeignKey: None

GlueSiteOtherInfo: Middleware=ARC

GlueSiteUserSupportContact: mailto: -1

GlueSiteWeb: http://www.eu-emi.eu

GlueSiteLocation: Somewhere, Earth

piff.hep.lu.se:2811/nordugrid-fork-arc, resource, grid

dn: GlueCEUniquelID=piff.hep.lu.se:2811/nordugrid-fork-arc,Mds-Vo-name=resource
,o=grid

GlueCEStateStatus: Production

GlueCEStateTotalJobs: 0

GlueCEInfoJobManager: arc

GlueCEInfoHostName: piff.hep.lu.se

GlueCEUniquelID: piff.hep.lu.se:2811/nordugrid-fork-arc

GlueCEStateFreeJobSlots: 2

GlueForeignKey: GlueClusterUniqueID=piff.hep.lu.se

search result
search: 2
result: 0 Success

numResponses: 9
numEntries: 8

Figure 5.2: Sample glue 1.x infosystem output on a ldap query. The output has been shortened for ease of
reading.

5.2. TESTING A CONFIGURATION 73

5.2.1.3 Check LDAP GLUE2 Schema publishing
To check if the information system is creating the needed ldap trees and publishing them, issue the following:
ldapsearch -x -H ldap://localhost:2135 -b 'o=glue’

and the result should be something like the one in Figure 5.3.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x —-H ldap://<hostname>:2135 -b ’o=glue’

The result must be the similar to the one in Figure 5.3.

5.2.1.4 Check WS/XML GLUE2 Schema publishing

First a proxy certificate is needed and these credentials must be authorised on the CE to test, see [?].

Call the arcwsrf test tool:
$ arcwsrf https://<hostname>:<a-rex port>/<a-rex path>

where <a-rex port> <a-rex path> are those specified in Section 4.5.3, Enabling the Web Services
interface.

The output should look like in Figure 5.4
5.2.1.5 Further testing hints

If nothing is published or the query hangs, then there can be something wrong with ldap or A-REX.

Check slapd logs to find out the problem in the former case, A-REX logs in the latter. Please see also
Section 5.4, Log files.

5.2.2 Testing whether the certificates are valid

While A-REX is running, check the logfile specified with the 1ogfile option in the [grid-infosys]
block in /etc/arc.conf:

[grid-infosys]

logfile="/tmp/grid-manager.log"

It will contain information on expired certificates or certificates about to expire, see Figure 5.5.

While ARIS is running, is possible to get that information as well from its logfiles specified with the
providerlog option in the [infosys] block in /etc/arc.conf :

[infosys]

providerlog="/tmp/infoprovider.log"

It will contain information about expired certificates, see Figure 5.6.

The certificates’ dates can be inspected by using openssl commands. Please refer to the certificate mini
How-to

To understand how to read the logs please refer to Section 5.4, Log files

http://www.nordugrid.org/documents/certificate_howto.html
http://www.nordugrid.org/documents/certificate_howto.html

74 CHAPTER 5. OPERATIONS

$ ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’o=glue’
[...]

glue

dn: o=glue

objectClass: top

objectClass: organization

o: glue

urn:ogf:AdminDomain:hep.lu.se, glue

dn: GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue
objectClass: GLUE2Domain

objectClass: GLUE2AdminDomain

GLUE2EntityName: hep.lu.se

GLUE2DomainID: urn:ogf:AdminDomain:hep.lu.se

urn:ogf:ComputingService:hep.lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue

dn: GLUE2ServiceID=urn:ogf:ComputingService:hep.lu.se:piff,
GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se, o=glue

GLUE2ComputingServiceSuspendedJobs: 0

GLUE2EntityValidity: 60

GLUE2ServiceType: org.nordugrid.execution.arex

GLUE2ServiceID: urn:ogf:ComputingService:hep.lu.se:piff

objectClass: GLUE2Service

objectClass: GLUE2ComputingService

GLUE2ComputingServicePreLRMSWaitingJobs: 0

GLUE2ServiceQualityLevel: development

GLUE2ComputingServiceWaitingJobs: 0

GLUE2ServiceComplexity: endpoint=1, share=1, resource=1

GLUE2ComputingServiceTotalJobs: 0

GLUE2ServiceCapability: executionmanagement.jobexecution

GLUE2ComputingServiceRunningJobs: 0

GLUE2ComputingServiceStagingJobs: 0

GLUE2EntityName: piff

GLUE2ServiceAdminDomainForeignKey: urn:ogf:AdminDomain:hep.lu.se

GLUE2EntityCreationTime: 2011-08-22T13:23:24%

urn:ogf:ComputingEndpoint:piff.hep.lu.se:443,
urn:ogf:ComputingService:hep.lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue

dn: GLUE2EndpointID=urn:ogf:ComputingEndpoint:piff.hep.lu.se:443,
GLUE2ServiceID=urn:ogf:ComputingService:hep.lu.se:piff,
GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se, o=glue

GLUE2ComputingEndpointRunningJobs: 0

GLUE2ComputingEndpointStaging: staginginout

GLUE2EntityValidity: 60

GLUE2EndpointQualityLevel: development

GLUE2EndpointImplementor: NorduGrid

GLUE2EntityOtherInfo: MiddlewareName=EMI

GLUE2EntityOtherInfo: MiddlewareVersion=1.1.2-1

GLUE2EndpointCapability: executionmanagement.jobexecution

GLUE2EndpointHealthState: ok

GLUE2EndpointServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff

GLUE2EndpointTechnology: webservice

GLUE2EndpointWSDL: https://piff.hep.lu.se/arex/?wsdl

GLUE2EndpointInterfaceName: ogf.bes

GLUE2ComputingEndpointWaitingJobs: 0

GLUE2ComputingEndpointComputingServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff

GLUE2EndpointURL: https://piff.hep.lu.se/arex

GLUE2Comput ingEndpointSuspendedJobs: 0

GLUE2EndpointImplementationVersion: 1.0.1

GLUE2EndpointSemantics: http://www.nordugrid.org/documents/arex.pdf

GLUE2ComputingEndpointPreLRMSWaitingJobs: 0

GLUE2EndpointIssuerCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29

GLUE2EndpointServingState: production

GLUE2ComputingEndpointStagingJobs: 0

objectClass: GLUE2Endpoint

objectClass: GLUE2ComputingEndpoint

GLUE2EndpointInterfaceVersion: 1.0

GLUE2EndpointSupportedProfile: http://www.ws-i.org/Profiles/BasicProfile-1.0.html

GLUE2EndpointSupportedProfile: http://schemas.ogf.org/hpcp/2007/01/bp

GLUE2EndpointImplementationName: ARC

GLUE2EndpointTrustedCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29

GLUE2EndpointTrustedCA: /0=Grid/O=NorduGrid/CN=NorduGrid Certification Authority

GLUE2ComputingEndpointJobDescription: ogf:jsdl:1.0

GLUE2ComputingEndpointJobDescription: nordugrid:xrsl

GLUE2EndpointID: urn:ogf:ComputingEndpoint:piff.hep.lu.se:443

GLUE2EntityCreationTime: 2011-08-22T13:23:24Z

[...]

search result

search: 2

result: 0 Success

numResponses: 6

numEntries: 5

Figure 5.3: Sample LDAP search output on GLUE2 enabled infosystem. The output has been shortened
with [...] for ease of reading.

5.2. TESTING A CONFIGURATION (0]

<wsrf-rp:GetResourcePropertyDocumentResponse><InfoRoot>
<Domains xmlns="http://schemas.ogf.org/glue/2008/05/spec_2.0_d41_r01" [...]>
<AdminDomain BaseType="Domain">
<ID>urn:ogf:AdminDomain:hep.lu.se</ID>
<Name>hep.lu.se</Name>
<Services>
<ComputingService BaseType="Service" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingService:hep.lu.se:piff</ID>
<Name>piff</Name>
<Capability>executionmanagement. jobexecution</Capability>
<Type>org.nordugrid.execution.arex</Type>
<QualityLevel>development</QualityLevel>
<Complexity>endpoint=1, share=1, resource=1</Complexity>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<ComputingEndpoint BaseType="Endpoint" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ID>
<OtherInfo>MiddlewareName=EMI</OtherInfo>
<OtherInfo>MiddlewareVersion=1.1.2-1</OtherInfo>
<URL>https://piff.hep.lu.se:60000/arex</URL>
<Capability>executionmanagement. jobexecution</Capability>
<Technology>webservice</Technology>
<InterfaceName>ogf.bes</InterfaceName>
<InterfaceVersion>1.0</InterfaceVersion>
<WSDL>https://piff.hep.lu.se:60000/arex/?wsdl</WSDL>
<SupportedProfile>http://www.ws—1i.org/Profiles/BasicProfile-1.0.html</SupportedProfile>
<SupportedProfile>http://schemas.ogf.org/hpcp/2007/01/bp</SupportedProfile>
<Semantics>http://www.nordugrid.org/documents/arex.pdf</Semantics>
<Implementor>NorduGrid</Implementor>
<ImplementationName>ARC</ImplementationName>
<ImplementationVersion>1.0.1</ImplementationVersion>
<QualityLevel>development</QualityLevel>
<HealthState>ok</HealthState>
<ServingState>production</ServingState>
<IssuerCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</IssuerCA>
<TrustedCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</TrustedCA>
<TrustedCA>/0=Grid/O=NorduGrid/CN=NorduGrid Certification Authority</TrustedCA>
<Staging>staginginout</Staging>
<JobDescription>ogf:jsdl:1.0</JobDescription>
<JobDescription>nordugrid:xrsl</JobDescription>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<Associations>
<ComputingShareID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ComputingShareID>
</Associations>
<ComputingActivities>
</ComputingActivities>
</ComputingEndpoint>
<ComputingShare BaseType="Share" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ID>
<Name>fork</Name>
<Description>This queue is nothing more than a fork host</Description>
<MappingQueue>fork</MappingQueue>

<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<FreeSlots>2</FreeSlots>
<FreeSlotsWithDuration>2</FreeSlotsWithDuration>
<UsedSlots>0</UsedSlots>
<RequestedSlots>0</RequestedSlots>
<Associations>
<ComputingEndpointID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ComputingEndpointID>
<ExecutionEnvironmentID>urn:ogf:ExecutionEnvironment:hep.lu.se:piff:fork</ExecutionEnvironmentID>
</Associations>
</ComputingShare>
<ComputingManager BaseType="Manager" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingManager:hep.lu.se:piff</ID>

</ComputingManager>
</ComputingService>
</Services>
</AdminDomain>
</Domains>
</InfoRoot>
</wsrf-rp:GetResourcePropertyDocumentResponse>

Figure 5.4: Sample ARC WS information system XML output. The output has been shortened with [...] for
ease of reading.

76

CHAPTER 5. OPERATIONS

[2011-08-05 11:12:53] [Arc] [WARNING] [3743/406154336] Certificate /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
will expire in 2 days 5 hours 2 minutes 1 second

[2011-08-05 11:12:53]

[Arc] [WARNING]

[3743/406154336]

will expire in 2 days 5 hours 2 minutes 1 second

Figure 5.5:

[2011-08-12 10:39:46]
[2011-08-12 10:39:46]
[2011-08-12 10:39:46]
[2011-08-12 10:39:46]

[2011-08-12 10:39:46]
[2011-08-12 10:39:46]

[2011-08-12 10:39:46]
[2011-08-12 10:39:46]
[2011-08-12 10:39:46]

HostInfo:
HostInfo:
HostInfo:
HostInfo:

HostInfo:
HostInfo:

HostInfo:
HostInfo:
HostInfo:

A sample certificate information taken from A-REX logs.

WARNING:
WARNING:
WARNING:
WARNING:

WARNING:
WARNING:

WARNING:
WARNING:
WARNING:

Host certificate is expired in file: /etc/grid-security/hostcert.pem

Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.
Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.

Issuer CA certificate is expired in file:
/etc/grid-security/certificates/8050eb£f5.0

Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.

Issuer CA certificate is expired in file:
/etc/grid-security/certificates/917bb2c0.0

Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.
Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.
Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.

Figure 5.6: A sample certificate information taken from ARIS logs.

5.2.3 Testing the job submission interface

To test the job submission interface an ARC Client is needed, such as the arc* tools.

Certificate /DC=eu/DC=KnowARC/O=Lund University/CN=demol

79

12

12

44

To install an ARC Client refer to http://www.nordugrid.org/documents/arc-client—-install.

htmll

Once the clients are installed, the arctest utility can be used to submit test jobs.

Usage of this tool is out of the scope of this manual. Refer to [? | for further information.

To test basic job submission try the following command:

arctest -c <hostname fgdn> -J 1

The job should at least be submitted succesfully.

5.2.4 Testing the LRMS

Each LRMS has its own special setup. Nevertheless it is good practice to follow this approach:

1. submit a job that includes at least these two lines:

("stderr"

= "stderr")
("gmlog" o "gmlog")

The first one will pipe all standard errors to a file called stderr, while the second will generate all the
needed debugging information in a folder called gmlog.

2. retrieve the job with arcget -a.

3. In the job session folder just downloaded, check the gmlog/errors file to see what the job submission
script was and if there are some LRMS related errors.

The rest of LRMS troubleshooting is LRMS dependent, so please refer to each LRMS specific guide and

logs.

http://www.nordugrid.org/documents/arc-client-install.html
http://www.nordugrid.org/documents/arc-client-install.html

5.3. ADMINISTRATION TOOLS 7

5.3 Administration tools

A-REX comes with some administration utilities to help the system administrator. These tools are located at
$ARC_LOCATION/libexec/arc (SARC_LOCATION is normally /usr for standard installation from packages
on Linux). Most of the utilities in this directory are for A-REX’s own internal use, but the following may
also be used by humans:

e gm-jobs — displays information related to jobs handled by A-REX. Different types of information may
be selected by using various options. This utility also can perform simple management operations -
currently cancelling processing of specific jobs and removing them. Default behavior is to print minimal
information about all jobs currently handled by A-REX and some statistics. See gm-jobs -h for a list
of possible options.

e cache-clean — This tool is used periodically by A-REX to keep the size of each cache within the

configured limits. cache-clean -h gives a list of options. The most useful option for administrators is
-5, which does not delete anything, but gives summary information on the files in the cache, including
information on the ages of the files in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to
temporarily clean up the cache with different size limits to those specified in the configuration, or to
improve performance by running it on the file system’s local node as mentioned in 4.4.3, Enabling the
cache.

e cache-list — This tool is used to list all files present in each cache or, given a list of URLs as arguments,
shows the location of each URL in the cache if present. In the first case it simply reads through all the
cache .meta files and prints to stdout a list of all URLSs stored in each cache and their corresponding
cache filename, one per line. In the second case the cache filename of each URL is calculated and then
each cache is checked for the existence of the file.

78

CHAPTER 5. OPERATIONS

5.4 Log files

ARC CE log files paths are configured in arc.conf for each component according to the following table:

Component Configuration section | More information
A-REX [grid-manager] in subsection 4.3.3%
gridftpd interface [gridftpd] in subsection 4.3.4%
infoproviders [infosys] in subsection 4.3.5%
infoproviders ldap server [infosys] in subsection 4.3.5%

5.4.1 The format of the log files

The format of arc log files is the following:

A-REX [Date] [Component name] [error level] [pid/thread] Message
gridftpd [Date] [Component name] [error level] [pid/thread] Message
infoproviders [Date] infprovider script name: error level: Message
infoprovider registration | Date pid file of script process Message

5.5 Modules of the A-REX

The A-REX consists of several separate modules. These are:

libarex.so — The main module providing main functionality and web interface. It is implemented as
HTTP and SOAP service inside HED. It is responsible for processing jobs, moving them through states
and running other modules.

downloader — This is a legacy module responsible for gathering input files in the SD. It processes the
job.ID.input file and updates it. The downloader has been replaced by Data Transfer Reloaded (see
Section 4.4.4, Configuring Data Staging).

uploader — This legacy module is responsible for delivering output files to the specified SEs and regis-
tration at an Indexing Service (like LFC) as needed. It processes and updates the job.ID.output file.
The uploader has also been replaced by Data Transfer Reloaded.

gm-kick — Sends a signal to the A-REX though a FIFO file to wake it up. It’s used to increase
responsiveness of A-REX.

CFEinfo.pl — Collects and generates information about computing resource as XML document in Nordu-
Grid and Glue 2 format.

The following modules are always run under the Unix account to which a Grid user is mapped.

smitp-send.sh and smip-send — These are the modules responsible for sending e-mail notifications to
the user. The format of the mail messages can be easily changed by editing the simple shell script
smip-send.sh.

submit-*-job — Here * stands for the name of the LRMS. Currently supported LRMS are PBS/Torque,
Condor, LoadLeveler, LSF, SLURM, and SGE. Also fork pseudo-LRMS is supported for testing pur-
poses. This module is responsible for job submission to the LRMS.

cancel-*-job — This script is for canceling jobs which have been already submitted to the LRMS.

scan-*-job -This shell script is responsible for notifying the A-REX about completion of jobs. Its
implementation for PBS uses server logs to extract information about jobs. If logs are not available it
uses the less reliable gstat command for that. Other backends use different techniques.

5.6. COMMON TASKS 79

5.6 Common tasks

In this section the sysadmin will find some acknowledged ways of performing common tasks on an ARC

CE. The

information gathered here has been collected over time by ARC experts to fulfill the needs of the

communities using ARC.

Tags on each task will show what is the related area of expertise.

5.6.1

How to ban a single user based on his/her DN?

Tags: Security, Authorization

This task can be performed in two ways, by using the [vo] and [group] blocks in arc.conf.

Solution 1 This solution does not require to restart A-REX.

1

. Create a file containing the DNs of the users to ban, say, /etc/grid-security/banned, one

per line.
in the [group] section, add a line:
—-file=/etc/grid-security/banned

Remember that the rules are processed in order of comparison, so this rule must appear before a
rule that will allow users to access the cluster. See 6.1.3, Commands in the [group] section for a
detailed explanation of the rule parsing process.

Solution 2 This solution requires restart of A-REX.

1.

4

Create a file containing the DNs of the users to ban, say, /etc/grid-security/banned, one
per line.

Choose a non existing unix user id, that is, a user not present in your system. Let’s call it
unexistinguid.

Create a special vo and group named “banned” in this way:

[vo]

id="banned_vo"

vo="banned_vo"
source="file:///etc/grid-security/banned"
mapped_unix_id="unexistinguid"

[group/banned_group]
name="banned_group"
vo="banned_vo"

Be sure to have the banned_group before any other group in your arc.conf, or the user will
never be rejected due to the group rule processing order. See 6.1.3, Commands in the [group]
section for a detailed explanation of the rule parsing process.

. Restart A-REX service as in 5.1.3, Starting the CE.

The user will be accepted but its jobs will not be processed as it will be assigned to a non-existing uid.

Jobs currently in the system belonging to the user may be immediately halted and cleaned using the gm-jobs
utility. See gm-jobs -h for the appropriate options.

5.6.2

How configure SELinux to use a port other than 2135 for the LDAP
information system

The defined SELinux rules for the default port 2135 are as follows:

80 CHAPTER 5. OPERATIONS

semanage port -a -t ldap_port_t -p tcp 2135 2>/dev/null ||
semanage fcontext —-a -t slapd_db_t "/var/run/arc/bdii(/.*)?" 2>/dev/null ||

To use a port other than 2135, change the port number in the above in SELinux configuration.

NOTE: ARC packages postinstall scripts will always default to 2135, so make sure the specific SELinux
configuration is loaded independently from ARC.

5.6.3 How to debug the ldap subsystem

In case there are problems with ldap publishing, it’s strongly advised not to turn on slapd logs, as they will
slow down performance. Most of the problems can arise in the process of updating the LDAP trees, for
example due to odd values in some of the attributes. This process is performed by the BDII component, in
particular by the bdii-update script.

To increase verbosity of such script, modify or add the value of the bdii_debug_level option in the [infosys]
block.

1. Stop the ldap subsystem by running

service nordugrid-arc-bdii stop

2. edit arc.conf so to have:

[infosys]

bdii_debug_level="ERROR"

3. Restart the ldap subsystem by running

service nordugrid-arc-bdii start

/var/log/arc/bdii/bdii-update.log will contain relevant LDAP errors.

5.6.4 Missing information in LDAP or WSRF

A known issue in ARC new infoproviders is some slowdown in the information system when a huge amount
of jobs are sitting in the control directory. Symptoms of this issue are unresponsive ldap server and job
status not retrieved by arc tools.

Also by looking at A-REX logs, it’s possible to see the error message:

Resource information provider timeout:

To overcome this limitation there is a current workaround, which allows a system administrator to let
infoproviders run for more time. This is done by increasing the timeout